氮掺杂改性四钛酸钾光催化剂的合成及光催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,光化学、光催化以及催化化学已经成为化学学科中最活跃的研究领域。特别是光催化领域,利用半导体光催化剂把光能转化为电能或化学能已经成为最热门的研究领域之一。伴随着在半导体光催化剂方面的研究,有关层状结构的化合物也引起了人们的广泛关注。研究表明,层状化合物在光催化等催化领域具有很大的应用潜力。钛酸盐中的钛酸钾就是一种典型的半导体型的层状金属化合物,它作为光解水的光催化材料,己有研究报道。
     在本文的研究中,我们将K2CO3和TiO2通过高温固相反应制得四钛酸钾(K_2Ti_4O_9),四钛酸钾经酸化处理后得到四钛酸(H_2Ti_4O_9)。利用高温固相反应,尿素作为氮源分别对四钛酸钾(K_2Ti_4O_9)和四钛酸(H_2Ti_4O_9)进行氮掺杂,反应得到氮掺杂的K_2Ti_4O_9和H_2Ti_4O_9。采用X射线衍射(XRD)、红外光谱(IR)、紫外可见漫反射光谱(UV—DRs)等方法对材料结构进行表征。X射线衍射结果表明四钛酸钾与尿素反应后,层间距加大,紫外可见漫反射光谱(UV—DRs)结果表明氮掺杂催化剂可见光光波段光吸收能力明显增强,通过红外光谱(IR)发现氮掺杂过后,N确实与钛酸钾骨架发生了化学作用。
     利用自行设计的反应器,研究了氮掺杂催化剂对亚甲基蓝模拟染料废水的处理,取得了较好的去除效果。研究了不同氮掺杂改性温度对K_2Ti_4O_9在紫外及可见波段下催化活性的影响,同时也考察了氮掺杂之前洗涤与否对氮掺杂催化剂催化活性的影响,并通过其亚甲基兰的光催化降解分析其光催化性能变化,通过紫外可见漫反射光谱(UV—DRs)表征了不同温度下氮掺杂催化剂样品的吸光能力变化。
     将制备的氮掺杂四钛酸钾(N-K_2Ti_4O_9)做催化剂制成薄膜光电催化电极,通过降解亚甲基蓝来测试催化活性,研究催化剂在光电催化方面的应用潜力。
     结果表明:氮掺杂改姓焙烧温度对N掺杂也具有相当重要意义,不同温度掺杂催化剂颜色明显不同,对光的吸收及光催化活性相差明显:氮掺杂后催化剂呈黄色,对可见光波段吸收能力明显增强;N掺杂钛酸盐的可见光活性强于其对应的四钛酸。N-K_2Ti_4O_9薄膜光电催化降解亚甲基蓝的效率要明显高于其光催化降解的效率。与光催化相比,N-K_2Ti_4O_9薄膜光电催化对亚甲基蓝的催化降解更加地彻底,不仅破坏其发色基团,而且分解其苯环共扼体系。
In recent years, photochemistry, photocatalysis and catalytic chemistry have been the most active research areas, especially in the photocatalysis field, the light energy transformation into electric energy and chemical energy. Research has shown that layered compound has great potential in catalysis such as the photocatalysis field. Potassium titanate is a typical semiconductor-based layered metallic compound. It has been reported as a photocatalyst for water splitting.
     In this study, precursor potassium tetratitanate (K_2Ti_4O_9) was prepared the by solid-phase reaction between K2CO3 and TiO2. Protonic layered tetratitanate(H_2Ti_4O_9) was obtained by subsequent acidification of K_2Ti_4O_9 with HCl (1M) solution. The nitrogen-doped photocatalyst was obtained by solid state reaction between H_2Ti_4O_9 and urea, which was served as the source of nitrogen. X-ray diffraction (XRD), infrared spectroscopy (IR), ultraviolet-visible diffuse reflectance spectroscopy (UV-DRs) were used to characterize the prepared material. Results showed that the resulting nitrogen-doped layered K_2Ti_4O_9 compounds had a larger interlayer space than their precursor. UV-Vis diffuse reflectance spectroscopy (UV-DRs) results show that the visible light absorption capacity of nitrogen doped catalysts significantly enhanced. This specific structure of the nitrogen-doped K_2Ti_4O_9(N-K_2Ti_4O_9) led to an enhanced adsorption capacity in visible light wave band compared with its precursor. By IR spectroscopy analysis, it is found that there are chemical reaction that occurs between nitrogen and the potassium titanate skeleton.
     The photocatalytic degradation of methylene blue was investigated in a self-made photoreactor. The doped nitrogen temperatures play an important role in photocatalytic activity of K_2Ti_4O_9 under UV light and visible light. The results indicated that different temperatures of N-doped photocatalysts result in different depth colour of photocatalysts,and the different ability of light absorption. The Nitrogen-doped H_2Ti_4O_9(N-H_2Ti_4O_9) show better photocatalysis for degradation of methylene blue under visible light wave band than H_2Ti_4O_9; while N-doped K_2Ti_4O_9 show higher electro-photo-catalytic activity in the visible light wave band than its photo-catalytic activity. Compared with the photocatalysis, N-K_2Ti_4O_9 film photoelectrocatalytic on photocatalytic degradation of methylene blue more thoroughly, not only the destruction of their chromophore, but also decomposition of the benzene ring conjugate system.
引文
[1] A.Fujishima,K.Honda.Nature.1972,37:238.
    [2] Bard A J.J.Phys.Chem.1982,86:172.J.Photochem.1979,10:59.Science.1980,207:139.
    [3] Gratzel M,Ed.Energy Resources Through Photochemistry and Catalysis.New York:Academic Press,1983.
    [4] Kalyanasunadaram K,Gratzel M,Pelizzetti E.Coord.Chem.Rev.1986,69: 57.
    [5] Parmon V N,Zamareav K I.In Photocatalysis Fundamentals and Applications.Serpone N.Pelizzetti E,Eds,New York:Wiley Interscience,1989: 565.
    [6]吴越著.催化化学北京:科学出版社, 2000.
    [7] CH0IW, TERMIN A, HOFFMAN M R. The role of metallic dopants in quantum-sized Tio2: correlation between photocareactivity and charge carrier recombination dynamics [J]. J Phyys Chem, 1994,98(51):13669-13679.
    [8] CARRAWARY E R,HOFFMAN A J, HOFFFMANN M R,et a1. Photocatalytic oxidation of organic acids on quarttum--sized semiconductor colloids[J].Environ Sci Technol ,1994, 28(5):786-793.
    [9] HOFFMANN M R, MARTIN S T, CHOI W, et a1.Environmental application of semiconductor photocatalysis[J]. Chem rev, 1995, 95(1): 69.
    [10] YamagataS, BabaK,FujishimaA, Bull.Chem, Soc. Jpn.1989, 62: 1004.
    [11] Brezova,VodnyS, VeaelyM,Ceppan M,Lapcik L. J. Photochem.Photobiol.A:Chem.1991,55:125.
    [12] (a)OkamotoK,YamamotoY,TanakaH,TanakaM,ItayaA.Bull.Chem.Soc.Jpn.1985,58:2023.(b)SclafaniA,PalmisanoL,SchiavelloM.J.Phys.Chem.1990,94:828.(c)PichatP.J.Photochem.Photobiol.A:Chem.1991,58:99.
    [13] Matthews R W,McEvoy S R .J.Photochem.Photochem.Photobiol.A:Chem.1992,64:231.
    [14] Sclafani A,Palmisano L,Davi E.New J.Chem.1990,14:265.
    [15] Fujishihima,T,Shiina,Teratani,T,et al.Hemodynamic study on hepatic small nodules:The mechanism of fatty change hepatocellul arcarcinoma [J]. GASTROENTEROLOGY ,2002, 122 (4):1365-1368.
    [16]徐智焕.日本对在弱光下的催化反应的应用[J].现代化工,1998,9(5):17-19.
    [17] Kawaii, T.;Sakata, T. Nature 1980, 286, 474.
    [18]王艳辉,吴迪镛,迟建.氢能及制氢的应用技术现状及发展趋势[J].化工进展,2001,1:6-8.
    [19] Gonzalez-Elipe A,Munuera C T,Soria J.Chem.Soc.,Faraday Trans.I.1979,75:749.
    [20] Anpo M,Shima T,Kubokawa Y.Chem.Lett.1985:1799.
    [21] Jaeger C D,Bard A J.J.Phys.Chem.1979,83:3146.
    [22] Howe R F,Gratzel M.J.Phys.Chem.1987,91:3906.
    [23] Ohno T,Satio S,Fujihara K,et al.Bull Chem Soc Jpn,1996,69:3059-3064.
    [24] Dome K,Yoshimura J,Asek ine T.Catal L ett,1990,4339-4343.
    [25] Kodo a.Catal Sur Asia,2003,7(1):31-38.
    [26] Ohno T,Satio S,Fujihara K,et al.Bull Chem Soc Jpn,1996,69:3059-3064.
    [27] Blake,Daniel M.NREL/TP-430-6084.National Renewal Energy Laboratory,Golden,Co,1994
    [28]祖庸,雷闰盈,李晓娥,等.纳米TiO2一种新型无机抗菌剂[J].现代化工,1999,19(8):46-48.
    [29]徐智焕.日本对在弱光下的催化反应的应用[J].现代化工,1998,9(5):l7-19.
    [30]沈伟韧等.光催化反应及其在废水处理中的应用.化学进展,1998,10(4):354-364.
    [31] Choi W, Termin A, Hoffmann M R. [J]. J Phys Chem, 1994, 98(5): 13669-13679.
    [32] Sclafani A. [J]. J Photochem, Photobiol, 1991, 56:113-116.
    [33] Marttra G.Lewis Acid and Base Sites at the Surface of Microcrystalline TiO2 Anatase:Relationships Between Surface Morphology and Chemical Behaviour.Applied Catalysis A,2000,200(2):275-283.
    [34] Blake,Daniel M.NREL/TO-430-6084,National Renewal Energy Laboratory,Golden,Co.1994.
    [35] Blake,Daniel M.NREL/TO-340-22197,National Renewal Energy Laboratory,Golden,Co.1997.
    [36] Blake,Daniel M.NREL/TO-570-26797,National Renewal Energy Laboratory,Golden,Co.1999.
    [37] Blake,Daniel M.NREL/TO-640-28297,National Renewal Energy Laboratory,Golden,Co.2002
    [38]蒋伟川,谭湘萍.载银TiO2半导体光催化剂降解染料水溶液的研究.环境科学,1998,16(2):17-20.
    [39] Sato S,White J M.Chem.Phys.Lett.1980,72:83.
    [40]安立超,曾衍,李海燕.[J].环境污染与技术设备, 2001, 2(4): 30-33.
    [41] Dawson Amy,Prashant V Kamat.Semiconductor-Metal Nanocomposites Photoinduced Fusion and Photocatalysis of Gold-Capped TiO2(TiO2/Gold) Nanaparticles.J Phys Chem B,2001,105(5):960-966.
    [42] Zhang J Z.Phys.Chem.B.2000.104:7239.
    [43] Kang M G, Hen H E, Kim K J.[J].J Photochem Photobiol A: Chem, 1999, 125(1/2/3):119-125.
    [44]张新荣,杨平,赵梦月. [J].感光化学与光化学,2001, 19(2):88-95.
    [45]张彭义,余刚.蒋展鹏.半导体催化剂及其改性技术进展.环境科学进展,1997,5(3):1-10.
    [46] Blake,Daniel M.NREL/TP-570-26797,National Renewal Energy Laboratory,Golden,Co,1999.
    [47] Blake,Daniel M.NREL/TP-640-28297,National Renewal Energy Laboratory,Golden,Co,2002.
    [48] Rominder P S,et al.Removal and Ddstruction of Organic Contaminants in Water Using Adsorption,Steam Regeneration,and Photocatalytic Oxidation:A Pilot-Svale Study.Journal of the Air &Waste Management Association ,1999,49(5):1246-1248.
    [49] Zhang,et al.Method and apparatus for destroying organic compounds in fluid.USP No 5501801.1996 .
    [50] Martra G.Lewis Acid and Base Sites at the Surface of Microcrystalline TiO2 Anatase: Relationships Between Surface Morphlogy and Chemical Behaviour.Applied Catalysis A,2000,200(2):275-283.
    [51] Martra G.Lewis Acid and Base Sites at the Surface of Microcrystalline TiO2 Anatase:Relationships Between Surface Morphology and Chemical Behaviour.Applied Catalysis A,2000,200(2):275-283 .
    [52]孙奉玉,吴鸣,李文钊.二氧化钛表面光学特性与光催化活性的关系.催化学报,1998,19(2):199-233.
    [53]刘鸿.博士后工作报告,氢处理提高TiO2光催化活性研究.大连:中科院大连化学物理研究所,2001.
    [54]侯文华等.氧化硅层柱状斓钦酸盐的制备和表征.无机化学学报,1997,13(2):186-190.
    [55]侯文华等.氧化铬层状妮酸的合成和表征.无机化学学报,1999,15(5):577.
    [56]侯文华等. AI柱层状钦妮酸盐的制备.化学学报,1994,52(2):166-170.
    [57]侯文华,颜其洁.氧化铝柱层状泥酸盐的制备.化学学报,1994,52(9)872-876.
    [58] ShanggUan W,Inoue K,Yoshida A.Syntliesis of silica—pillared layered titanium niobium oxide.J Chem.Soc,Chem Commun,1998(10):779-780.
    [59]俞刚,刘畅等.钛酸钾晶须的微波合成[J].过程工程学报,2003,3(3):256-260.
    [60]王福平,姜兆华等.KDC法合成四钛酸钾纤维的反应机制研究[J].硅酸盐学报,1999,27(4):471-476.
    [61]陆小华,暴宁钟等.钛酸钾晶须及纤维的制造方法[P].中国专利:2199114005.2.2002-06-19.
    [62] Ota.T.,saito.H.J.Synthesis of potassium hexatitanate fibers by the hydrothermal dehydration method[J]J.Cryst.Growth,1979,46:331-338.
    [63] Masaki N,Uchida S,Yamane H et a1.Hydrothermal synthesis of potassium titanates in Ti-KOH-H20 system[J].J Mater Sci,2000,35:3307-3311.
    [64] Masaki N,UcMda S,Yamane Het a1.Characterization of a new potassium titamte,KTi02(OH) synthesized via hydrothermal method[J].Chem.Mater,2002,14:419-424.
    [65] R.B.Yahya,H.Hayashi,T Nagase at a1.Hydrothermal synthesis of potassium hexatitanates under subcrifical and superitical water conditions and its application in photocatalysis [J]. Chem.Mater,2001,13:842-847.
    [66]千载虎,曹建华.层状固体化合物及其催化作用[J].石油化工.1990,(19):122-127.
    [67] [Kato, H.; Kudo, A. Catal. Lett. 1999, 58, 153.
    [68] Ishihara, T.; Nishiguchi, H.; Takita, Y. J. Phys.Chem. B 1999, 103, 1.
    [69] Ryu Abe, Masanobu Higashi, Zhigang Zou, J. Phys.Chem. B 2004,108,3.
    [70] Ryu Abe, Masanobu Higashi, Kazuhiro Sayama, J. Phys. Chem. B 2006, 110.
    [71] Boa N Z,Lu X H,Ji X,Y,ertal.Them odnymaie M odeling and Experim ental V erification for Ion-exchange Snythesis of K2O·4Ti02[J]Fluid Phase Equilibria,2002,193(1):229-243.
    [72]冯新,吕家祯,陆小华等.钛酸钾晶须在复合材料中的应用[J].复合材料学报,1999,16(4):l-7.
    [73]日本大塚化学药品公司.TISMO产品说明书.
    [74]胡晓兰,梁国正.偶联剂对钛酸钾晶须/马来酰亚胺树脂摩擦磨损性能的影[J].高分子学报,2004(6):844-848.
    [75] SHIMIZUT YANAGIDAH,HASHIMOTOK.Synthesis potassiumtitanate fibers by kneading drying process[J].Yogyo Kyoki Shi,1978,86(8):339-342.
    [76] T. W. Kim, S. G. Hur, S. J. Hwang, H. Park, W. Choi, J. H. Choy, Adv.Funct. Mater. 2007, 17, 307.
    [77] J. Wu,Y. Cheng, J. Lin, Y. Huang,M. Huang, S. Hao, J. Phys. Chem. C 2007, 111, 3624.
    [78]李俊清,何天敬,王俭等.物质结构导论[M].北京:中国科学技术大学出版社.1990.
    [79]杨柳燕,周治. HDTMA改性蒙脱土对苯酚的吸附机理研究[J]上海环境科学.2003,22(7).456-457.
    [80] H.Lachheb,E.puzenat,A.Houas.Photocatalytic degradation of various types of dyes (AliZarin S,Croeein orange G, Methylene, CongoRed,Methylene Blue) in water by UV-irradiated titania [J].Appl.Catal.B:Environ,2002,39:75-90.
    [81] Sobana N.,Swaminathan M.Combination effect of ZnO and activated carbon for solar assisted Photocatalytic degradation of Direct Blue 53.Solar Energy Materials & Solar Cells,2007,91(8):727-734.
    [82] Mills A.,DavisR.H.,Worsely D.Water Purifieation by semieonduet or Photoeatalysis. Chem.Soc.Rev.,1993,22:417-34.
    [83] Rajeshwar K.Photoelectrochemistry and the Environment.J Applied Chem,1995,25:1067-1082.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700