几种稀土化合物粉体的制备及其显微组织与发光的调控
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
稀土因其独特的发光性能而在颜色显示、照明、光纤通讯、防伪等领域有着广泛的应用,始终是材料学与物理学的一个研究热点。尤其是稀土红外上转换发光材料,除具有光化学稳定性好、荧光寿命长、吸收和发射带窄、生物毒性小这些特点之外,还因使用红外光激发而拥有更深的光穿透能力、对生物组织损伤小、无荧光背景等优点,使得能将其构建成生物荧光探针,在生物医学荧光成像上显示出巨大的现实与潜在应用前景。另外,很多稀土发光材料还具有较好的顺磁性能,从而使得该类材料在磁共振成像、生物分离方面具有潜在应用价值。为探寻这类材料的制备合成方法,实现这类材料在形貌、尺寸及发光颜色的可控,并开发新型稀土荧光材料。本文采用不同方法,制备了几种稀土化合物粉体。系统地研究了制备工艺对稀土化合物组织、形貌及其发光性能的影响。成功地实现了对这些稀土化合物组织和发光特性的调控。论文的主要研究内容及其结论如下:
     (1)采用燃烧法成功地合成了Yb_3Al_5O_(12)(YbAG)与YbAG/Yb_2O_3粉体材料,并通过Er~(3+)掺杂,实现了该粉体材料的红色上转换发光,尤其是在掺铒YbAG/Yb_2O_3粉体材料中实现了纯红色上转换发光,系统讨论了纯红色上转换发光的发光机制;
     (2)采用不同的氟源,用沉淀法合成了YF_3纳米颗粒,研究结果表明NH_4~+及其浓度对正八面体纳米颗粒的合成具有控制作用,NH_4~+在YF_3正八面体纳米颗粒的特定晶面(111)的吸附是合成八面体颗粒的决定因素。同时使用HF作为氟源时,可合成YF_3纳米束,对该纳米束在空气中进行退火处理,将YF_3完全脱氟氧化生成氟氧化物,这种氟氧化物具有很好的上转换发光性能;
     (3)以油酸/油酸钠/酒精/水为反应体系,采用溶剂热法控制合成了具有各种形貌特征的LaF_3纳米晶,研究发现仅通过调整反应参数与反应条件无法实现LaF_3向NaLaF_4纳米晶的转变。但通过引入Ca~(2+),并延长反应时间与增加反应前驱体氟源的用量,可以生成不同长径比的NaLaF_4纳米晶。同时当以其它的碱取代NaOH从而改变反应体系中的表面活性剂时可以控制合成具有不同粒径的其它稀土氟化物纳米晶,如当用LiOH取代NaOH时,合成了四方相LiYF_4、LiYbF_4和LiLuF_4纳米晶,当以氨水取代NaOH时,合成出了正交相YF_3和面心立方相的GdF_3纳米晶。在适当光源的激发下,可实现这些纳米晶的光致发光;
     (4)使用溶剂热法控制合成出了几种近单分散性碱土稀土氟化物超细纳米晶,包括BaYF_5、Sr_2YF_7和Ba_2Er_(1-x)Yb_xF_7。这些纳米晶均具有面心立方结构,通过合理掺杂实现了这些纳米晶的发光颜色调控,而且其中Ba_2Er_(1-x)Yb_xF_7纳米晶具有很好的顺磁性能。
Rare earth with the phosphors of unique photoluminescent properties always is a hotresearch topic in materials and physics for their wide applications in color display,lighting, fiber-optic communications, anti-fake and so on. In particular, the rare earthinfrared-excited upconversion luminescent phosphors possess not only advantages ofthe photochemical stability, long fluorescence lifetime, narrow absorption andemission bands, and low biotoxicity, but also the virtues of deeper light penetration,lack of photodamage to the living organisms and no autofluorescent of biologicaltissue for using the infrared as excitation resource. The rare earth phosphors, whichcan be built as bioprobes based on these characteristics, present real and potentialapplications in bioimaging. Furthermore, many rare earth phosphors with niceparamagnetism have potential applications in magnetic resonance imaging andbioseparation. Several kinds of rare earth compound powders were synthesized withvarious approaches in this dissertation to explore the synthetic method of thesematerials, to achieve the control of their morphology, size and emission color, and todevelop new rare-earth fluorescent materials. This dissertaton studied systematicallythe effects of the synthesis on the structure, morphology and photoluminescentproperties of rare earth composites, and achieved successfully the control on them.The main contents and conclusions are listed as follows:
     (1) Yb_3Al_5O_(12)(YbAG) and YbAG/Yb_2O_3powders were prepared successfully bycombustion route. Red upconversion emission can be realized by Er~(3+)-doping.Especially the pure red upconversion emission was realized in YbAG/Yb_2O_3powders.And the emission mechanism of pure red emission was discussed.
     (2) YF_3nanoparticles were synthesized via precipitation by using different fluorinesources. It is found the ammonium ions are responsible to YF_3octahedrananoparticles and the adsorption of NH_4~+on specific crystalline face (111) was thedetermining factor to synthesize the octrahedra nanoparticles. YF_3nanobundles willbe defluorinated and oxidized to oxyfluorites which had nice upconversion property.
     (3) A series of LaF_3nanocrystals were synthesized with the solvothermal method inwhich the system of oleic acid, eunatrol, alcohol and water are mixed together to formthe microemulsion. Their crystalline structures and Synthetic Conditions were studied.For example, Tetragonal LiYF_4、LiYbF_4and LiLuF_4nanocrystals were prepared whenNaOH were displaced by LiOH. It is confirmed that these series of nanocrystals maybe used as host matrix materials for luminescence.
     (4) BaYF_5、Sr_2YF_7和Ba_2Er_(1-x)Yb_xF_7rare earth fluoride nanocrystals containingalkaline earth ions were synthesized with the solvothermal method. Their crystallinestructures and controllable photoluminescence were studied. And the paramagneticproperty of Ba_2Er_(1-x)Yb_xF_7nanocrystals were studied.
引文
[1]冯端,师昌绪,刘治国.材料科学导论[M].北京:化学工业出版社,2002年.
    [2]石德珂.材料科学基础[M].北京:机械工业出版社,2003年.
    [3]师昌绪,李恒德,周廉.材料科学与工程手册[M].北京:化学工业出版社,2004年.
    [4] Neamen.半导体物理与器件Semiconductor physics and devices:基本原理Basicprinciples [M].清华大学出版社,2003年.
    [5]雷永泉.新能源材料[M].天津:天津大学出版社,2000年.
    [6]姜复松.信息材料[M].北京:化学工业出版社,2003年.
    [7]崔福斋,冯庆玲.生物材料学[M].北京:清华大学出版社,2004年.
    [8] G. S. Maciel, A. Biswas, R. Kapoor, P. N. Prasad. Blue cooperative upconversion inYb3+-doped multicomponet sol-gel-processed silica glass for three-dimensional display[J]. Appl. Phys. Lett.,2000,76:1978-1980.
    [9] G. S. Maciel, L.deS. Menezes, A. S. L. Gomes, G. B. De Araujo, Y. Messaddeq, A. Florez,A. Aegerter. Temperature sensor based on frequency upconverison in Er3+-dopedfluoroindate glass [J]. Phot. Tech. Lett.,1995,7:1474-1776.
    [10] F. Vetrone, J. A. Capobianco. Lanthanide-doped fluoride nanoparticles: luminescence,upconversion, and biological applications [J]. Inter. J. Nanotech.,2008,5:1306-1339.
    [11] L. Y. Wang, Y. D. Li. Green upconversion nanocrystals for DNA detection [J]. Chem.Comm.,2006,24:2557-2559.
    [12] M. Wang, G. Abbineni, A. Clevenger, G. Mao, S. K. Xu. Upcovnersion nanoparticles:synthesis, surface modification and biological applications [J]. Nanomedicine,2011,7:710-729.
    [13] N. J. Cockroft. Application of energy upconversion spectroscopy to novel laser andphosphor design [J]. J. Alloys Comp.,1994,207-207:33-40.
    [14] F. Auzel. Upconversion and anti-stokes processes with f and d ions in solids [J]. Chem.Rev.,2004,104:139-173.
    [15] O. S. Wenger, H. U. Güdel. Chemical tuning of the photon upconversion properties inTi2+-doped chloride host lattices [J]. Inorg. Chem.,2001,40:5747-5753.
    [16] O. S. Wenger, H. U. Güdel. Dual luminescence and excited-state dynamics in Ti2+dopedNaCl [J]. J. Phys. Chem. B.,2001,105:4181-4187.
    [17] O. S. Wenger, G. M. Sally, H. U. Güdel. Effects of high pressure on the luminescence andupconversion properties of Ti2+-doped NaCl [J]. J. Phys. Chem. B.,2002,106:10082-10088.
    [18] O. S. Wenger, H. U. Güdel. Photon upconversion properties of Ni2+in magnetic andnonmagnetic chloride host lattices [J]. Inorg. Chem.,2001,40:157-164.
    [19] O. S. Wenger, S. Bénard, H. U. Güdel. Crystal field effects on the optical absorption andluminescence properties of Ni2+-doped chlorides and bromides: crossover in the emittinghigher excited state [J]. Inorg. Chem.,2002,41:5968-5977.
    [20] D. R. Gamelin, H. U. G ü del. Excited-state dynamics and sequential two-photonupconversion excitation of Mo3+-doped Chloro-and Bromo-elpasolites [J]. J. Phys. Chem.B,2000,104:10222-10234.
    [21] O. S. Wenger, H. U. Güdel. Broadband near-infrared sensitization of visible upconversionluminescence in V3+and Mo3+codoped Cs2NaYCl6[J]. J. Phys. Chem. B,2002,106:10011-10019.
    [22] D. R. Gamelin, H. U. Güdel. Spectroscopy and dynamics of Re4+near-IR-to-visibleluminescence upconversion [J]. Inorg. Chem.,1999,38,5154-5164.
    [23] M. W. H. U. Güdel. Photon avalanche in Cs2ZrBr+6:Os4[J]. J. Am. Chem. Soc.,1999,121:10102-10111.
    [24] D. R. Gamelin, H. U. G ü del. Design of luminescent inorganic materials: newphotophysical processes studied by optical spectroscopy [J]. Acc. Chem. Res.,2000,33:235-242.
    [25] S. Heer, M. Wermuth, K. Kr mer, D. Ehrentraut, H. U. Güdel. Upconversion excitation ofsharp Cr3+2E emission in YGG and YAG codoped with Cr3+and Yb3+[J]. J. Lumin.,2001,94-95:337-341.
    [26] S. Heer, M. Wermuth, K. Kr mer, D. Ehrentraut, H. U. Güdel. Upconversion excitation ofCr3+2E emission in Y3Ga5O12codoped with Cr3+and Yb3+[J]. Chem. Phys. Lett.,2001,334:293-297.
    [27]徐光宪.稀土[M].北京:冶金工业出版社,1978年.
    [28] M. De Sario, L. Mescia, F. Prudenzano, F. Smektala, F. Deseveday, V. Nazabal, J. Troles,L. Brilland. Feasibility of Er3+-doped, Ga5Ge20Sb10S65chalcogenide microstructuredoptical fiber amplifiers [J]. Opt. Laser Tech.,2009,41:99-106.
    [29] S. A. Pollack, D. B. Chang, N. L. Moise. Upconversion-pumped infrared erbium laser [J].J. Appl. Phys.,1986,60(12):4077-4086.
    [30]刘政威,佘仲明,杨恢先,肖思国.“一种能负载密码的多重色比高效发光防伪材料的检测方法及其检测器”中国专利申请号:200310110443.
    [31] E. Downing, L. Hesselink, J. Ralston, R. Macfarlane. A three-color, solid-state,three-dimensional display [J]. Science,1996,273:1185-1189.
    [32] F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, X. G. Liu.Simultaneous phase and size control of upconversion nanocrystals through lanthanidedoping [J]. Nature,2010,463:1061-1065.
    [33] M. Nyk, R. Kumar, T. Y. Ohulchanskyy, E. J. Bergey, P. N. Prasad. High contrast in vitroand in vivo photoluminescence bioimaging using near infrared to near infraredupconversion in Tm3+and Yb3+doped fluoride nanophosphors [J]. Nano Lett.,2008,8:3834-3838.
    [34] M. Wang, C. C. Mi, W. X. Wang, C. H. Liu, Y. F. Wu, Z. R. Xu, C. B. Mao, S. K. Xu.Fluorescent imaging of Hela cells by using NaYF4: Yb, Er upconversion nanoparticles [J].ACS Nano.,2009,3:1580-1586.
    [35] X. He, K. Wang, Z. Cheng. In vivo near-infrared fluorescence imaging of cancer withnanoparticle-based probes [J]. Nanomed. Nanotechnol.,2010,2:349-366.
    [36] L. Cheng, K. Yang, M. W. Shao, S. T. Lee, Z. Liu. Multicolor in vivo imaging ofupconversion nanoparticles with emissions tuned by luminescence resonance energytransfer [J]. J. Phys. Chem. C,2011,115:2686-2692.
    [37] M. Ylih rsil, T. Valta, M. Karp, L. Hattara, E. Harju, J. H ls, P. Saviranta, M. Waris, T.Soukka. Oligonucleotide array-in-well platform for detection and genotyping humanadenoviruses by utilizing upcoonverting phosphor label technology [J]. Anal Chem.,2011,83:1456-1461.
    [38] Z. G. Chen, H. Chen, H. Hu, M. X. Yu, F. Li Q. Zhang, Z. G. Zhou, T. Yi, C. H. Huang.Versatile synthesis strategy for carboxylic acid-functionalized upconvertingnanophosphors as biological labels [J]. J. Am. Chem. Soc.,2008,130:3023-3029.
    [39] J. A. Barreto, W. O’Malley, M. Kubeil, B. Graham, H. Stephan, L. Spiccia. Nanomaterials:applications in cancer imaging and therapy [J]. Adv. Mater.,2011,23: H18-H40.
    [40] T. Cao, Y. Yang, Y. Gao, J. Zhou, Z. Q. Li, F. Y. Li. High-quality water-soluble andsurface-functionalized upconversion nanocrystals as luminescent probes for bioimaging[J]. Biomaterials.,2011,32:2959-2968.
    [41]曹锡章,张畹蕙、杜尧国.无机化学[M].北京:高等教育出版社,1978年.
    [42] K. S. V. Sudhakar, T. Satyanarayana, L. Srinivasa Rao, M. Srinivasa Reddy, N. Veeraiah.Optical absorption and self-activated upconversion fluorescence spectra of Tm3+ions inantimony borate glass systems [J]. Sol. State Comm.,2008,146:441-445.
    [43] H. Stephan, L. Olaf. Blue, Green, and Red Upconversion Emission fromLanthanide-Doped LuPO4and YbPO4Nanocrystals in a Transparent Colloidal Solution[J]. Angew. Chem.,2003,42:3179-3182.
    [44] D. Qilin, S Hongwei, W. Meiyuan, B. Xue, D. Biao, Q. Ruifei, Q. Xuesong and Z. Hui.Size and Concentration Effects on the Photoluminescence of La32O2S:Eu+Nanocrystals[J]. Phys. Chem. C.,2008,112:19399-19404.
    [45] K. Suh, H. J. Shin, S. J. Seo, B. S. Bae. Er3+luminescence and cooperative upconversionin ErxY2-xSiO5nanocrystal aggregates fabricated using Si nanowires [J]. Appl. Phys. Lett.,2008,92:121910.
    [46] S. Yajuan, L Hongjian, W. Xin, K. Xianggui, Z. Hong. Optical Spectroscopy and VisibleUpconversion Studies of YVO4:Er3+Nanocrystals Synthesized by a Hydrothermal Process[J]. Chem. Mater.,2006,18:2726-2732.
    [47] J. Yang, C. M. Zhang, C. Peng, C. X. Li, L. L. Wang, R. T. Chai, J. Lin. Controllable red,green, blue (RGB) and bright white upconversion luminescence of Lu2O3:Yb3+/Er3+/Tm3+nanocrystals through single laser excitation at980nm [J]. Chem. Eur. J.,2009,15:4649-4655.
    [48] T. Riedener, K. Kraemer, H. U. Guedel. Upconversion Luminescence in Er3+-DopedRbGd2Cl7and RbGd2Br7[J]. Inorg. Chem.,1995,34:2745-2752.
    [49] H. U. Güdel, M. Pollnau. Near-infrared to visible photon upconversion processes inlanthanide doped chloride, bromide and iodide lattices [J]. J. Alloy. Compd.,2000,303-304:307-315.
    [50] Y. P. Du, Y. W. Zhang, L. D. Sun, C. H. Yan. Luminescent Monodisperse Nanocrystals ofLanthanide Oxyfluorides Synthesized from Trifluoroacetate Precursors in High-BoilingSolvents [J]. Phys. Chem. C,2008,112:405-415.
    [51] T. Grzyb, S. Lis. Structural and Spectroscopic Properties of LaOF:Eu3+NanocrystalsPrepared by the Sol–Gel Pechini Method [J]. Inorg. Chem.,2011,50:8112-8120.
    [52] S. Sivakumar, F. C. J. M. van Veggel, M. Raudsepp. Bright white light throughupconversion of a single NIR source from sol-gel-derived thin film made with Ln3+-dopedLaF3nanoparticles [J]. J. Am. Chem. Soc.,2005,127:12464-12465.
    [53] Y. Zhang, X. Sun, R. Si, L. You, C. H. Yan. Single-crystalline and monodisperse LaF3triangular nanoplates from a single-source precursor [J]. J. Am. Chem. Soc.,2005,127:3260-3261.
    [54] L. Wang, P. Li, Y. D. Li. Down-and up-conversion luminescent nanorods [J]. Adv. Mater.,2007,19:3304-3307.
    [55] Z. Wang, C. Liu, Y. Wang, Z. Li. Solvent-assisted selective synthesis of NaLaF4and LaF3fluorescent nanocrystals via a facile solvothermal approach [J]. J. Alloy Compd.,2011,509:1964-1968.
    [56] J. H. Zeng, Z. H. Li, J. S. Su, L. Wang, R. Yan, Y. D. Li. Synthesis of complex rare earthfluoride nanocrystal phosphors [J]. Nanotech.,2006,17:3549-3555.
    [57] O. Ehlert, R. Thomann, M. Darbandi, T. Nann. A four-color colloidal multiplexingnanoparticle system [J]. ACS Nano.,2008,2:120-124.
    [58] J. Shan, Y. Ju. A single-step synthesis and the kinetic mechanism for monodisperse andhexagonal-phase NaYF4:Yb, Er upconversion nanophosphors [J]. Nanotech.,2009,20:275-603.
    [59] Z. Li, Y. Zhang. An efficient and user-friendly method for the synthesis ofhexagonal-phase NaYF4: Yb, Er/Tm nanocrystals with controllable shape andupconversion fluorescence [J]. Nanotech.,2008,19:345606.
    [60] R. Naccache, F. Vetrone, V. Mahalingam, L. A. Cuccia, J. A. Capobianco. Controlledsynthesis and water dispersibility of hexagonal phase NaGdF4: Ho3+/Yb3+nanoparticles[J]. Chem. Mater.,2009,21:717-723.
    [61] J. Zhuang, L. Liang, H. H. Y. Sung, X. Yang, M. Wu, I. D. Williams, S. Feng, Q. Su.Controlled hydrothermal growth and up-conversion emission of NaLnF4(Ln=Y, Dy-Yb)[J]. Inorg. Chem.,2007,46:5404-5410.
    [62] H. Mai, Y. Zhang, R. Si, Z. Yan, L. Sun, L. You, C. H. Yan. High-quality sodium rare-earthfluoride nanocrystals: controlled synthesis and optical properties [J]. J. Am. Chem. Soc.,2006,128:6426-6436.
    [63] Q. Zhang, B. Yan. Hydrothermal synthesis and characherization of LiREF4(RE=Y, Tb-Lu)nanocrystals and their core-chell nanostructures [J]. Inorg. Chem.,2010,49:6834-6839.
    [64] F. Wang, X. G. Liu. Recent advances in the chemistry of lanthanide-doped upconversionnanocrystals [J]. Chem. Soc. Rev.,2009,38:976-989.
    [65] S. Zeng, G. Ren, C. Xu, Q. Yang. High uniformity and monodispersity of sodiumrare-earth fluoride nanocrystals: controllable synthesis, shape evolution and opticalproperties [J]. Cryst. Eng. Comm.,2011,13:1384-1390.
    [66] D. Yang, C. Li, G. Li, M. Shang, X. Kang, J. Lin. Colloidal synthesis and remarkableenhancement of the upconversion luminescence of BaGdF3+5: Yb3+/Ernanoparticles byactive-shell modification [J]. J. Mater. Chem.,2011,21:5923-5927.
    [67] M. Ma, L. Yang, G. Ren, C. F. Xu, J. G. Lin, Q. B. Yang. Solvothermal synthesis, cubicstructure and multicolor upconversion emission of ultrasmall monodisperselanthanide-doped BaYF5nanocrystals [J]. J. Lumin.,2011,131:1842-1846.
    [68] F. Vetrone, V. Mahalingam, J. A. Capobianco. Near-infrared-to-blue upconversion incolloidal BaYF5:Tm3+, Yb3+nanocrystals [J]. Chem. Mater.,2009,21:1847-1851.
    [69] C. F. Xu, M. Mo, S. J. Zeng, G. Z. Ren, L. Yang, Q. B. Yang. Solvothermal synthesis ofmonodisperse ultrasmall cubic-structure Ba2YbF7nanocrystals with intense upconversion[J]. J. Alloy Compd.,2011,509:7943-7947.
    [70] C. F. Xu, M. Ma, L. W. Yang, S. J. Zeng, Q. B. Yang. Lanthanide Doping-FacilitatedGrowth of Ultrasmall Monodisperse Ba2LaF7Nanocrystals with ExcellentPhotoluminescence [J]. J. Colloid Interf. Sci.,2012,368:49-55.
    [71] G. S. Yi, G. M. Chow. Synthesis of hexagonal-phase NaYF4: Yb, Er and NaYF4: Yb, Tmnanocrystals with efficient up-conversion fluorescence [J]. Adv. Func. Mater.,2006,16:2324-2329.
    [72] X. Liang, X. Wang, J. Zhuang, Q. Peng, Y. Li. Synthesis of NaYF4nanocrystals withprecictable phase and shape [J]. Adv. Func. Mater.,2007,17:2757-2765.
    [73] H. X. Mai, Y. W. Zhang, L. D. Sun, C. H. Yan. Size-and phase-controlled synthesis ofmonodisperse NaYF4: Yb, Er Nanocrystals from a unique delayed nucleation pathwaymonitored with upconversion spectroscopy [J]. J. Phys. Chem. C,2007,111:13730-13739.
    [74] K. Shinozaki, T. Honma, K. Oh-ishi, T. Komatsu. Fluorine deficient layer at the surface oftransparent glass-ceramics with CaF2nanocrystals [J]. J. Phys. Chem. Sol.,2012,73:683-687.
    [75] X. P. Fan, J. Wang, X. S. Qiao, M. Q. Wang, J. L. Adam, X. H. Zhang. Preparation processand upconversio luminescence of Er3+-doped glass ceramics containing Ba2LaF7nanocrystals [J]. J. Phys. Chem. B,2006,110:5950-5954.
    [76] J. A. Capobianco, F. Vetrone, J. C. Boyer. Enhancement of red emission (4F49/2→I15/2) viaupconversion in bulk and nanocrystalline cubic Y2O3: Er3+[J]. J. Phys. Chem. B,2002,106:1181-1187.
    [77] T. Jiang, W. P. Qin, D. Zhao. Size-dependent upconversion luminescence in CaF2: Yb3+,Tm3+nanocrystals [J]. Mater. Lett.,2012,74:54-57.
    [78] Y. J. Sun, Y. Chen, L. J. Tian, Y. Yu, X. G. Kong, Q. H. Zeng, Y. L. Zhang, H. Zhang,Morphology-dependent upconversion luminescence of ZnO: Er3+nanocrystals [J]. J.Lumin.,2008,128:15-21.
    [79] D. Yuan, G. S. Yi, G. M. Chow. Effects of size and surface on luminescence properties ofsubmicron upconversion NaYF4:Yb, Er particles [J]. J. Mater. Res.,2009,24:2042-2050.
    [80] G. K. Liu, H. Z. Zhuang, X. Y. Chen. Restricted phonon relaxation and anomalousthermalization of rare earth ions in nanocrystals [J]. Nano Lett.2002,2:535-539.
    [81] S. Shankar A. Rai, B. Ankamwar, A. Singh, A. Ahmad, M. Sastry. Biological synthesis oftriangular gold nanoprisms [J]. Nat. Mater.,2004,3:482-488.
    [82] G. K. Liu, X. Y. Chen, H. Z. Zhuang, S. Li, R.S. Niedbala. Confinement ofelectron-phonon interaction on luminescence dynamics in nanophosphors of Er3+:Y2O2S[J]. J. Solid State Chem.,2003,171:123-132.
    [83] X. Y. Chen, H. Z. Zhuang, G. K. Liu, S. Li, R. S. Niedbala. Confinement on energytransfer between luminescent centers in nanocrystals [J]. J. Appl. Phys.,2003,94:5559-5565.
    [84] A. Tamura, K. Higeta, T. Ichinokawa. Lattice vibrations and specific heat of a smallparticle [J]. J. Phys. C: Solid State Phys.,1982,15:4975-4991.
    [85]孙家跃,杜海燕,胡文祥.固体发光材料[M].北京:化学工业出版社,2003年.
    [86] F. Vetrone, J. C. Boyer, J. A. Capobianco, A. Speghini, M. Bettinelli. Significance of Yb3+concentration on the upconversion mechanisms in codoped Y3+2O3: Er, Yb3+nanocrystals[J]. J. Appl. Phys.,2004,96:661-667.
    [87] X. X. Luo, W. H. Cao. Ethanol-assistant solution combustion method to prepare La2O2S:Yb, Pr nanometer phosphor [J]. J. Alloy. Compd.,2008,460:529-534.
    [88] S. K. Singh, K. Kumar, S. B. Rai. Multifunctional Er3+-Yb3+codoped Gd2O3nanocrystalline phosphor synthesized through opitimized combustion route [J]. Appl.Phys. B,2009,94:165-173.
    [89] M. Liu, S. W. Wang, J. Zhang, L. Q. An, L. D. Chen. Upconversion luminescence ofY3Al5O12(YAG): Yb3+, Tm3+nanocrystals [J]. Opt. Mater.,2007,30:370-374.
    [90] J. Zhang, S. W. Wang, T. J. Rong, L. D. Chen. Upconversion luminescence in Er3+dopedand Yb3+/Er3+codoped yttria nanocrystalline powders [J]. J. Am. Ceram. Soc.,2004,87:1072-1075.
    [91] Y. Wei, F. Q. Lu, X. R. Zhang, D. P. Chen. Polyol-mediated synthesis of water-solubleLaF3: Yb, Er upconversion fluorescent nanocrystals [J]. Mater. Lett.,2007,61:1337-1340.
    [92] Y. Wei, F. Q. Lu, X. R. Zhang, D. P. Chen. Synthesis and characterization of efficientnear-infrared upconversion Yb and Tm codoped NaYF4nanocrystal reproter [J]. J. Alloy.Compd.,2007,427:333-340.
    [93] H. Y. Du, W. H. Zhang, J. Y. Sun. Near-infrared-to-green upconversion in Yb3+/Er3+co-doped BaYF5by chemical co-precipitation method [J]. Mater. Sci., For. Vols.,2011,663-665:328-331.
    [94] S. Sivakumar, F. C. J. M. van Veggel, M. Raudsepp. Bright white light throughup-conversion of a single NIR source from sol-gel-derived thin film made withLn3+-doped LaF3nanoparticles [J]. J. Am. Chem. Soc.,2005,127:12464-12465.
    [95] L. F. Liang, H. F. Xu, Q. Su, H. Konishi, Y. B. Jiang, M. M. Wu, Y. F. Wang, D. Y. Xia.Hydrothermal synthesis of prismatic NaHoF4Microtubes and NaSmF4nanotubes [J].Inorg. Chem.,2004,43:1594-1596.
    [96] C. X. Li, J. Yang, P. P. Yang, H. Z. Lian, J. Lin. Hydrothermal synthesis of lanthanidefluorides LnF3(Ln=La to Lu) nano-/microcrystals with multiform structures andmorphologies [J]. Chem. Mater.,2008,20:4317-4326.
    [97] X. Wang, J. Zhuang, Q. Peng, Y. D. Li. A general strategy for nanocrystal synthesis [J].Nature,2005,437:121-124.
    [98] J. F. Liu, Y. D. Li. Synthesis and self-assembly of luminescent Ln3+-doped LaVO4uniformnanocrystals [J]. Adv. Mater.,2007,19:1118-1122.
    [99] Y. J. Sun, H. J. Liu, X. Wang, X. G. Kong, H. Zhang. Optical spectroscopy and visibleupconversion studies of YVO4: Er3+nanocrystals synthesized by a hydrothermal process[J]. Chem. Mater.,2006,18:2726-2732.
    [100] H. Li, G. S. Zhu, H. Ren, Y. Li, I. J. Hewitt, S. L. Qiu. The synthesis of multiwalledrare-earth phosphate nanomaterials using organophosphates with upconversion properties[J]. Eur. J. Inorg. Chem.,2008,2033-2037.
    [101] P. Ghosh, J. Oliva, E. D. L. Rosa, K. K. Haldar, D. Solis, A. Patra. enhancement ofupconversion emission of LaPO4: Er@Yb core-shell nanoparticles/nanorods [J]. J. Phys.Chem. C,2008,112:9650-9658.
    [102] M. Y. Guan, F. F. Tai, J. H. Sun, Z. Xu. Facile preparation method for rare earthphosphate hollow spheres and their photoluminescence properties [J]. Langmuir,2008,24:8280-8283.
    [103] C. F. Xu, M. Ma, L. W. Yang, S. J. Zeng, Q. B. Yang. Upconversion luminescence andmagnetic properties of liand-free monodisperse lanthanide doped BaGdF5nanocrystals [J].Journal of Luminescence,2011,131:2544-2549.
    [104] R. Si, Y. W. Zhang, L. P. You, C. H. Yan. Rare-earth oxide nanopolyhedra, nanoplatesand nanodisks [J]. Angew. Chem.,2005,117:3320-3324.
    [105] J. C. Boyer, F. Vetrone, L. A. Cuccia, J. A. Capobianco. Synthesis of Colloidalupconverting NaYF4nanocrystals doped with Er3+, Yb3+and Tm3+, Yb3+via thermaldecomposition of lanthanide trifluoroacetate precursors [J]. J. Am. Chem. Soc.,2006,128:7444-7445.
    [106] J. C. Boyer, J. A. Cuccia, J. A. Capobianco. Synthesis of Colloidal upconverting NaYF4:Er3+/Yb3+and Tm3+/Yb3+monodisperse nanocrystals [J]. Nano Lett.,2007,3:847-852.
    [107] F. Wang, X. G. Liu. Upconversion multicolor fine-tuning: visible to near-infraredemission from lanthanide-doped NaYF4nanoparticles [J]. J. Am. Chem. Soc.,2008,130:5642-5643.
    [108] M. Beija, C. A. M. Afonso, J. M. G. Martinho. Synthesis and applications of Rhodaminederivatives as fluorescent probes [J]. Chem. Soc. Rev.,2009,38:2410-2433.
    [109] L. Yuan, W. Y. Lin, Y. T. Yang, H. Chen. A unique Class of near-infrared functionalfluorescent dyes with carboxylic-acid-modulated fluorescence ON/OFF switching:rational design, synthesis, optical properties, theoretical calculations, and applications forfluorescence imaging in living animals [J]. J. Am. Chem. Soc.,2012,134:1200-1211.
    [110] F. Brandizzi, M. Fricher, C. Hawes. A greener world: the revolution in plant bioimaging[J]. Nat. Rev. Mol. Cell Bio.,2002,3:520-530.
    [111] M. Chalfie, Y. Tu, G. E. Chen, W. W. Ward, D. C. Prasher. Green fluorescent protein as amarker for gene expression [J]. Science,1994,263:802-805.
    [112] X. Y. Wu, H. J. Liu, J. Q. Liu, K. N. Haley, J. A. Treadway, J. P. Larson, N. F. Ge, F.Peale, M. P. Bruchez. Immunofluorescent labeling of cancer marker Her2and othercellular targets with semiconductor quantum dots [J]. Nat. Biotech.,2003,21:41-46.
    [113] X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan,A. M. Wu, S. S. Gambhir, S. Weiss. Quantum dots for live cells, in vivo imaging, anddiagnostics [J]. Science,2005,28:538-544.
    [114] L. Cao, X. Wang, M. J. Meziani, F. Lu, H. F. Wang, P. J. G. Luo, Y. Lin, B. A. Harruff, L.M. Veca, D. Murray, S. Y. Xie, Y. P. Sun. Carbon dots for multiphoton bioimaging[J]. J.Am. Chem. Soc.,2007,129:11318-11319.
    [115] U. H. F. Bunz, V. M. Rotello. Gold nanoparticle-fluorophore complexes: sensitive anddiscerning “Noses” for biosystems sensing [J]. Angew. Chem. Int. Ed.,2010,49:3268-3279.
    [116] J. Zhou, Z. Liu, F. Y. Li. Upconversion nanophosphors for small-animal imaging [J].Chem. Soc. Rev.,2012,41:1323-1349.
    [117] L. Q. Xiong, T. S. Yang, Y. Yang, C. J. Xu, F. Y. Li. Long-term in vivo biodistributionimaging and toxicity of polyacrylic acid-coated upconversion nanophospors [J].Biomaterials,2010,31:7078-7085.
    [118] S. W. Wu, G. Han, D. J. Milliron, S. Aloni, V. Altoe, D. V. Talapin, B. E. Cohen, P. J.Schuck. Non-blinking and photostable upconverted luminescence from singlelanthanide-doped nanocrystals [J]. Proc. Natl. Acad. Sci. USA,2009,106:10917-10921.
    [119] H. S. Mader, P. kele, S. M. Saleh, O. S. Wolfbeis. Upconverting luminescentnanoparticles for use in bioconjugation and bioimaging [J]. Curr. Opin. Chem. Bio.,2010,14:582-596.
    [120] F. Wang, D. Banerjee, Y. S. Liu, X. Y. Chen, X. G. Liu. Upconversion nanoparticles inbiological labeling, imaging, and therapy [J]. Analyst,2010,135:1839-1854.
    [121] F. Zhang, Q. H. Shi, Y. C. Zhang, Y. F. Shi, K. L. Ding, D. Y. Zhao, G. D. Stucky.Fluorescence upconversion microbarcodes for multiplexed biological detection: nucleicacid encoding [J]. Adv. Mater.,2011,23:3775-3779.
    [122] C. Bouzigues, T. Gacoin, A. Alexandrous. Biological applications of rare-earth basednanoparticles [J]. ACS Nano,2011,5:8488-8505.
    [123] L. Y. Wang, R. X. Yan, Z. Y. Huo, L. Wang, J. H. Zeng, J. Bao, X. Wang, Q. Peng, Y. D.Li. Fluorescence resonance energy transfer biosensor based on upconversion luminescentnanoparticles [J]. Angew. Chem. Int. Edit.,2005,44:6054-6057.
    [124] H. Kobayashi, M. Ogawa, R. Alford, P. L. Choyke, Y. Urano. New strategies forfluorescent probe design in medical diagnostic imaging [J]. Chem. Rev.,2010,110:2620-2640.
    [125][125] N. Erathodiyil, J. Y. Ying. Functionalization of inorganic nanoparticles forbioimaging applications [J]. Acc. Chem. Res.,2011,44:925-935.
    [126] G. Y. Chen, T. Y. Ohulchanskyy, R. Kumar, H. gren, P. N. Prasad. Ultrasmallmonodisperse NaYF34: Yb+/Tm3+nanocrystals with enhanced near-infrared tonear-infrared upconversion photoluminescence [J]. ACS Nano,2010,4:3163-3168.
    [127] J. Zhou, Y. Sun, X. X. Du, L. Q. Xiong, H. Hu, F. Y. Li. Dual-modality in vivo imagingusing rare-earth nanocrystals with near-infrared to near-infrared (NIR-to-NIR)upconversion luminescence and magnetic resonance properties [J]. Biomaterials,2010,31:3287-3295.
    [128] S. Mula, A. K. Ray, M. Banerjee, T. Chaudhuri, K. Dasgupta, S. Chattopadhyay. Designand development of a new pyrromethene dye with improved photostability and lasingefficiency: theoritical rationalization of photophysical and photochemical properties [J]. J.Org. Chem.,2008,73:2146-2154.
    [129] J. K. Jaiswal, S. M. Simon. Potentials and pitfalls of fluorescent quantum dots forbiological imaging [J]. Trends Cell Biol.,2004,14:497-504.
    [130] A. M. Derfus, W. C. W. Chan, S. N. Bhatia. Probing the cytotoxicity of semiconductorquantum dots [J]. Nano Lett.,2004,4:11-18.
    [131] R. F. Heuff, M. Marrocco, D. T. Cramb. Saturation of two-photon excitation providesinsight into the effects of a quantum dot blinking supperssant: a fluorescence correlationspectroscopy study [J]. J. Phys. Chem. C,2007,111:18942-18949.
    [132] W. P. Ambrose, P. M. Goodwin, J. H. Jett, A. V. Orden, J. H. Werner, R. A. Keller. Singlemolecule fluorescence spectroscopy at ambient temperature [J]. Chem. Rev.,1999,99:2929-2956.
    [133] J. Q. Gu, J. Shen, L. D. Sun, C. H. Yan. Resonance energy transfer in steady-state andtime-decay fluro-immonoassays for lanthanide nanoparticles based on biotin and avidinaffinity [J]. J. Phys. Chem. C,2008,112:6589-6593.
    [134] L. Y. Wang, R. X. Yan, Z. Y. Huo, L. Wang, J. H. Zeng, J. Bao, X. Wang, Q. Peng, Y. D.Li. Fluorescence resonant energy transfer biosensor based on upconversion-luminescentnanoparticles [J]. Angew. Chem. Int. Ed.,2005,44:6054-6057.
    [135] Z. G. Chen, H. L. Chen, H. Hu, M. X. Yu, F. Y. Li, Q. Zhang, Z. G. Zhou, T. Yi, C. H.Huang. Versatile synthesis strategy for carboxylic acid-functionalized upconvertingnanophosphors as biological labels [J]. J. Am. Chem. Soc.,2008,130:3023-3029.
    [136] M. Kumar, Y. Y. Guo, P. Zhang. Highly sensitive and selective oligonucleotide sensor forsickle cell disease gene using photon upconverting nanoparticles [J]. Biosen. Bioelecton.,2009,24:1522-1526.
    [137] H. C. Guo, N. M. Idris, Y. Zhang. LRET-based biodetection of DNA release in live cellsusing surface-modified upconverting fluorescent nanoparticles [J]. Langmuir,2011,27:2854-2860.
    [138] S. F. Lim, R. Riehn, W. S. Ryu, N. Khanarian, H. K. Tung, D. Tank, R. H. Austin. Invivo and scanning electron microscopy imaging of upconverting nanophosphors incaenorhabdities elegans [J]. Nano Lett.,2006,6:169-174.
    [139] S. A. Hilderbrand, F. W. Shao, C. Salthouse, U. Mahmood, R Weissleder. Upconvertingluminescent nanomaterials: application to in vivo bioimaging [J]. Chem. Comm.2009,28:4188-4190.
    [140] Q. Liu, M. Chen, Y. Sun, G. Y. Chen, T. S. Yang, Y. Gao, X. Z. Zhang, F. Y. Li.Multifunctional rare-earth self-assembled nanosystem for tri-modal upconversionluminescence/fluorescence/positron emission tomography [J]. Biomaterials,2011,32:8243-8253.
    [141] J. Ryu, H. Y. Park, K. Kim, H. Kim, J. H. Yoo, M. Kang, K. Im, R. Grailhe, T. Song.Facile synthesis of ultrasmall and hexagonal NaGdF3++4: Yb, Er3nanoparticles withmagnetic and upconversion imaging properties [J]. J. Phys. Chem. C,2010,114:21077-21082.
    [142] Q. Liu, Y. Sun, T. S. Yang, W. Feng, C. G. Li, F. Y. Li. Sub-10nm Hexagonallanthanide-doped NaLuF4upconverson nanocrystals for sensitive bioimaging in vivo [J].J. Am. Chem. Soc.,2011,133:17122-17125.
    [143] G.S. Maciel, N. Rakov, M. Fokine, I.C.S. Carvalho, C.B. Pinhiro. Strong upconversionfrom Er3Al5O12ceramic powders prepared by low temperature direct combustionsynthesis [J]. Appl. Phys. Lett.,2006,89:081109.
    [144] Z. Zhou, T. Komori, T. Ayukawa, H. Yukawa, M. Morinaga, A. Koizumi, Y. Takeda.Li-and Er-codoped ZnO with enhanced1.54μm photoemission [J]. Appl. Phys. Lett.,2005,87:091109.
    [145] Z. Zhou, T. Komori, M. Yoshino, M. Morinaga, N. Matsunami, Y. Takeda. Enhanced1.54μm photoluminescence from Er-containing ZnO through nitrogen doping [J]. Appl.Phys. Lett.,2005,86:041107.
    [146] F. Vetrone, J.C. Boyer, J.A. Capobianco, A. Speghini, and M. Bettinilli. Significance ofYb3+concentration on the upconversion mechanisms in codoped Y3+2O3:Er3+, Ybnanocrystals [J]. J. Appl. Phys.,2004,96:661-668.
    [147] Y.H. Wang, J. Ohwaki. New transparent vitroceramics codoped with Er3+and Yb3+forefficient frequency upconversion [J]. Appl. Phys. Lett.,1993,63(24):3268-3270.
    [148] X. Shen, Q. H. Nie, T. F. Xu, T. Peng, and Y. Gao. Green and red upconversion emissionand energy-transfer between Er3+and Tm3+ions in tellurite glasses [J]. Phys. Lett. A,2004,332:101-106.
    [149] J. Silver, M. I. Martinez-Rubio, T. G. Ireland, G. R. Fern, and R. Withnall. The effect ofparticle morphology and crystallite size on the upconversion luminescence properties oferbium and ytterbium co-doped yttrium oxide phosphors [J]. J. Phys. Chem. B,2001,105(5):948-953.
    [150] J. F. Suyver, J. Grimm, M. K. van Veen, D. Biner, K. W. Kr mer, H. U. Güdel.Upconversion spectroscopy and properties of NaYF+4doped with Er3+, Tm3and/or Yb3+[J]. J. Lumin.2006,117(1):1-12.
    [151] Y. J. Sun, Y. Chen, L. J. Tian, Y. Yu, X.G. Kong, Q. H. Zeng, Y. L. Zhang, H. Zhang.Morphology-dependent upconversion luminescence of ZnO: Er3+nanocrystals [J]. J.Lumin.,2008,128:15-21.
    [152] D. J. Dexter. Theory of Concentration Quenching in Inorganic Phosphors [J]. Chem.Phys.,1953,21:836-851.
    [153] F. Auzel, G. Baldacchini, L. Laversenne, and G. Boulon. Radiation trapping andself-quenching analysis in Yb, Er and Ho-doped Y2O3[J]. Opt. Mater.,2003,24:103-109.
    [154] T. Danger, J. Koetke, R. Brede, E. Heumann, G. Huber, and B. H. T. Chai. Spectroscopyand green up-conversion laser emission of Er3+-doped crystals at room temperature [J]. J.Appl. Phys.,1994,76:1413-1422.
    [155] M. Wang, Q. L. Huang, J. M. Hong, X. T. Chen. Controlled synthesis of differentmorphological YF3crystalline particles at room termperature [J]. Mater. Lett.,2007,61:1960-1963.
    [156] C. Y. Cao, W. P. Qin, J. S. Zhang, Y. Wang, P. F. Zhu, G. F. Wang, G. D. Wei, L. L.Wang, L. Z. Jin. Enhanced ultraviolet up-conversion emissions of Tm3+/Yb3+codopedYF3nanocrystals [J]. J. Fluo. Chem.,2008,129:204-209.
    [157] G. F. Wang, W. P. Qin, J. S. Zhang, J. S. Zhang, Y. Wang, C. Y. Cao, L. L. Wang, G. D.Wei, P. F. Zhu, T. J. Kim. Enhancement of violet and ultraviolet upconversion emissionsin Yb3+/Er3+-codoped YF3nanocrystals [J]. Opt. Mater.,2008,31:296-299.
    [158] S. L. Zhong, S. J. Wang, H. L. XU, C. G. Li, Y. X. Huang, S. P. Wang, R. Xu. Facilesynthesis of water-soluble YF3and YF3: Ln3+nanocrystals [J]. Mater. Lett.,2009,63:530-532.
    [159] M. Wang, Q. L. Huang, H. X. Zhong, X. T. Chem, Z. L. Xue, X. Z. You. Formation ofYF3nanocrystals and their self-assembly into hollow peanut-like structures [J]. Cryst.Grow. Des.,2007,7:2106-2111l.
    [160] F. Q. Guo, H. F. Li, Z. F. Zhang, S. L. Meng, D. Q. Li. Synthesis of mesoporous YF3nanofluowers via solvent extraction route [J]. Mater. Sci. Eng. B,2009,163:134-137.
    [161] F. Tao, Z. J. Wang, L. Z. Yao, W. L. Cai, X. G. Li. Shape-controlled synthesis andcharateriztion of YF3truncated octahedral nanocrystals [J]. Cryst. Grow. Des.,2007,7:854-858.
    [162] G. F. Wang, W. P. Qin, J. S. Zhang, J. S. Zhang, C. Y. Cao, L. L. Wang, G. D. Wei, P. F.Zhu, R. J. Kim. Synthesis, growth mechanism, and tunable upconversion luminescence ofYb3+/Tm3+-codoped YF3nanobundles [J]. J. Phys. Chem. C,2008,112:12161-12167.
    [163] M. F. Zhang, H. Fan, B. J. Xi, X. Y. Wang, C. Dong, Y. T. Qian. Synthesis,characterization, and luminescence properties of uniform Ln3+-doped YF3nanospindles[J]. J. Phys. Chem. C,2007,111,6652-6657.
    [164] Z. L. Wang. Transmission electron microscopy of shape-controlled nanocrystals andtheir assemblies [J], J. Phys. Chem. B,2000,104,1153-1175.
    [165] H. E. Rast, H. H. Caspers, S. A. Miller. Lattice vibrations and infrared properties ofytrium fluoride [J]. Phys. Rev.,1969,180:890-895.
    [166] J. A. Capobianco, J. C. Boyer, F. Vetrone, A. Speghini, M. Bettinelli. OpticalSpectroscopy and Upconversion Studies of Ho3+-Doped Bulk and Nanocrystalline Y2O3,Chem. Mater.,2002,14:2915-2921.
    [167] S. Wang, R. P. Deng, H. L. Guo, S. Y. Song, F. Cao, X. Y. Li, S. Q. Su, H. J. Zhang.Lanthanide doped Y6O5F8/YF3microcrystals: phase-tunable synthesis and bright whiteupconversion photoluminescence properties [J]. Dalton Trans.,2010,39:9153-9158.
    [168] D. Q. Chen, Y. S. Wang, Y. L. Yu, H. Ping. Intense ultraviolet upconversionluminescence from Tm/Yb: β-YF3nanocrystals embedded glass ceramic [J]. Appl. Phys.Lett.,2007,91:051920-051922.
    [169] L. Y. Wang, Y. D. Li. Down-and up-conversion luminescent nanorods [J]. Adv. Mater.,2007,19:3304-3307.
    [170] F. Zhang, J. Li, J. Shang, L. Xu, D. Y. Zhao. Shape, size, and phase-controlled rare-earthfluoride nanocrystals with optical up-conversion properties [J]. Chem. Eur. J.,2009,15:11010-11019.
    [171] S. J. Zeng, G. Z. Ren, W. Li, C. F. Xu, Q. B. Yang. High uniform Tm3+-doped NaYbF4microtubes: controlled synthesis and intense ultraviolet photoluminescence [J]. J. Phys.Chem. C [J].2010,114:10750-10754.
    [172] D. Q. Chen, Y. L. Yu, F. Huang, P. Huang, A. P. Yang, Y. S. Wang. Modifying the size andshape of monodisperse bifunctional alkaline-earth fluoride nanocrystals throughlanthanide doping [J]. J. Am. Chem. Soc.,2010,132:9976-9978.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700