面向无线传感器网络节点的微型光伏电源系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本世纪初以来无线传感器网络(Wireless Sensor Network,简称WSN)开始在国内外学术界和产业界引起了广泛的关注,并在多种应用领域中取得了重大进展,在国际上已被认定为继互联网之后的第二大网络。能源受限是WSN快速发展中遇到的重要瓶颈之一,是制约节点能力和使用寿命的根本原因,因此为WSN节点提供充足的永久的免维护的能源保障是完善WSN设计的最终目标之一。通过微能量收集技术从环境中不断获取可持续性能源是当前WSN设计和可再生能源应用中的一个新兴研究课题。由于太阳能具有较高的能量密度和均匀的资源分布,特别是它永不枯竭和方便预测的特点,使其较其它环境能源更加适用于分布随机,无人值守的传感器网络节点。因此基于太阳能的微型光伏电源系统逐渐成为当前WSN节点能源解决方案的一个重要研究热点。
     在完成了对国内外前沿技术全面调研的基础上,本文基于一整套优化的设计方法为WSN节点设计了一款高效率、低成本、高可靠性的光伏电源管理系统。根据自顶向下的设计思想,我们对微型光伏电源系统做了模块划分,给出了每个模块的功能定义,并对各模块设计中的关键技术逐一进行了深入讨论。本文中的微型光伏电源系统主要包括四部分:微型规模的太阳电池,它是光电能量转换器;能量存储单元,用于存储静电能量;光伏能量收集器,它在最大功率点跟踪技术控制下实现了高效率的功率转换;直流电压变换器,根据负载需要提供稳定电压输出。我们研究了太阳电池的等效电路模型和模型参数提取方法,将解析法与数值法相结合提出了一种名为混合法的简便精确的参数提取方法,从而为光伏电源系统芯片的仿真提供了太阳电池的精确模型;文中分析并对比了多种光伏电池的最大功率点跟踪算法和功率转换电路实现方法,针对微型光伏系统设计了一款基于Boost拓扑结构和开路电压法的最佳模式微能量收集器;为了进一步提高效率和降低成本,本文提出了一种基于滞环控制的Buck型DC-DC变换器,设计了基于CMOS反相器的滞环比较器用于实现没有静态功耗的电压变换,同时采用了DCM工作模式的同步整流技术,进一步减小了电感续流时的导通损耗;在能量储存单元的设计中我们使用超级电容代替蓄电池,这是因为超级电容的使用寿命更长,控制电路更简单,特别是它的充放电基于物理效应使用中清洁无污染。最后我们以一个自定义的WSN节点为例,采用上述优化的设计方法,在华虹NEC的BCD350工艺下完成了一个高效率低成本的微型光伏电源系统芯片设计,并以分立元件验证了系统功能。
     综上所述,本文为微型光伏电源系统提供了一套设计方法,从而为解决WSN节点能源受限问题提供了一种优化后的可行性解决方案,相较于现有其它研究成果更简便更高效。
Since the beginning of this century, the Wireless Sensor Networks (WSN) has caused widespread attention in academia and industry. Since it has made great progress in many fields of applications, WSN has been identified as the second largest network after Internet. Energy is a big bottleneck to restrict the rapid development of WSN, because it is the essential limitation of the node capability and the operating lifetime. The vision of developing perpetual powered systems without a necessary periodical maintenance for battery replacement or recharging is one of the ultimate goals of sensor network design. Micro-energy harvesting techniques can solve the problem by supplying and converting energy from the surrounding environment which is a rising research subject in the WSN design and renewable energy technology. Solar energy has many advantages such as high energy density, uniform distribution, inexhaustible and predictable, so it is more suitable for the distributed unattended sensor nodes. Solar energy harvester becomes an important research hotspot of WSN node energy solution.
     Basing on a comprehensive survey of the latest researches, this thesis proposes a micro-scale photovoltaic power system which is high efficiency, low cost, and high reliability. According to the Top-Down design philosophy, we firstly give the module partition for the whole system, and define the functions of each module. And then carry out the thorough discussions on the key technologies one by one. Our system includes four parts:Micro-scale solar cell, which serves as the photovoltaic energy converter; Energy storage unit, which is used to conserve the electrostatic energy; Micro-solar energy harvester, which achieves a high efficient power conversion by a controller of maximum power point tracking; DC-DC converter, which provides a stable output voltage according to the load needs. We study the equivalent circuit model and model parameter extraction method of the solar cell in order to provide a precise model for the system simulation. We propose a simple and accurate parameter extraction method called hybrid method which is a reasonable combination of the analytical method and numerical method. Basing on the analysis and comparison of several maximum power point tracking algorithms and power conversion implementation methods, we propose an optimal micro-energy harvester based on the Boost topology and the FOCV algorithm. In order to further improve the efficiency and reduce the cost, we put forward a Buck DC-DC converter with a hysteresis controller. The hysteresis comparator is designed by CMOS inverter which can achieve voltage conversion without quiescent dissipation. The DCM mode of synchronous rectifier technology is also adopted to reduce the conduction loss. In energy storage unit we use super capacitors instead of the batteries, because it is pollution-free and it has longer operating lifetime and simpler charge controller. Taking a custom WSN node as an example and using the aforementioned optimal desin methods, we complete a design of high efficiency low cost micro-scale photovoltaic power system. The chip is implemented in the HHNEC BCD350process, and the function verification is based on discrete devices.
     In a word, this thesis provides a set of design method for micro-scale photovoltaic power system. The design of system level, circuit level and physical level are all covered. Compared to other existing researches, our method is more convenient and efficient, so it is an optimal solution to solve the energy limitation of WSN node.
引文
[1].崔逊学,左丛梅.无线传感器网络简明教程.北京:清华大学出版社,2009
    [2].刘云浩.物联网导论.北京:科学出版社,2010
    [3]. B. A. Warneke and K. S. J. Pister. An ultra-low energy micro-controller for smart dust wireless sensor network.in Proc. ISSCC,2004, pp.316-317.
    [4]. S. Y. Lee and S. C. Lee. An implantable wireless bidirectional communication microstimulator for neuromuscular stimulation. IEEE Trans, on Circuits Syst. I, Reg. Papers, 2005 vol.52(12):2526-2538
    [5]. C. V. Hoof, R. F. Yazicioglu, T. Torfs, et al. Ultra-low-power biopotential interfaces and their applications in wearable and implantable systems. Microelectron. J.,2009, vol.40(9): 1313-1321
    [6]. http://wenku.baidu.com/view/b91a7b84d4d8d15abe234e19.html
    [7].阿地里江·阿不力米提.智能交通系统传感器技术的研究:[硕士学位论文].大连:大连理工大学,2009
    [8]. http://wenku.baidu.com/view/eb75e6f47clcfad6195fa7a5.html
    [9].吴功宜.智慧的物联网:感知中国和世界的技术.北京:机械工业出版社,2010
    [10]. Deepti Jain and Vinod M. Vokkarane. Energy-efficient target monitoring in wireless sensor networks.in Proc. of,2008, pp.275-280
    [11]. A.Sinha and A.Chandrakasan. Dynamic power management in wireless sensor networks. IEEE Design and Test of Computers,2001, vol.18(2):62-74
    [12]. D. Brunelli, C. Moser, L. Benini, and L. Thiele. An efficient solar energy harvester for wireless sensor nodes.in Design, Automation &Test in Europe Conference & Exhibition, 2008
    [13].L. Mateu and F. Moll. Review of energy harvesting techniques and applications for microelectronics.in Proc. SPIE Microtechnol, New Millennium,2005, pp.359-373.
    [14]. C. Park, P. Chou. Ambimax:Autonomous energy harvesting platform for multi-supply wireless sensor nodes.in Proc. of SECON'06,2006, vol.1:168-177
    [15]. Renewable Energy. U.S. Energy Information Administration/Annual Energy Review 2009
    [16]. http://www.ti.com/solution/energy_harvesting
    [17]. R. E. Barnett, J. Liu, and S. Lazar. A RF to DC voltage conversion model for multi stage rectifiers in UHF RFID transponders. IEEE J.Solid-State Circuits,2009, vol.44, (2): 354-370
    [18]. C. Lu, C. Y. Tsui, and W. H. Ki. Vibration energy scavenging and management for ultra low power applications.in Proc. ISLPED,2007, pp.316-321
    [19]. W. J. Choi, Y. Jeon, J. H. Jeong, R. Sood, et al. Energy harvesting MEMS device based on thin film piezoelectric cantilevers. J. Electroceramics,2006, vol.17(2-4):543-548
    [20]. R. G. Egbert, M. R. Harvey, and B. P. Otis. Microscale silicon thermo-electric generator with low impedance for energy harvesting, in Proc.5th Eur. Conf. Thennoelectrics,2007, pp. 219-221
    [21]. C. Bergonzini, D. Brunelli, L. Benini. Algorithms for Harvested Energy Prediction in Batteryless Wireless Sensor Networks.in Proc. of IWASI,2009, pp.144-149
    [22].光电产业研究报告之2011年中国及海外太阳能光伏产业发展报告
    [23].熊远生.太阳能光伏发电系统的控制问题研究:[博士学位论文].杭州:浙江工业大学,2009
    [24]. R.-J. Wai and W.-H. Wang. Grid-connected photovoltaic generation system. IEEE Trans. on Circuits Syst. I, Reg. Papers,2008, vol.55(3):953-964
    [25].任碧莹.户用式光伏并网发电控制策略的研究:[博士学位论文].西安:西安理工大学,2009
    [26]. W. Xiao, M. Lind, W. Dunford, and A. Capel. Real-time identification of optimal operating points in photovoltaic power systems. IEEE Trans.on Ind. Electron.,2006, vol.53(4): 1017-1026
    [27]. J. Enslin, M. Wolf, D. Snyman, and W. Swiegers. Integrated photovoltaic maximum power point tracking converter. IEEE Trans. Ind.Electron.,1997, vol.44(6):769-773
    [28].丁金磊.太阳电池Ⅰ-Ⅴ方程显示求解原理研究及其应用:[博士学位论文].合肥:中国科学技术大学,2007
    [29]. M. HaouariMerbah, M. Belhamel. Extraetion and analysis of solar cell Parameters from the illuminated current-voltage curve. Solar Energy Materials&solar cells,2005, vol.87(1-4): 225-233
    [30]. A.OrtizConde, F.J.Garc.Sa'nehez. New method to extract the model Parameters of solar cells from the explicit analytic solutions for their illuminated I-V characteristics. Solar Energy Materials&solar cells,2006, vol.90(3):352-361
    [31]. M.Bashahu, A.Habyarimana. Review of and test of methods for determination of the Solar cell series resistance. Renewable Energy.1995,6(2):129-138
    [32]. E. Kiran, D. Inan. An approximation to solar cell equation for determination of solar cell parameters. Renewable Energy,1999,27(2):235-241
    [33], S.K. Sharmat, DPavithra, N. Srinivasamurthy, B. L. Agrawal. Determination of solar cell parameters:an analytical approach. Phys.D,1993,26:1130-113
    [34]. M. HaouariMerbah, M. Belhamel. Extraction and analysis of solar cell parameters from the illuminated current-voltage curve. Solar energy Materials&solar cells,87(1-4):225-233
    [35].徐林,崔容强,庞乾骏.对太阳电池Ⅰ-V曲线进行拟合的数论方法.太阳能学报,2000,21(2):160-164
    [36]. V. Martinez, J. C. Jimeno. Simultaneous fit to I-V charaeteristics of solar cells.in Proc. of 2nd World Conference and Exhibition on Photovoltaic Solar Energy Conversion,1998,1324
    [37]. T. Esram and P. Chapman. Comparison of photovoltaic array maximum power point tracking techniques. IEEE Trans, on Energy Convers.,2007,vol.22(2):439-449
    [38].吴理博.光伏并网逆变系统综合控制策略研究及实现:[博士学位论文].北京:清华大学,2006
    [39]. G W. Hart, H. M. Branz, and C. H. Cox. Experimental tests of open loop maximum power point tracking techniques. Solar Cells,1984, vol.13:185-195
    [40]. M. A. S. Masoum, H. Dehbonei, and E. F. Fuchs. Theoretical and experimental analysis of photovoltaic systems with voltage and current based maximum power point tracking. IEEE Trans, on Energy Convers.,2002, vol.17(4):514-522
    [41]. B. Bekker and H. J. Beukes. Finding an optimal PV panel maximum power point tracking method.in Proc.7th AFRICON Conf. Africa,2004, pp.1125-1129
    [42]. H.-J. Noh, D.-Y. Lee, and D.-S. Hyun. An improved MPPT converter with current compensation method for small scaled PV-applications. In Proc. of 28th Annu. Conf. Ind. Electron. Soc.,2002, pp.1113-1118
    [43]. T. Noguchi, S. Togashi, and R. Nakamoto. Short-current pulse based adaptive maximum power point tracking for photovoltaic power generation system.in Proc. if 2000 IEEE Int. Symp. Ind. Electron.,2000, pp.157-162
    [44]. N. Mutoh, T. Matuo, K. Okada, and M. Sakai. Prediction data based maximum power point tracking method for photovoltaic power generation systems.in Proc. of 33rd Annu. IEEE Power Electron. Spec. Conf.,2002, pp.1489-1494
    [45]. J. H. R. Enslin and D. B. Snyman. Simplified feed-forward control of the maximum power point in PV installations.in Proc. of 1992 Int. Conf. IECIA,1992, pp.548-553
    [46]. C. R. Sullivan andM. J. Powers. A high-efficiency maximum power point tracker for photovoltaic arrays in a solar-powered race vehicle.in Proc. of 24th Annu. IEEE Power Electron. Spec. Conf.,1993, pp.574-580
    [47]. J. Arias, F. F. Linera, J. Martin-Ramos, et al. A modular PV regulator based on microcontroller with maximum power point tracking.in Proc. of IEEE Ind. Appl. Conf., 2004, pp.1178-1184
    [48]. D. Shmilovitz. On the control of photovoltaic maximum power point tracker via output parameters.in IEE Proc. Elect. Power Appl.,2005, pp.239-248
    [49]. D. Brunelli, L. Benini, C. Moser, and L. Thiele. An efficient solar energy harvester for wireless sensor nodes.in Proc. of Conf. DATE,2008, pp.104-109
    [50]. D.Dondi, D. Brunelli, L. Benini, et al. Photovolltaic cell modeling for solar energy poered sensor network.in Proc. of IWASI,2007, pp.105-110
    [51]. D. Dondi, A. Bertacchini, D. Brunelli, et al. Modeling and optimization of a solar energy harvester system for self-powered wireless sensor networks. IEEE Trans.on Ind. Electron., 2008, vol.55(7):2759-2766
    [52]. D.Dondi, A. bertacchini, L. Larcher, et al. A solar energy harvesting circuit for low power applications.in Proc. of ICSET,2008, pp.945-949
    [53]. A. Chini and L. Rovati. Micro-power photovoltaic harvester based on a frequency to voltage MPPT tracker. Electronics letters,2010, vol.46(8)
    [54]. A. chini and F. Soci. Boost-converter-based solar harvester for low power applications. Electronics letters,2010, vol.46(4)
    [55]. C. Alippi and C. Galperti. An adaptive system for optimal solar energy harvesting in wireless sensor network nodes. IEEE Trans.on Circuit and system I-regular papers,2008, vol.55(6):1742-1750
    [56]. C. Lu, V. Raghunathan, K. Roy. Efficient design of micro-scale energy harvesting systems. Emerging and selected topics in circuits and systems,2011, vol.1(3):254-266
    [57]. C. Lu, S. Park, V. Raghunathan, et al. Efficient power conversion for ultra low voltage micro scale energy transducers.in Proc. of DATE,2010, pp.1602-1607
    [58]. C. Lu, V. Raghunathan, K. Roy. Micro-scale energy harvesting:A System design perspective.in Proc. of ASPDAC,2010, pp.273-276
    [59]. C. Lu, S. Park, V. Raghunathan, et al. Stage number optimization for switched capacitor power converters in micro-scale energy harvesting.in Proc. of DATE,2011, pp.1-6
    [60]. F. Simjee and P. H. Chou. Everlast:long-life, supercapacitor-operated wireless sensor node. in Proc. of ISLPED'06, New York, pp:197-202
    [61]. F. Simjee and P. Chou. Efficient charging of supercapacitors for extended lifetime of wireless sensor nodes. IEEE Trans.on Power Electronics,2008, vol.23(3):526-536
    [62]. X. Jiang, J. Polastre, and D. E. Culler. Perpetual environmentally powered sensor networks. in Proc. of 4th Int. Symp. IPSN,2005, pp.463-468
    [63]. V. Raghunathan, A. Kansal, J. Hsu, et al. Design considerations for solar energy harvesting wireless embedded systems.in Proc. IPSN,2005, pp.457-462
    [64]. T. Wei, X. Qi, Z. Qi. An improved ultracapacitor equivalent circuit model for the design of energy storage power systems.in Proc. of ICEMS,2007, pp.69-73
    [65]. J. Lam and C. Plett. A low power DC-DC Converter for Scavenged Power Wireless Sensor Networks.in Proc. of ISCAS,2010, pp.4081-4084
    [66]. S. K. Baranwal, A. Patra, B. Culpepper. Self oscillating control of a synchronous DC-DC buck converter.in Proc. of 35th PESC,2004, pp.3671-3674
    [67]. http://www.ti.com/product/msp430f2274
    [68]. http://www.ti.com/product/cc2530
    [69]. http://www.ti.com/product/tmpl12
    [70]. http://wenku.baidu.com/view/6c87ce25192e45361066f5ad.html
    [71]. http://wenku.baidu.com/view/90f35a2f647d27284b73517a.html
    [72].彭道福.超级电容器储能系统在光伏发电系统中的研究与应用:[硕士学位论文].北京:北京交通大学,2011.
    [73]. N.Mutoh and T. Inoue. A control method to charge series-connected ultra electric double-layer capacitors suitable for photovoltaic generation systems combining mppt control method. IEEE Trans.on Ind. Electron.,2007, vol.54(1):374-383
    [74].赵争鸣,刘建政,孙晓瑛等.太阳能光伏发电及其应用.北京:科学出版社,2005
    [75].蒋荣华,肖顺珍.硅基太阳能电池与材料.新材料产业,2003,vol.116(7):8-13
    [76].尼曼,赵毅强,姚素英等.半导体物理与器件.北京:电子工业出版社,2010
    [77].赵争鸣,刘建政等.太阳能光伏发电及其应用.北京:科学出版社,2005
    [78].汉斯S劳申巴赫.太阳电池阵设计手册一光电能转换原理及其应用.北京:宇航出版社,1987
    [79]. Nobuyoshi M, Masahiro O, kayoshi I. A method for MPPT control while searching for Parameters corresponding to weather conditions for PV generation system. IEEE Trans on Elec.,2006,53(4):1055-1065
    [80]. Charles J P, MekkaquiAlaoqui I, Bordure G, et al. A critical study of the effectiveness of the single and double exponential models for I-Vcharacterization of solar cells. Solid State Electronics,1989,vol.28(8):807-820
    [81]. J.A. Gow and C.D.Manning. Development of a photovoltaic array model for use in power electronics simulation studies. IEE Proc. Electr. Power Appl.,1999, vol.146(2):193-200
    [82].Duffie J. A., Beeklnan W.A.. Solar Engineering of Thermal Proeesses. NewYork:John Wiley&SonsInc.,1991
    [83].徐晓冰,王建平,张崇巍.硅太阳电池解析模型分析与参数修正.合肥工业大学学报,2009,vo1.32(2):166-169
    [84].查珺,程晓舫,丁金磊等.基于一条Ⅰ-Ⅴ曲线提取硅太阳电池参数的一种新方法.太阳能学报,2007,vol.28(9):992-995
    [85].翟载腾,程晓舫,杨臧健.太阳电池一般电流模型参数的解析解.2009,vo1.30(8):1078-1082
    [86].卢景霄.用解析模型拟合太阳电池Ⅰ-Ⅴ特性的实验数据.1996,vol.17(1):44-49
    [87].刘锋,黄建华,李翔等.一种提取太阳电池参数新方法.2010,vol.21(8):1181-1183
    [88]. Corless R M, Gonnet G H, Hare D E G, et al. On the Lambert W-function. Adv Compute Math,1996, vol.5(1):329-359.
    [89].廖志凌,阮新波.任意光强和温度下的硅太阳电池非线性工程简化数学模型.太阳能学报,vo1.30(4):432-435
    [90]. Marcelo G.V., Jonas R.I G., and Ernesto R. F.. Comprehensive Approach to Modeling and simulation of photovoltaic arrays. IEEE Trans.on Power Electronics,2009, vol.24(5): 1198-1208
    [91]. D. Dondi, D. Brunelli, L. Benini, et al. Photovoltaic cell modeling for solar energy powered sensor networks.in Proc. of 2nd IEEE IWASI,2007, pp.105-110
    [92]. E. Koutroulis, K. Kalaitzakis, and N. C. Voulgaris. Development of a microcontroller based, photovoltaic maximum power point tracking control system. IEEE Trans, on Power Electron.,2001, vol.16(21):46-54
    [93]. M.Veerachary,T. Senjyu, andK.Uezato. Maximumpower point tracking control of IDB converter supplied PV system.in IEE Proc. Elect. Power Applicat.,2001,pp.494-502
    [94]. S. Jain andV.Agarwal. A new algorithm for rapid tracking of approximate maximum power point in photovoltaic systems. IEEE Power Electron.Lett.,2004, vol.2(1):16-19
    [95]. Y.-C. Kuo, T.-J. Liang, and J.-F. Chen. Novel maximum-power-point-tracking controller for photovoltaic energy conversion system. IEEE Trans. Ind. Electron.,2001, vol.48(3): 594-601
    [96]. P. Midya, P. T. Krein, R. J. Turnbull, et al. Dynamic maximum power point tracker for photovoltaic applications.in Proc.of 27th Annu. IEEE Power Electron. Spec. Conf.,1996, pp.1710-1716
    [97]. T. Senjyu and K. Uezato. Maximum power point tracker using fuzzy control for photovoltaic arrays.in Proc. of IEEE Int. Conf. Ind. Technol.,1994, pp.143-147
    [98]. X. Sun, W. Wu, X. Li, and Q. Zhao. A research on photovoltaic energy controlling system with maximum power point tracking.in Proc. Power Convers. Conf.,2002, pp.822-826
    [99].陈剑,赵争鸣,袁立强等.光伏系统最大功率点跟踪技术的比较.清华大学学报(自然科学版),2010,vol.50(5),700-704
    [100]. P. C. M. de Carvalho, R. S. T. Pontes, D. S. Oliveira,et al. Control method of a photovoltaic powered reverse osmosis plant without batteries based on maximum power point tracking.in Proc. of IEEE/PES Transmiss. Distrib. Conf.,2004, pp.137-142.
    [101]. S.Yuvarajan and S. Xu. Photovoltaic power converter with a simple maximum power point tracker.in Proc. of ISCAS'03,2003, vol.3:pp.339-402
    [102]. M. Masoum and M.Sarvi. Voltage and current based MPPT of solar arrays under variable insolation and temperature conditions.in Proc. of 43rd International Conf. UPEC,2008, pp.1-5
    [103]. W. Xiao, N. Ozog, and W. G. Dunford. Topology study of photovoltaic interface for maximum power point tracking. IEEE Trans. Ind. Electron.,2007, vol.54(3):1696-1704
    [104]. H. Shao, C. Y. Tsui, andW. H. Ki. The design of a micro power management system for applications using photovoltaic cells with maximum output power control. IEEE Trans. Very Large Scale Integr.(VLSI) Syst.,2009, vol.17(8):1138-1142
    [105]. C. Hua and C. Shen. Study of maximum power tracking techniques and control of DC/DC converters for photovoltaic power system. In Proc. IEEE PESC. Conf.,1998, pp.86-93
    [106]. C. Lu, V. Raghunathan, and K. Roy. Maximum power point considerations for micro-scale solar energy harvesting systems.in Proc. of ISCAS,2010, pp.273-276
    [107].吴玉强.高效同步整流buck DC_DC转换器的研究与设计:[硕士学位论文].西安:西安电子科技大学,2008
    [108].董双兵.适用于白光LED驱动的高,效率Boost型DC-DC开关电源的设计:[硕十学位论文].天津:南开大学,2010
    [109].http://wenku.baidu.com/view/363299f67c1cfad6195fa7df.html
    [110].宋乐鹏,刘斌,陈红芬等.基于Bang-Bang模糊自适应PID的干燥窑温度控制.计算机与应用化学,2012,vo1.29(7):121-123
    [111].李丹青,王凤岩,许建平.电压型滞环控制的同步Buck变换器.电源技术应用,2004,vo1.7(10):581-584
    [112]. C. X. Xu. A low voltage and low power CMOS bandgap voltage reference design with a novel start-up circuit. Chinese journal of semiconductors,2005, vol.26(10): 2022-2027
    [113]. A. Boni. Op-amps and startup circuits for CMOS bandgap references with near 1-V supply. IEEE Journal of Solid State Circuits,2002, vol.37(10):1339-1343
    [114]. D. Ma, J. Wang, P. Vozqua. Adaptive on-chip power supply with robust one-cycle control technique.in Proc. of ISLPED,2006, pp.394-399
    [115]. W. Yan, C. Pi, W. Li, R. Liu. Dynamic deadtime controller for synchronous buck DC-DC converters. Electronics Letters,21st Jan.2010, vol.46(2)
    [116]. J. Wibben and R. Harjani. A high-efficiency DC-DC converter using 2 nH integrated inductors. IEEE JSSC,2008, vol.43(4):844-854

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700