SIMA法制备半固态镁合金的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镁合金作为21世纪的绿色产业,已经引起国内外的广泛关注。有关镁合金半固态成形技术的研究方兴未艾。而SIMA法制备半固态镁合金具有独特的优势。
     本文主要研究SIMA法制备镁合金半固态坯料工艺过程中二次加热熔化激活的工艺参数及组织球化机制。首先对经过挤压形变的AZ91D镁合金分别进行连续加热及等温保温,然后水淬快速激冷固定其高温瞬时组织。定量测试晶粒的等积圆直径和球化度等形貌参数,比较形变组织的半固态球化效果,采用金相分析、XRD、TEM、EDAX等方法观测组织演变过程特点,并考察第二相及微区成分的变化。通过对半固态再结晶和半固态熔化过程中的组织转变、晶界蜂巢及晶内液池现象的分析,结合相变热力学和动力学原理,提出SIMA法制备镁合金半固态球状化组织的形成机制及工艺参数。研究结果表明:
     1、等温温度和保温时间是形变镁合金组织球状化的两个重要控制因素。随着保温温度的升高,获得半固态球状组织所需的等温时间逐步缩短。在相同的加热速度条件下,560℃保温5min的工艺效果与570℃保温4min、580℃保温2min基本相当。
     2、相同等温温度条件下,改变等温时间,等积圆直径的分布随时间的延长趋向均匀,晶粒球化度接近于正态分布。平均等积圆直径由大变小再变大再变小,呈波浪状变化;而晶粒平均球化度则由小变大再变小,呈抛物线状。
     3、相同保温时间条件下,改变等温温度,等积圆直径大的晶粒随温度的升高而增加,球状化程度高的晶粒数增多,平均等积圆直径和平均球化度同时增大。而等温温度对最终球化组织的平均等积圆直径和平均球化度的影响呈抛物线关系。
     4、连续升温和等温保温过程中再结晶形成等轴晶,为半固态晶粒球状化提供了必
    
     西安理工大学硕士学位论文
    要的组织条件..保温温度升高和连续加热速度加诀都会使半固态再结晶的速度提
    高。
    5、形变组织半固态保温过程中伴随着局部高能区的熔化,表现为晶界蜂巢状结构
    和晶内液池现象,这是半固态合金保持固相特征并具有触变性的基本条件。
    6、半固态晶粒球状化的基本原因是晶界熔化,其控制因素是因液界面处原子扩散
    迁移的速度和界面曲率。过程机制为:挤压形变组织在加热过程中首先发生再结晶
    长大变为颗粒状等轴晶;随温度升高和保温时间延长,等轴晶发生局部熔化,液固
    界面的曲率过热使晶粒外形向球状转变。
Magnesium alloy, as one of the green industry in the 21st century, had caught more and more international researchers' attention. The technology of the magnesium alloy's semi-solid processing was studying. Moreover the fabrication of the semi-solid magnesium alloy by SIMA had the unique advantage.
    The reheating parameters of the fabrication and the mechanism of the globalization were investigated systematically in this article. The extruded AZ91D alloy was heated continuously and soaked at constant temperature .Then it was quenched in the water and the instant texture at high temperature was acquired. The equal-grain-area-circle diameter and the roundness were defined to scale the form factor and quantified the degree of the grain's globalization. Metallographic analysis, XRD, TEM and EDAX were expired to observe the evolution of the microstructure, the changing of the phase and the changing of the component. Through the analysis of the evolution of the microstructure, the honey comb at the grain boundary and the pool in the grain, furthermore according to the phase change thermodynamic and kinetics, the conclusions of the globalization mechanism and the reheating parameters were drawn as follows.
    1. When the preformed Magnesium alloy's texture was globalizing, there were two important control factors, which were holding temperature and holding time, affecting the globalization processing. With the holding temperature going up, the globalization velocity accelerated gradually. At the same heating velocity, the result of holding 5min at 560 X? was the same as holding 4min at 570 癈 and as holding 2.5min at 580"C.
    Ill
    2,
    
    
    
    XI'AN UNIVERSITY OF TECHNOLOGY
    2. At the same holding temperature, when the holding time increased, the equal-area-circle diameter trended to uniform, and the distribution of the roundness approached to Gaussian distribution. The average of the equal-area-circle diameter was changed from long to short and then to long, to short at last, as a wave. The average of the roundness was changed from low to high and to low again, as para-curve.
    3. At the same holding time, when the holding temperature changed, the number of the long equal-area-circle diameter grain increased, and the average of the equal-area-circle diameter lengthened, the average of the roundness heightened. The relationship between the holding temperature and the average of the equal-area-circle diameter or the average of the roundness was parabolic.
    4. After continuously heated and isothermally soaked, the equiaxed grain, as the result of the recrystallization, was the necessary texture condition of the semi-solid grain's globalization processing. The semi-solid recrystallization velocity was run-up when the holding temperature risen and the heating velocity accelerated.
    5. When it was soaked in the semi-solid temperature, the preformed texture was accompanied with the part high-energy-area melting. Its presentations were the honey combs at the grain boundary and the pools in the grain. It was the essence condition that the semi-solid metal maintained the solid character and had the thixotropy.
    6. The melting of the grain boundary is the reason of the semi-solid grain globalization, and its control factors were the atomic diffusion velocity and the liquid-solid interface curvature. The globalization course was that the preformed texture recrystallized and became the granular equiaxed grain, when the temperature rose and the holding time prolonged, the granular grain melted at some area and at the liquid-solid interface the grain globalized at the role of the curvature overheated.
引文
[1] 波尔忒挪伊,A.A.列别杰夫.镁合金手册(工艺与性质).北京:冶金工业出版社,1959:1
    [2] 陈力禾,赵惠杰,等。镁合金压铸及其在汽车工业中的应用.铸造,48(10),1999:45—50
    [3] 袁森,蒋百灵,等。镁合金应用工程技术市场分析与展望.铸造技术,5,2001:79
    [4] 孙伯勤。镁合金压铸件在汽车行业中的巨大应用潜力.特种铸造及有色合金,(3),1998:40—41
    [5] 曾小勤,王渠东,等。镁合金应用新进展.铸造,47(11),1998:39—43
    [6] Spencer D B, Mehrabian R, et al.. Rheological behavior of Sn-15% Pct Pb in the crystallization range, Metal. Trans.. 3,1972:1925-1932
    [7] 谢水生,黄声宏。半固态成形技术(上).机械工艺师,(3),2000:4—5
    [8] Flemings M C. Behavior of metal alloys in the semi-solid state. Metal. Trans., 22B (6), 1991:269-293
    [9] Kirkwood D H. Semisolid metal processing. International Materials Reviews, 39(5), 1994:173-189
    [10] Flemings M C.凝固过程.北京:冶金工业出版社:1981:286,278
    [11] Tzimas E., Zavaliangos A. Mechanical behavior of alloys with equiaxed microstructure in the semisolid state at high solid content, Acta Mater, 47(2),1999:517-528
    [12] Doherty R T, Lee H I. Crystal growth in solidification. Metal. Trans., 17A (12), 1986:2049-2062
    [13] Kirkwood J P. Semisolid processing of alloys. Metals and Materials,
    
    5(1),1989:16-21
    [14]吴炳尧。半固态金属铸造工艺的研究现状及发展前景,铸造,(3),1999:45-52
    [15]LI Shu-suo, ZHAO Ai-min, et al.. Mechanical properties of hypercutectic Al-Salloy by semisolid processing, Trans. Nonferrous Met. Soc. China, 10(4), 2000 441-444
    [16]李树索,王德仁,等。电磁搅拌过共晶铝硅合金的显微组织.特种铸造及有色合金,1998(增刊):1-3
    [17]于平,李子全,等。旋转磁场对ZA-27合金组织的影响.特种铸造及有色合金,(4),1997:1-3
    [18]朱鸣芳,苏华钦。ZA12颗粒组织的形成及枝晶形态的演变.东南大学学报,26(2),1996:1-6
    [19]H. Lehuy, J. Masoulove, J. Blain. Rheological behavior and microstructure of stir-casting Zn-Al Alloys, J. of Mater. Sci., 20 (1), 1985:105-113
    [20]朱明原,许珞萍,等。EMS-DC法制备的半固态ZL101A铝合金的组织与性能.中国有色金属学报,10(S1),2000:150—154
    [21]Flemings M C. Semi-solid forming: the process and the path forward, Metallurgical science & technology, 18(2),2000:3-4
    [22]Young K P, Kyonka C P, et al.. Fine grained metal composition, United States Patent, 4,415,374
    [23]Chatles Vives. Elaboration of semi-solid alloys by means of new electromagnetic rheocasting process, Metal Trans, 23B (3), 1992:189-205
    [24]李子全,吴炳尧,等。电磁搅拌制备ZA-27非枝晶组织浆料及铸锭,首届中国国际压铸会议论文集,北京:1997:14-18
    [25]李子全,吴炳尧。旋转磁场作用ZA-27合金初生相形貌演变过程及
    
    机理.铸造,1997(10):1-5
    [26]李子全,吴炳尧,等。等温温度和微量合金化对电磁搅拌ZA-27流变组织的影响.铸造,1997(12):6-11
    [27]Ward P J, Atkinson H V, et al.. Semi-solid processing of novel MMCs based on hypereutectic aluminum-silicon alloys, Acta Mater, 44(5), 1996:1717
    [28]Valer Goni J, Rodriguez-Ibabe J M, et al.. Strength and toughness of semi-solid processed hypereutectic Al/Si alloys[J], Scripts Material, 34(3), 1996:483
    [29]张豪,陈振华,等。多层喷射沉积6066铝合金半固态挤压.中国有色金属学报,8(2),1998:191—196
    [30]赵爱民,甄子胜,等。喷射沉积高硅铝合金的半固态触变成形.中国有色金属学报,10(S1),2000:126—131
    [31]乐启炽,张新建,等。AZ91D镁合金近液相线铸造半固态坯料的部分重熔.金属学报,38(12),2002:1266—1272
    [32]朱鸣芳,苏华钦。半固态等温处理制备粒状组织ZA12合金的研究.铸造,1996(4):1-5
    [33]唐靖林,曾大本。半固态加工技术的发展和应用现状.兵器材料科学与工程,21(3),1998:56—65
    [34]Frederick P S, Bradley N L, et al.. Injection molding magnesium alloys, Advanced Mater & Process, 134 (4), 1988:53-58
    [35]Tissier A, Apelian D, et al.. Magnesium rheoeasting: A study of processing microstructure interactions, Journal of Materials Science, 1990(25): 1184-1196
    [36]谢水生,黄声宏。面向新世纪的半固态金属成形技术,北京机械工程协会压力加工学术交流会论文集,1998.11:6—12
    [37]Young K. P., Eisen P., SSM(semi-solid metal) technological alternatives
    
    for different applications, Metallurgical science & technology, 18(2),2000:11-15
    [38] 松井 伸司,关原 一敏,鎌士 重晴,小岛 阳.AZ91D合金半熔融状态组织变化.经金属,45(1),1995:15-20
    [39] Kapranos P, Kirkwood D H, et al. Thixoforming high melting point alloys into non-metallic dies, Proceedings of the 4th International Conference on Semi-solid Processing of Alloy and Composites, Sheffield: the University of Sheffield, 1996,306-311
    [40] 朱鸣芳,苏华钦。半固态等温热处理对ZA12合金组织和性能的影响.金属热处理,1996(1):33-36
    [41] 田文彤,罗守靖,等。半固态加工Al-Zn-Mg合金的组织演化.特种铸造及有色合金,2002(1):6-7
    [42] Lapkowski W. Some studies regarding Thixoforming of metal alloys, Journal of Materials Processing Technology, 80-81 (1998): 463-468
    [43] Kirkwood D H, Kapranos P. Semi-Solid Processing of Alloys. Casting Technology, 1989(1):16
    [44] 朱鸣芳,苏华钦。半固态等温处理制备粒状组织ZA12合金的研究。铸造,1996(4):1—5
    [45] 陈体军,郝远,等。ZA27合金在SIMA处理过程中形变量和等温温度对组织的影响.金属热处理学报,21(1),2000:26—31
    [46] LUO Shou-jing, TIAN Wen-tong, et al.. Structural evolution of LC4 alloy in making thixothropic billet by SIMA method, Trans. Nonferrous Met. Soc. China., 2001(8):547-550
    [47] Evangelos Tzimas, Antonios Zavaliangos. Evolution of near-equiaxed microstructure in the semisolid states. Materials science and engineering, A289(2000):228-240
    
    
    [48]刘昌明,邹茂华,等。形变诱导法半固态加热工艺参数对LY12合金组织和晶粒尺寸的影响.中国有色金属学报,12(6),2002:436
    [49]Evangelos Tzimas, Antonios Zavaliangos. A comparative characterization of near-equiaxed microstructures as produced by spray casting, magneto hydrodynamic casting and the stress induced, melt activated process. Materials Science and Engineering, A289(2000): 217-227
    [50]刘正,张奎,曾小勤。镁基轻质合金理论基础及其应用,北京:机械工业出版社,2002:49
    [51]欧朋。AZ91D镁合金半固态制浆新工艺及机理研究,东北大学硕士学位论文,2002:28—30
    [52]Rudajevova A., Stanek M., et al. Determination of thermal diffusivity and thermal conductivity of Mg-Al alloys, Materials science and engineering, A341 (2003): 152-157
    [53]吴炳尧,戴挺。半固态触变成形坯料二次加热技术分析.特种铸造及有色合金,2000(6):58—61
    [54]刘国勋。金属学原理,北京:冶金工业出版社,1980:338
    [55]毛卫民,赵新兵。金属的再结晶与晶粒长大,北京:冶金工业出版社,1994:61—62
    [56]黄继华。金属及合金中的扩散[M],北京:冶金工业出版社,1996,23—30

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700