热电热泵热水器的研制及热力分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
热电效应发现于19世纪中上期,由于效率低下,在其后100余年期间,热电效应在技术上鲜有实际应用。20世纪50年代,热电性能较好的半导体材料得以发现,使热电效应进入工程实践,涉及国防、工业、农业、医疗、商业、日常生活等广泛的领域。尽管其效率仍然无法与一般制冷技术抗衡,但在小冷量、特殊工程等条件下,具有一般制冷技术难以与之媲美的无污染、无转动部件、长寿命、结构简单、可控性强等优越性,在很多领域起着—般制冷技术无法替代的作用。
     在分析热电制冷基本原理的基础上,建立了热电装置的稳态系统数学模型,并依据该模型对热电制冷(热泵)装置系统进行了不同的工作状态下的热力分析计算,并就热电制冷(热泵)装置的冷(热)端热交换器传热性能、冷(热)端介质温差、电堆片系统优值与热电装置的性能关系进行了理论分析,为热电装置的开发设计和现有热电装置的性能测试建立了基于冷、热端介质温差的计算理论基础。性能分析指出:热电制冷是有一定的温差条件的,热电制冷(热泵)装置的有效工作对热端热交换器的传热能力的依赖性比冷端更强。
     独创性地研制了一台通过冷端循环水回收污水废热的热电热泵快热式热水器,热水器各项性能指标全符合或超过国家快热式电热水器标准的要求,测试表明,在标准工况下,其致热系数(热产出率)达到2.0左右,比普通电热水器节省电耗50%以上;热电热水器的成功研究,开辟了热电装置用于大功率制热的新领域,实现了电热水器节能和安全保障的变革,为建筑节能、废热回收、低品位能源利用提供了新思路。
     以中高档旅馆为例,在建筑能耗分析和废热回收的可行性分析的基础上,进行了利用热电热泵装置回收废热的探讨,利用热电热泵装置回收空气置换过程中的废“热”或废“冷”,以及利用热电热泵装置回收循环冷却水废热和生活污水废热,用于加热自来水作生活热水,节能潜力很大;同时,消除对环境的“热”污染,达到节能、环保的双重目的。
Thermoelectric effects, discovered in the raid-upper terra of the 19lh century, had been less applied in practical projects during more than 100 years after its discovery because of its inefficiency, but the discovery of materials with high thermoelectric properties made thermoelectric effects be applied in practical projects in 1950' s, which involved many fields, such as national defense, industry, agriculture, medicine, commerce, daily lives and so on. Although its efficiency is still lower than that of the other refrigeration techniques, thermoelectric refrigeration can' t be substituted in some conditions, for examples of small refrigeration capacity and some special projects, because it possesses some distinctive traits, such as no pollution, long life, simple construction, controllable features and so on.
    On the analysis of fundamental principle of thermoelectric refrigeration, the steady state mathematical model of the thermoelectric system was founded, and, on the basis of the model, the thermal parameters of the thermoelectric apparatus were calculated, -and the theoretical analysis, on the relations between the performances of thermoelectric apparatus and factors, as follows: the properties of its heat exchangers, the temperature difference between heat sink and heat source and the module' s effective system figure of merit, was conducted, which founded the theoretical basis for the calculation on the development of thermoelectric devices and the surveying of its performances according to temperature difference between heat sink and heat source. Performances analysis pointed out that thermoelectric refrigeration depend on some conditions, for examples, temperature difference and the properties of heat exchangers, especially depend on the properties of heat exchangers on the hot side.
    A thermoelectric heat pump instantaneous water heater was originally developed. All of performances parameters of the sample machine come up to
    
    
    or exceed the standards that state required for instantaneous water heaters. The output of surveying under standard conditions displayed that, in the comparison with the other sorts of water heaters, it can save energy by 50% or so, because its heating performance factor reached 2.0 or so, that is to say, its heating output ratio is 200% or so. The successful development of thermoelectric water heater opens a new field of heating device with large power, which is hoped to bring a revolution in the aspects of high power utilization ratio and safety protection of electrical water heaters, and to bring new ideas on the method of building energy conservation, waste heat recovering and the utilization of other sorts of energy in low temperature. On the basis of the analysis of building energy consumption and the feasibility of waste heat recovering, taking middle or high-grade hotels for example, the methods exploration of waste heat recovering have been conducted by the means of thermoelectric heat pump apparatu
    s, and it is showed that the latent capacity of energy conservation is very large if we can utilize thermoelectric heat pump apparatus to recovery the waste "hot" or "cold" energy in air displacing or to heat water for daily use by means of recovering the waste energy in cooling water of refrigerant compressor unit and waste energy in dally waste water, which, at the same time, achieve the double goal of energy saving and environment protection by means of removing the "heat" pollution in environment.
引文
[1] 钟广学,编著.半导体制冷器及其应用.科学出版社.1989.11.
    [2] 徐德胜等,编著.半导体制冷与应用技术(第二版).上海交通大学出版社.1998.
    [3] 黄昆,谢希德著.半导体物理学.科学出版社.1958.8.
    [4] 蔡克峰,等.Si掺杂B4C半导体的热电性能.半导体学报.1998.8.
    [5] 李锡华,王明华等.掺杂PbTe晶体的热电性质研究.半导体技术.1999.1.
    [6] 宣向春,王维扬.半导体制冷器工作参数的理论分析,低温工程.1998.1
    [7] 许启明.半导体制冷和泵热循环机理的研究.低温工程.1996.1.
    [8] 宣向春,王维扬.半导体制冷器的进展.半导体技术,1999.V24 (1).
    [9] 高敏.对半导体制冷器集成化的探讨.制冷技术.1987.3.
    [10] 龚定农,关鹏来等,半导体制冷冷敷仪的研制及应用.制冷.1998.3.
    [11] 迟泽涛,贾立业,等.半导体制冷去湿.制冷学报,1997.3.
    [12] 马国远.地下水热电热泵的应用研究.制冷.1998.1.
    [13] 洪启丰,张士莲.用于加压仓温度控制的热电空调装置.制冷技术.1987.3.
    [14] 董生怀,张顺新等.应用半导体制冷技术实现温度控制器的快速检测.制冷.1998.3.
    [15] 洪启丰.加压仓热电空调器的设计和应用.制冷学报.1985.2.
    [16] 宣向春,王维扬.半导体制冷器“无限级联”温差电对工作参数的理论分析.半导体学报.1999.7.
    [17] 张华俊,董晓俊等.风冷热电空调器的研制.半导体学报.2001.2.
    [18] 昝育德,李瑞云等.半导体致冷恒温浴槽.半导体学报.1999.8.
    [19] 马国远,郁永章.电动汽车用热电空调系统的探讨.制冷技术.1999.3.
    [20] C. J. Mole, D. F. Meenan. Direct transfer thermoelectric cooling. ASHRAg Transactions, V70, 1964, P130~138.
    [21] M. S. Crouthamel. J. F. Panas. B. Shelpuk. Nine-ton Thermoelectric air-conditioning system. ASHRAE Transactions. Vol. 70.1964. p139~147.
    [22] J. R. Andersen, P.E. Wright. Performance estimation of a thermoelectric air conditionner. ASHRAE Transactions. Vol. 70. Part1, 1964. p149~155.
    [23] 国家经贸委资源节约与综合利用司.2001年资源节约综合利用工作要点.节能与环保.2001.1.
    
    
    [24] 谭良才.现代空调的两个发展方向.制冷空调与电力机械.2001.1.
    [25] 青岛“海尔”电热水器样本.
    [26] 广东顺德“花仙子”燃气热水器样本.
    [27] 北京“桑韵”太阳能热水器样本.
    [28] 赵晓玲,等.科技项目查新报告,CX-20355,湖南省科学技术信息研究所,2000.7
    [29] [美]W. M. 罗森浴.传热应用手册.科学技术出版社.1992.
    [30] 罗勇,王.兰等.浅谈半导体冷藏柜的节能技术.节能.2001.4.
    [31] 王宏杰,杜家练等.半导体制冷性能特性优化.制冷.1994.4.
    [32] 靳明聪,程尚模,赵永湘编著.换热器.重庆大学出版社.1990.5.
    [33] 章熙民等,编著.传热学.中国建筑工业出版社.1993.6.
    [34] 迟泽涛,戚丽萍等.半导体制冷器工作电流和应用参数的特性分析.黑龙江大学自然科学学报.1996.2.
    [35] 卢希红,李茂德等.半导体制冷器温度场的数值分析.能源研究与信息.2001.1.
    [36] 王宏杰,陈金灿.耦合半导体制冷系统性能特性的优化分析.半导体学报.2001.7.
    [37] G. D. Hudelson, G.K. Gable. Development of a thermoelectric air conditioner for submarine application. ASHRAE Transactions. Vol. 70. Part1 1964. p156~162.
    [38] J. C. Purcupile, R. E. Stillwagon. Development of a two-ton thermielectric environmental control unit for the U. S. army. ASHRAE Transactions. Vol. 74. Part2, 1968. p53~69.
    [39] George F. Boesen, Philip M. Fox. Thermoeletric heat exchanger for the C-5A aircrft navigation systems intertial measurement unit. ASHRAE Transactions. Vol. 74. Part2, 1968. p70~77.
    [40] 王健石,主编.半导体器件散热器图册.中国标准出版社.1995.3.
    [41] 吴丽清,陈金灿等.汤姆逊效应对半导体制冷器的影响.半导体技术.1997.6.
    [42] 杨玉顺,王国庆.热电制冷循环最佳特性分析.哈尔滨工业大学学报.1990.4.
    
    
    [43] A. B. Neild, W. E. Schneider. Application study of submarine thermoelectric refrigeration systems. ASHRAE Transactions Vol. 71. Partl, 1965.
    [43] C. J. Mole J. C. Purcupile. Recent dvelopments on direct transfer thermoelectric cooling for shipboard use. ARHRAE Transactions. Vol. 74. Part2, 1968. p78~92.
    [44] M. Yamanashi. A new approach to optimum design in thermoelectric cooling systems. J. Appl. Vol. 80(9), 1996.
    [45] Jincan Chen, Jan A. Schouten. "A new approach to optimum design in thermoelectric cooling systems" J. Appl. Vol. 82(12), 1997.
    [46] Jincan Chen, Zijun Yan The influence of Thomson effect on the maximum power output and maximum efficiency of a thermoelectric generator. J. Appl. Vol. 79(11), 1996.
    [47] G. S. Nc-las H.J. Goldsmid. A comparison of projected thermoelectric and thermiopnic refrigerators. J. Appl. Vol. 85(8), 1999.
    [48] Markku J. Lampinen. Thermodynamic analysis of thermoelectric generator. J. Appl. Phys. Vol. 69(8), 1991.
    [49] 中华人民共和国轻工业部.中华人民共和国行业标准——快热式电热水器,QB1239-91.1991.9.
    [50] 国家质量技术监督局.中华人民共和国国家标准——家用和类似用途电器的安全,第一部分:通用要求,GB4706.1-1998.1998.12
    [51] 俞国良.半导体制冷器性能测试.制冷.1991.3.
    [52] 许生龙.半导体制冷器电阻值测试分析.红外技术.1999.6.
    [53] 杨爽言,李芳琴。热回收系统中吸热塔供热技术.节能与环保2001.1.
    [54] 汪训昌.中高档旅馆废热排放与热利用分析.暖通空调.1995.4.
    [55] 清华大学等,编著.空气调节(第二版).中国建筑工业出版社.1986.
    [56] 彦启森,主编.空气调节用制冷技术(第二版).中国建筑工业出版社.1985.12.
    [57] Lutz, J. D., C. D. Whitehead, A. B. Lekov, G. J. Roseenquist., D.W. Winiarski. Simplified tool for calculating water heater energy use. ASHRAE Transactions 105(1):1005~1015.
    [58] 曾丹苓等,编著.工程热力学.高等教育出版社.1980.
    [59] 周膜仁,主编.流体力学(第二版).中国建筑工业出版社.1992.
    
    
    [60] 周篁,关于我国可再生能源发电产业的探讨.节能.2001.8.
    [61] 将能照,主编.空调用热泵技术及应用.机械工业出版社.1997.9.
    [62] K. SEEGER 著,徐乐,钱建业,译.半导体物理学,人民教育山版社,1980.12
    [63] 白晓亮.半导体制冷的散热与热管散热器的设计.制冷.1998.4.
    [64] Jphn K Mcfafland, Sheldon M. Jeter, Said I. Abdel-Khalil. Effect of a Heat Pipe on Dehumidification of a Controlled Air space. ASHRAE Transzactions, 1996 Vol. 102 Part 1,132~139.
    [65] 罗清海,汤广发,龚光彩等。热管技术在采暖空调中的应用与发展.空调制冷与电力机械.2002.2.
    [66] 王静伟,汤广发等.半导体制冷技术的发展.湖南省2001年暖通制冷年会论文集,P95.
    [67] 罗清海,汤广发,龚光彩等.半导体热电热水器性能分析.湖南大学学报(自然科学版),Vol. 28(3) (增刊).2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700