Mg-Al-Si合金半固态组织演变及其影响因素
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镁合金在汽车制造、电子通讯和航空航天等领域得到了广泛的应用,但是在Mg-Al-Si合金中易于形成粗大的汉字状共晶Mg_2Si相,对镁合金的性能造成了严重的影响。半固态加工技术作为镁合金的先进成形工艺,近年来已经得到了迅速的发展,但是国内外对Mg-Al-Si合金半固态组织的研究较少,对其非枝晶组织演变机制的研究还不够深入。本论文以Mg-9Al-1Si合金为主要研究对象,采用应变诱发法(SIMA)和等温热处理法成功制备出了Mg-Al-Si合金半固态坯料,研究了半固态工艺参数(预变形量、等温温度和等温时间)及合金成分(Al含量和Si含量)对Mg-Al-Si合金半固态非枝晶组织的影响规律,并对Mg-Al-Si合金的半固态非枝晶组织演变及其影响因素进行了探讨。通过研究不但可以明确半固态工艺参数(预变形量、等温温度和等温时间)及合金成分(Al含量和Si含量)对合金半固态组织的影响,而且对于揭示Mg-Al-Si合金半固态非枝晶组织的演变机制,丰富半固态理论基础,具有明显的理论意义和工程实用价值。
     采用应变诱发法(SIMA)和等温热处理法分别制备出了具有非枝晶组织的Mg-9Al-1Si合金半固态坯料,并且通过金相组织观察发现,采用SIMA法制备的合金半固态组织中的α-Mg晶粒和汉字状共晶Mg_2Si实现了双重球化,而与SIMA法不同的是,由于采用等温热处理法在半固态处理前没有对合金进行预变形处理,所以在此半固态工艺下制备得到的非枝晶组织中的α-Mg晶粒虽然实现了球化,但是组织中的Mg_2Si颗粒却大部分以多角形块状的形式存在。
     通过对SIMA法工艺参数的研究发现:随着预变形量的增加,半固态组织中的α-Mg晶粒尺寸明显减小,圆整度增大,液相量增多;Mg_2Si颗粒的尺寸虽然没有显著变化,但是其形状因子不断增加。随着等温温度和等温时间的增加,半固态组织中的α-Mg晶粒尺寸增大,圆整度提高,液相量不断增多;Mg_2Si颗粒的尺寸增大,形状因子增加。在本实验条件下,采用SIMA法获得的优化工艺参数为:预变形量为30%,等温温度为570℃,等温时间为20min。
     通过对等温热处理法工艺参数的研究发现:随着等温温度和等温时间的增加,半固态组织中的α-Mg晶粒尺寸增大,圆整度提高,液相量不断增多;Mg_2Si颗粒的尺寸增大,数量减少,并且其出现多角形块状的几率增加,形状因子不断降低。在本实验条件下,采用等温热处理法获得的优化工艺参数为:等温温度为570℃,等温时间为20min。
     通过研究合金成分(Al含量和Si含量)对Mg-Al-Si合金半固态非枝晶组织的影响可以发现:随着Al含量的增加,半固态组织中的α-Mg晶粒尺寸不断减小,圆整度提高,液相量明显增多;由于Al含量增加使Mg-Al-Si合金从亚共晶成分转变成为过共晶成分,从而导致汉字状共晶Mg_2Si转变为多角形块状的初生Mg_2Si。随着Si含量的增加,在合金半固态组织中α-Mg晶粒的晶界处分布着较多粗大的Mg_2Si颗粒,这些Mg_2Si颗粒阻碍了α-Mg晶粒的合并长大,使得α-Mg晶粒尺寸减小;在经过不同半固态处理工艺后,Mg-Al-Si合金中粗大树枝状的初生Mg_2Si都转变为近球形颗粒。
     通过以上研究可以得到Mg-Al-Si合金半固态非枝晶组织的演变机制,主要包括α-Mg晶粒的球化机制、汉字状共晶Mg_2Si相的球化机制和树枝状初生Mg_2Si的球化机制这三个方面。采用SIMA法获得的Mg-Al-Si合金半固态组织中的α-Mg晶粒的球化机理除了枝晶熔断机制外,主要是液相沿亚晶界的熔渗机制,而采用等温热处理法获得的Mg-Al-Si合金半固态组织中α-Mg晶粒的球化机理主要是枝晶熔断机制;汉字状共晶Mg_2Si的球化机理为溶解-析出机制;树枝状初生Mg_2Si的球化机理为枝晶根部熔断机制及“雷利(Rayleigh)形状失稳”机制。
Magnesium alloys are the lightest structural materials widely commercially available andhave great potential for applications in automotive, aerospace industries and others in recentyears. However, the challenge of Mg-Al-Si alloy is that the Mg_2Si phase is prone to formingundesirable, coarse Chinese script shape under low solidification rate resulting from theeutectic reaction, which would greatly deteriorate the mechanical properties of the magnesiumalloys and become a principal obstacle for the application of Si-containing magnesium alloys.SSM processing is regarded as an advanced forming technology for magnesium alloy, but theresearch of semisolid process for Mg-Al-Si alloy is less. In this thesis, the Mg-9Al-1Si alloysemisolid billets were fabricated by strain-induced melt activation (SIMA) process andsemisolid isothermal heat-treatment process, and the effects of different heat-treatmentprocessing parameters (compressive ratio, holding temperature and holding time) and thealloy content (Al and Si content) on the semisolid microstructures of Mg-Al-Si alloy werestudied. Moreover, the semisolid microstructural evolution and influence factors for theMg-Al-Si alloy were also investigated. Through the research not only can determine theisothermal processing parameters, but also can enrich semisolid theoretical basis, theinfluence of theoretical significance is obviously.
     Experimental results indicated that a non-dendritic microstructure of Mg-9Al-1Si alloycould be obtained by the strain-induced melt activation (SIMA) process and semisolidisothermal heat treatment process, respectively. The morphology of α-Mg grains transformedfrom dendritic shape to spherical shape and the eutectic Mg_2Si phase transformed fromChinese script shape to globular shape during the SIMA process. Compared with the SIMAprocess, without the compressive processing, although the morphology of α-Mg grainstransformed from dendritic shape to spherical shape but the eutectic Mg_2Si phase transformedfrom Chinese script shape to polygon shape during the semisolid isothermal heat treatment.
     With the compressive ratio varying from0%to30%, the volume fraction of liquidgradually increased, average size of α-Mg grains increased and the globular tendency becamemore obviously. With the compressive ratio increased, the average size Mg_2Si particle wasnot significant change but its shape factor increased. With the holding temperature varyingfrom560℃to575℃, the average size of α-Mg grain and its globular tendency increased andthe volume fraction of liquid increased. The average size and shape factor of Mg_2Si particleincreased. With the holding time varying from5min to30min, the volume fraction of liquid gradually increased, average size of α-Mg grains increased and the globular tendency becamemore obviously, the average size and shape factor of Mg_2Si particle increased. The resultsshowed that the optimized SIMA processing parameters were suggested at570℃for20minand compressive ratio was chosen30%for the Mg-9Al-1Si alloys.
     With the holding temperature varying from560℃to575℃, the volume fraction ofliquid gradually increased, average size of α-Mg grains increased and the globular tendencybecame more obviously, the average size of Mg_2Si particle increased but its shape factordecreased. With the holding time varying from5min to30min, the average size of α-Mg grainand its globular tendency increased, the volume fraction of liquid increased, the average sizeof Mg_2Si particle increased but its shape factor decreased obviously. The results showed thatthe optimized semisolid isothermal heat treatment parameters were suggested at570℃for20min for the Mg-9Al-1Si alloys.
     The effects of the alloy content (Al and Si content) on the as-cast and semisolidmicrostructures of Mg-Al-Si alloy were investigated. With the Al content increased, thehypoeutectic composition transformed into hypereutectic composition in the as-castmicrostructure of Mg-Al-Si alloy; the liquid phase increased, the morphology of α-Mg grainbecame more globular and its size decreased in the semisolid microstructure of Mg-Al-Sialloy. With the Si content increased, abundant polygonal primary Mg_2Si phase existed in thesemisolid microstructure of Mg-Al-Si alloy, the primary Mg_2Si particle distributed in theα-Mg grain boundary and hampered its growth resulted in α-Mg grain size decreased. Afterdifferent semisolid process, all the dentritic Mg_2Si changed into nearly spherical particles.
     The semisolid microstructural evolution mechanisms for Mg-Al-Si alloys were studied,including the spheroidization mechanism of α-Mg grain, the spheroidization mechanism ofeutectic Mg_2Si phase and primary Mg_2Si phase at grain boundary. The results indicated thatthe spheroidization mechanism of α-Mg grain produced by isothermal heat-treatment processwas the dendrites melting mechanism. However, the penetration of liquid phase along thesub-grain boundary was the main spheroidization mechanism of α-Mg grain produced bySIMA process. The spheroidization mechanism of eutectic Mg_2Si should be attributed to theresolution precipitation. The spheroidization mechanism of primary Mg_2Si was associatedwith the dendrites melting and “Rayleigh shape instability”.
引文
[1] Yuan G Y, Liu M P, Ding W J. Microstructure and mechanical properties of Mg-Zn-Sibased alloys[J]. Materials Science and Engineering A.2003,357:314-320P
    [2]陈振华等编著.镁合金[M].北京:化学工业出版社.2004:24页
    [3]朱鸣芳,苏华钦.半固态金属成型技术工业应用现状与展望[J].中国机械工程.1995,6:24-26页
    [4]左铁镛.21世纪的轻质结构材料-镁及镁合金发展[J].新材料产业.2007,12:22-26页
    [5] Mordike B L. Magnesium, properties-applications-potential[J]. Materials Science andEngineering A.2001,302:37-45P
    [6]潘复生,王敬丰,章宗和.中国镁工业发展的机遇、挑战和责任[J].中国金属通报.2008,2:6-14页
    [7]师昌绪,李恒德,王淀佐.加速我国金属镁工业发展的建议[J].材料导报.2001,15(4):5-6页
    [8]刘子利,丁文江,袁广银,朱燕萍.镁铝基耐热铸造镁合金的进展[J].机械工程材料.2001,25(11):1-6页
    [9]张静,潘复生,李忠盛.耐热镁合金材料的研究和应用现状[J].铸造.2004,53(10):770-772页
    [10]丁文江等编著.镁合金科学与技术[M].北京:科学出版社.2007:120-122页
    [11]郭学峰,魏建峰,张忠明.镁合金与超高强度镁合金[J].铸造技术.2002,23(3):133-136页
    [12]高仑.镁合金成形技术的开发与应用[J].轻合金加工技术.2004,32(3):5-12页
    [13]杜文博,吴玉锋,左铁镛.镁合金在交通工具中的应用现状[J].世界有色金属.2006,2:19-21页
    [14] Deker R F. The renaissance in magnesium[J]. Advanced Materials&Process.1998,98:31-33P
    [15]西蒙兹.镁在汽车中的应用广阔[J].中国有色金属.2006,8:24-25页
    [16]蔡锁岐,崔而信.镁合金汽车车轮重力铸造研究[J].铸造.2001,5:8-10页
    [17]刘倩,单忠德.镁合金在汽车工业中的应用现状与发展趋势[J].铸造技术.2007,128(12):1668-1671页
    [18]王凤娥.国内外镁合金成形技术专利分析[J].轻合金加工技术.2006,34(2):4-6页
    [19]黄德明,刘红梅,陈云贵.耐热铸造镁合金的研究应用进展[J].轻合金加工技术.2005,8:49-54页
    [20]孙丰泉,严有为.抗蠕变耐热镁合金的研究进展[J].铸造设备研究.2004,3:17-28页
    [21] Ohara H. Magnesium Alloys and Their Application[J]. Journal of Japan Institute ofLight Metals.1998,48(8):422-424P
    [22]孟树昆,吴秀铭,韩薇.发展中的中国镁业[J].中国有色金属.2006,8:19-21页
    [23] Lu L, Thong K K, Gupta M. Mg-based composite reinforced by Mg2Si[J]. CompositesScience and Technology.2003,63:627-632P
    [24] Riffel M, Schliz J. Mechanical alloying of Mg2Si[J]. Scripta Metallurgical Material.1995,32(12):1951-1956P
    [25] Li G H, Gill H S, Varin R A. Magnesium silicide intermetallic alloys[J]. Metallurgicaland Materials Transactions A.1993,24:2383-2391P
    [26] Chen K, Li Z Q, Zhou H Z, Wang W. Influence of high intensity ultrasonic vibration onmicrostructure of in-situ synthesized Mg2Si/Mg composites[J]. Transactions of Non-ferrous Metals Society of China.2007,17:391-395P
    [27] Ourfali M F, Todd I, Jones H. Effect of solidification cooling rate on themorphologyand number per unit volume of primary Mg2Si particles in hypereutectic Al-Mg-Sialloy[J]. Metallurgical Transactions A.2005,36:1368-1372P
    [28] Hu X S, Wu K, Zheng M Y. Effect of heat treatment on the stability of dampingcapacity in hypoeutectic Mg-Si alloy[J]. Scripta Materials.2006,54:1639-1643P
    [29] Mabuchi M, Kubota K, Higashi K.Elevated temperature mechanical properties ofmagnesium alloys containing Mg2Si[J]. Materials Science and Technology.1996,12:35-39P
    [30] Hu X S, Wu K, Zheng M Y, Gan W M, Wang X J. Low frequency damping capacitiesand mechanical properties of Mg–Si alloys[J]. Materials Science and Engineering A.2007,452-453:374-379P
    [31] Mabuchi M, Kubota K, Higashi K.Tensile strength, ductility and fracture of mag-nesium-silicon alloys[J]. Journal of Materials Science.1996,31:1529-1535P
    [32]王怀国,张景新张奎,徐骏,石力开.高硅镁合金的制备工艺及显微组织分析[J].稀有金属.2003,27:500-505页
    [33] Tsuzuki R, Kondoh K, Du W, Aizawa T, Yuasa E. Effect of extrusion conditions onproperties of hot extruded Mg composite with Mg2Si dispersions via solid-statesynthesis[J]. Materials Science Forum.2003,419-422:789-794P
    [34] Mabuchi M, Kubota K, Higashi K. Effect of hot extrusion on mechanical properties ofa Mg-Si-Al alloy[J]. Material Letter.1994,19:247-250P
    [35] Mabuchi M, Higashi K. Strengthening mechanisms of Mg-Si alloys[J]. Acta Material.1996,11:4611-4618P
    [36] Srinivasan A, Ningshen S, Pillai U T S, Pai B C. Influence of Si and Sb additions onthe corrosion behavior of AZ91magnesium alloy[J]. Intermetallics.2007,15(12):1511-1517P
    [37]胡勇,闫洪,陈国香. Sb变质对Mg2Si/AM60镁基复合材料组织及性能的影响[J].塑性工程学报.2009,15(3):177-181页
    [38]孙丰泉,王小东,严有为. Sb对原位Mg2Si/Mg复合材料组织的影响[J].特种铸造及有色合金.2005,25(1):18-20页
    [39]陈晓.原位自生颗粒增强镁基复合材料的研究[D].中南大学博士学位论文.2005:23-25页
    [40]陈晓,傅高升,钱匡武. Sr对原位自生Mg2Si/ZM5复合材料组织和性能的影响[J].中国有色金属学报.2002:241-245页
    [41] Wang H Y, Jiang Q C, Ma B X, Wang Y, Wang J G, Li J B. Modification of Mg2Si inMg–Si alloys with K2TiF6, KBF4and KBF4+K2TiF6[J]. Journal of Alloys andCompounds.2005,387:105-108P
    [42] Wang L P, Guo E J, Ma B X. Modification effect of lanthanum on primary phaseMg2Si in Mg-Si alloys[J]. Journal of Rare Earths.2008,26:105-109P
    [43] Guo E J, Ma B X, Wang L P. Modification of Mg2Si morphology in Mg-Si alloys withBi[J]. Journal of Materials Processing Technology.2008,206:161-166P
    [44] Jiang Q C, Wang H Y, Wang Y, Ma B X, Wang J G. Modification of Mg2Si in Mg-Sialloys with yttrium[J]. Materials Science and Engineering A.2005,392:130-135P
    [45] Kim J J, Kim D H, Shin K S, Kim N J. Modification of Mg2Si morphology in squeezecast Mg-Al-Zn-Si alloys by Ca or P addition[J]. Scripta Materialia.1999,41(3):333-340P
    [46]宋海宁,袁广银,王渠东,朱燕萍,丁文江.耐热Mg-Zn-Si-Ca合金的显微组织和力学性能[J].中国有色金属学报.2002,12(37):955-961页
    [47]张金山,高义斌,裴利霞,杜宏伟. P变质对Si合金化AZ91镁合金显微组织和力学性能的影响[J].中国有色金属学报.2006,8(37):1363-1368页
    [48]张春香,关绍康,石广新,王利国,王建强. Mg-8Zn-4Al-1Si-0.3Mn-xAlP合金的显微组织及性能[J].中国有色金属学报.2004,2(14):1352-1358页
    [49] Li C, Liu X F, Wu Y Y.Refinement and modification performance of Al–Pmaster alloyon primary Mg2Si in Al-Mg-Si alloys[J]. Journal of Alloys and Compounds.2007,10:111-113P
    [50]黄晓锋,王渠东,曾小勤.钕对Mg-5Al-1Si高温蠕变及组织性能的影响[J].中国稀土学报.2004,22(3):361-364页
    [51] Yang J, Wang J L, Wang L D, Wu Y M, Wang L M, Zhang H J. Microstructure andmechanical properties of Mg-4.5Zn-xNd(x=0,1and2,wt.%)alloys[J]. MaterialsScience and Engineering A.2008,479:339-344P
    [52] Zheng N, Wang H Y, Wang W, Gu Z H, Li D, Jiang Q C. Invalidation of KBF4modification on the primary Mg2Si in Mg-Si alloys by Al addition[J]. Journal of Alloysand Compounds.2008,459:8-12P
    [53] Flemings M C. Behavior of Metal Alloys in the Semisolid State[J]. MetallurgicalTransactions A.1991,22:957-981P
    [54]康永林,毛卫民,胡壮麒.金属材料半固态加工理论与技术[M].北京:科学出版社,2004:13-16页
    [55] Fan Z. Semisolid metal processing[J]. International Materials Reviews.2002,47(2):49-85P
    [56] Qin Q D, Zhao Y G, Liu C, Cong P J, Zhou W, Liang YH. Effect of holdingtemperature on semisolid microstructureof Mg2Si/Al composite[J]. Journal of Alloysand Compounds.2006,416:143-147P
    [57] Zhang J, Fan Z, Wang Y Q, Zhou B L. Microstructural evolution of the in situAl-15wt.%Mg2Si composite with extra Si contents[J]. Scripta Material.2000,42:1101-1106P
    [58] Paes M, Zoqui E J. Semi-solid behavior of new Al-Si-Mg alloys for thixo forming[J].Materials Science and Engineering A.2005,406:63-73P
    [59] Qin Q D, Zhao Y G, Cong P J, Zhou W, Xu B. Semisolid microstructure of Mg2Si/Alcomposite by cooling slope cast and its evolution during partial remelting process[J].Materials Science and Engineering A.2007,444:99-103P
    [60]赵宇光,秦庆东,丛培军.原位Mg2Si/Al复合材料的变质与半固态组织演变[J].特种铸造及有色合金.2007,27(2):235-237页
    [61] Kliauga A M, Ferrante M. Liquid formation and microstructural evolution duringre-heating and partial melting of an extruded A356aluminium alloy[J]. Acta Material.2005,53:345-356P
    [62]赵大志,路贵民.半固态成形轻合金的发展状况[J].铸造.2007,56:572-576页
    [63] Yang M B, Pan F S, Cheng R J, Bai L. Effect of semi-solid isothermal heat treatmenton the microstructure of Mg-6Al-1Zn-0.7Si alloy[J]. Journal of Material ProcessingTechnology.2007,12:41-45P
    [64] Zha M, Wang H Y, Xue P F, Li L L, Liu B, Jiang Q C. Microstructural evolution ofMg-5Si-1Al alloy during partial remelting[J]. Journal of Alloys and Compounds.2008,5:16-23P
    [65]李新林,王慧远,姜启川.颗粒增强镁基复合材料的研究现状及发展趋势[J].材料科学与工艺.2001,9:219-224页
    [66]李新林. TiC颗粒增强镁基复合材料的制备[D].吉林大学博士学位论文.2005:58页
    [67] Qin Q D, Zhao Y G, Zhou W, Cong P J. Effect of phosphorus on microstructure andgrowth manner of primary Mg2Si crystal in Mg2Si/Al composite[J]. Materials Scienceand Engineering A.2007,447:186-191P
    [68] Qin Q D, Zhao Y G. Nonfaceted growth of intermetallic Mg2Si in Al melt during rapidsolidification[J]. Journal of Alloys and Compounds.2008,462(1-2):28-31P
    [69] Wang H Y, Wang W, Zha M, Zheng N, Gu Z H, Li D, Jiang Q C. Influence of theamount of KBF4on the morphology of Mg2Si in Mg-5Si alloys[J]. Materials Chemistryand Physics.2008,108:353-358P
    [70] Wang H Y, Zha M, Liu B, Wang D W, Jiang Q C. Microstructural evolution behaviorof Mg-5Si-1Al alloy modified with Sr–Sb during isothermal heat treatment[J]. Journalof Alloys and Compounds.2009,480(2):25-28P
    [71] Flemings M C.关玉龙,屠宝洪,许诚信译.凝固过程[M].北京:冶金工业出版社.1981:24-36页
    [72] Flemings M C. Semi-solid forming: the process and the path forward[J]. MetallurgicalScience and Technology.2000,18(2):3-4P
    [73] Spencer D B, Mehrabian R,Flemings M C.Rheological behavior of Sn-15%pct Pb inthe crystallization range[J]. Metallurgical Transaction.1972,3(7):1925-1932P
    [74]罗守靖,田文彤,谢水生.半固态加工技术及应用[J].中国有色金属学报.2002,10(6):765-773页
    [75]王武孝,袁森等.镁合金半固态成形技术的研究现状及发展[J].铸造技术.2004,25:469-470页
    [76]管仁国,马伟民.金属半固态成形理论与技术[M].北京:冶金工业出版社.2005:270-281页
    [77] Hall K. Detailed processing and cost considerations for new-rheocasting of light metalalloys[J]. In:6th Proceeding International Conference on Semi-solid Processing ofAlloys and Composites. Italy.2000,9:23-28P.
    [78] Potzinger R. Magnesium new rheocasting a novel approach to high qualitymagnesium-casting[J]. In:6th Proceeding International Conference on Semi-solidProcessing of Alloys and Composites. Italy.2000,9:85-90P
    [79] Matsumity T, Fleming M C. Modeling of continuous strip pordution by rheocast[J].Metallurgical Transactions B.1981,12:17-30P
    [80] Kaufmann H. Casting of light metal wrought alloys by new rheocasting[J]. In:6thProceeding International Conference on Semi-solid Processing of Alloys andComposites. Italy.2000,9:457-462P
    [81] Molenaar J M. Analysis of Poreess limits for continuous thixopic slurry casting[J].Journal of Materials Science.1985,20:700-709P
    [82]任栖锋,石路,路贵民,崔建忠.半固态加工技术的进展及我国应对措施[J].材料与冶金学报.2002,1:15-19页
    [83] Koren Z, Rosenson H, Gutman E M. Development of semisolid casting for AZ91andAM50magnesium alloys[J]. Journal of Light Metals.2002,2:81-87P
    [84] Kirkwood D H. Semisolid metal Processing[J]. International Material Reviews.1994,39(5):173-176P
    [85]胡壮麒.凝固理论[M].北京:冶金工业出版社.1983:30-36页
    [86]瞿秋亚,袁森,王智民,蒋百灵.形变AZ91合金微结构对半固态组织形成的影响[J].特种铸造及有色合金.2005,6:354-357页
    [87]张早明,弭光宝,薛克敏.半固态坯料制备工艺的研究进展[J].铸造.2006,55(7):673-677页
    [88] Kiuchi M, Sugiyama S. A new process to manufacture semi-solid alloys[J]. ISIJInternational.1995,35(6):790-797P
    [89]罗守靖.半固态成形技术讲座[J].机械工人(热加工).2004,3:70-72页
    [90]朱成才,张鹏,杜云慧.半固态金属成形技术的研究及应用[J].热加工工艺.2006,35(13):81-86页
    [91]胡勇,陈国香,闫洪.镁合金半固态成形的现状及发展前景[J].现代制造工程.2006,6:147-150页
    [92]唐靖林,增大本.非枝晶半固态金属成形技术的发展概况[J].金属成型工艺.1997:5:43-48页
    [93]左宏志,刘昌明,邹冒华. ZL112Y压铸铝合金摩托车零件的半固态高压铸造成形[J].中国有色金属学报.2003,13(4):949-955页
    [94] Zhang Q Q, Cao Z Y, Zhang Y F. Effect of compression ratio on themicrostructureevolution of semisolid AZ91D alloy[J]. Journal of Materials Processing Technology.2007,184(1-3):195-200P
    [95]李东成,于思荣,孙国斌. Al-3%Si半固态SIMA过程的微观组织演变[J].锻压技术.2007,32(3):103-106页
    [96]夏明许,郑红星,袁森,李建国.大挤压变形AZ91D镁合金半固态等温组织演变[J].材料科学与工艺.2005,13(3):287-288页
    [97]王开,刘昌明,邹冒华. ZL112Y铝合金半固态压铸过程微观组织的演变[J].中国有色金属学报.2003,13(4):956-962页
    [98] Mao W M, Yin A M, Zhong X Y. Compressive deformation of semi-solid magnesiumalloy[J]. Journal of Materials and Science Technology.2005,21:505-509P
    [99] Li D N, Luo J R, Wu S S. Study on the semi-solid rheocasting of magnesium alloy bymechanical stirring[J]. Journal of Materials Processing Technology.2002,129:431-434P
    [100]汪之清.国外镁合金压铸技术的发展[J].铸造.1997,8:48-51页
    [101]吉泽升,吕新宇.镁合金半固态成形技术的研究进展[J].金属热处理.2003,28(5):8-11页
    [102] Cui J Z. Solidification of Al alloys under electromagnetic field[J]. Transactions ofNonferrous Metals Society of China.2003,13(3):473-483P
    [103]张奎,刘国钧,徐骏.电磁搅拌法连续半固态铝合金及其凝固组织分析[J].中国有色金属学报.2000,10(1):47-50页
    [104] Lee S, Lee J, Lee Y1. Characterization of Al7075alloys after cold working andheating in the semisolid temperature range1[J]. Journal of Materials ProcessingTechnology.2001,111:41-46P
    [105]江海涛,李淼泉.半固态金属材料的制备技术及应用[J].重型机械.2002,2:1-5页
    [106] Kirkwood D H, Kapranos P. Semi-solid processing of alloys[J]. Metals and Materials.1989,5(1):16-19P
    [107]李远东,郝远,陈体军,闫峰云.镁合金半固态成形的现状及发展前景.特种铸造及有色冶金.2002,51:270-273页
    [108] Kenney M P, Courtois J A, Evans R D. Metals Hanndbook[J].9thed,ASM Internal,Metals Park.1988,15:327-338P
    [109]张倩倩.应变诱发Mg-Al-Zn合金半固态组织及腐蚀行为研究[D].吉林大学博士学位论文.2008:33-34页
    [110] Young K P, Kyonka C P, Courtois J A.Fine grained metal composition[J]. Fine GrainedMetal Composition.1983:206-212P
    [111]潘金生,仝建民,田民波.材料科学基础[M].哈尔滨:哈尔滨工业大学出版社.1999,3:520-523页
    [112] Jiang J F, Luo S J,Zou J X. Preparation of AZ91D magnesium alloy semi-solid billet bynew strain induced melt activated method[J]. Transactions of Nonferrous MetalsSociety of China.2006,16(5):1080-1085P
    [113]蒋鹏,贺小毛,张秀峰.轻合金的半固态加工技术[J].轻金属.1999,8:52-55页
    [114]罗守靖,姜巨福,杜之明.半固态加工技术的新探索[J].特种铸造及有色合金.2003(增刊):285-289页
    [115]刘昌明,邹茂华,章宗和.形变诱导法半固态加热工艺参数对LY12合金组织和晶粒尺寸的影响[J].中国有色金属学报.2002,12(3):437-440页
    [116] Young K P, Clyne T W. A Powder mixing and preheating route to slurry production forsemisolid diecasting[J]. Powder Metallury.1986,29(3):195-199P
    [117] Young R M K, Clyne T W. A Powder-based approach to semisolid processing of metalsof fabriecation of diecasting and composites[J]. Journal of Materials Science.1986,21:1057-1069P
    [118]苏华钦.半固态铸造的现状及发展前景[J].特种铸造及有色合金.1998,5:1-6页
    [119]朱鸣芳,苏华钦. ZA12颗粒组织的形成及枝晶形态的演变研究[J].东南大学学报.1996,26(2): l-6页
    [120]谢建新.材料加工新技术与新工艺[M].北京:冶金工业出版社.2004:97-99页
    [121] Katamis T Z, Coughlin J C, Flemings M C. Influence of coarsening on dendrite armspacing of aluminum-copper alloys[J]. Transactions Metal Society of AIME.1967,237(10):1504-1511P
    [122]毛卫民.半固态金属成形技术[M].北京:机械工业出版社.2004:36-39页
    [123] Vogel A, Doherty R D, Cantor B. Stir-cast microstructure and slow crack growth[J].Proceedings of International Conference on Solidification. University of Sheffield.1979:518-525P
    [124] Kirkwood D H, Kapranos P. Semisolid Processing of Alloys[J]. Coating Technology.1989,1:16-19P
    [125] Hellawell A. Grain evolution in conventional and rheocasting[J]. Processing of the4thInternational Conference.on Semi-solid Processing of Alloys and Composites. UK:University of Sheffield.1996:60-65P
    [126]夏明许. SIMA法制备半固态镁合金的研究[D].西安理工大学硕士学位论文.2003:3-6页
    [127]吉泽升,李庆芬,刘兆晶.应变诱发AZ91D镁合金半固态组织形态及形成机理[J].中国有色金属学报.2003,13(5):1156-1160页
    [128]王金国.应变诱发法镁合金AZ91D半固态组织演变机制[D].吉林大学博士学位论文.2005:12页
    [129] Xia M X, Zheng H X, Yuan S. Recrystallization of preformed AZ91D magnesiumalloys in the semisolid state[J]. Materials and Design.2005,26:343-349P
    [130]翟秋亚,袁森,蒋百灵. AZ91镁合金的SMIA法半固态组织特征[J].中国有色金属学报.2005,1:123-125页
    [131]熊爱华,袁森,王武孝等.形变率对AZ91D镁合金半固态成形组织及流动性的影响[J].铸造技术.2004,51:46-48页
    [132]翟秋亚,袁森,蒋百灵.变形量对AZ91镁合金SIMA半固态组织形成的影响[J].铸造技术.2005,26(4):292-295页
    [133]王瑞权.基于等温热处理工艺制备细晶镁合金非枝晶组织[J].热处理技术与装备.2009,30(2):18-22页
    [134]郝远,狄杰建,陈体军. ZA27合金在半固态等温热处理中的相变研究[J].材料科学与工程.2001,19(3):70-73页
    [135]杨明波,潘复生,汤爱涛.用于变质Mg-Al-Si系镁合金中汉字状Mg2Si相的等温热处理方法.中华人民共和国知识产权局,申请号/专利号:200610095200
    [136]杨明波. Mg-Al-Si基和Mg-Zn-Al基镁合金组织控制的基础研究[D].重庆大学博士学位论文.2006:23-26页
    [137]陈振华等编著.变形镁合金[M].北京:化学工业出版社.2005:37页
    [138] Hong T W, Kim S K, Ha H S. Microstructural evolution and semisolid forming of SiCparticulate reinforced AZ91HP magnesium composites [J]. Materials Science andTechnology.2000,16:887-892P.
    [139] Loue W R, Suery M. Microstructural evolution during partial remelting of Al-Si7Mgalloys[J]. Materials Science and Engineering A.1995,203(1-2):1-13P
    [140]戚正风.固态金属中的扩散与相变[M].北京:机械工业出版社.1998:26-29页
    [141]姜巨福,彭秋才,单巍巍,罗守靖.新SIMA法制备AZ91D半固态坯[J].特种铸造及有色合金.2005,25(12):740-743页
    [142]王武孝,程健杰,蒋百灵,袁森,介万奇. AZ91D合金SIMA形变组织与共晶熔化激活能的研究[J].特种铸造及有色合金.2005,25(4):205-207页
    [143]王武孝. AZ91D镁合金的压缩形变组织及半固态等温组织演变[J].金属热处理.2005,7:21-25页
    [144] Cau E R, Robert M H. Obtention of Rheocast Structures of M-2and308L StainlessSteel by SIMA[J]. ICSSPAC Transaction.1992:119-129P
    [145] Kukushkin S A. Theory of the ostwald ripening of new-phase nuclei in single-component melts[J]. Acta Metallurgical Material.1994,43(2):715-720P
    [146] Hardy S C, Voorhees P W. Ostwald Ripening in a system with high volume fraction ofcoarsening phase[J]. Metallurgical Transactions A.1988,19(11):2713-2688P
    [147] Lee H L, Doherty R D, Feest F A. Crystal growth in solidification[J]. MetallurgicalTransactions A.1986,17(12):2049-2062P
    [148] Ma G R, Li X L, Li Q F. Effect of holding time on microstructure of Mg-9%Al-1%Sialloy during semisolid isothermal heat treatment[J]. Transactions of Nonferrous MetalsSociety of China.2010,2(20):430-434P
    [149] Ma G R, Li X L, Li L, Wang X, Li Q F.Modification of Mg2Si morphology inMg-9%Al-0.7%Si alloy by the SIMA process[J]. Materials Characterization.2011,3(62):360-366P
    [150] Luo A, Pekguleryuz M. Review of cast magnesium alloys for elevated temperatureapplications[J]. Materials Science and Engineering A.1994(29):5259-5271P
    [151] Ma G R, Li X L, Xiao L, Li Q F. Effect of holding temperature on microstructure of anAS91alloy during semisolid isothermal heat treatment[J]. Journal of Alloys andCompounds.2010,496:577-581P
    [152]肖柳.新型Mg-Si-Sn合金的等温热处理组织演变[D].哈尔滨工程大学硕士学位论文.2009:66-67页
    [153]戚正风.固态金属中的扩散与相变[M].北京:机械工业出版社.1998:202-203页
    [154]冯丹.新型Mg-Al-Sn-Si合金的制备及组织控制[D].哈尔滨工程大学硕士学位论文.2010:65-67页

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700