铪基高K及更高K氧化物在Si及InP上的沉积和性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着CMOS集成电路的快速发展,传统的SiO2栅介质不适用于集成电路继续发展的需要,需要采用高介电常数栅介质薄膜作为替代材料。但是采用高k材料作为栅介质后,高k材料中高的缺陷态密度、高k材料与衬底之间的界面层以及高k材料的热稳定性等问题也随之出现;同时,器件性能的提高对于沟道载流子迁移率要求更高,采用具有高载流子迁移率的Ⅲ-Ⅴ族半导体作为沟道材料越来越多的引起了人们的关注;而当集成电路发展到16nm技术节点之后,对更高介电常数栅氧化物的需求也日益凸显。本文选取了HfO2. CeO2-HfO2(CDH)、Gd2O3-HfO2(GDH)、HfTiO作为研究对象,利用磁控溅射或原子层沉积技术在Si或者InP上沉积高k栅介质薄膜,并进行了结构表征与性能测试,讨论其未来应用的可能性。具体研究内容如下:
     (1)采用磁控共溅射的方法在p-Si(100)衬底上沉积了CDH薄膜,研究了不同Ce含量和溅射过程氧分压对于CDH薄膜电学性能的影响。通过XPS对比发现相对于纯Hf02薄膜,CDH薄膜的组分更符合标准的化学计量比,体系中氧空位有所减少,证明Ce的掺入能够抑制氧空位的产生。对Pt/CDH/Si MOS结构进行电学特性表征,结果显示CDH薄膜在Si衬底上具有良好的电容特性,介电常数可达20以上;电流-电压(I-V)测试结果表明CDH薄膜具有较低的漏电流,比纯HfO2薄膜低了两个数量级,满足栅介质材料应用的要求。此外,Ce掺杂量的改变以及溅射过程氧分压对于薄膜电学性能也存在明显影响。
     (2)在p-Si(100)衬底上利用磁控共溅射技术沉积了GDH薄膜,在NH3气氛下GDH/Si栅堆栈结构进行快速热退火,研究GDH/Si栅堆栈结构的热稳定性以及不同退火温度对于GDH薄膜性能的影响。结果显示GDH薄膜具有较好的热稳定性,在900℃左右依然保持非晶状态;快速热退火(RTA)后薄膜中氧空位数目减少,GDH薄膜与Si衬底界面区域硅酸盐及不完全氧化SiOx含量降低;GDH/Si栅堆栈结构在RTA后漏电流下降了两个数量级,饱和电容值增大,C-V窗口回线宽度缩小。随退火温度的上升,栅堆栈结构的漏电流呈现先降低后升高的趋势,栅堆栈结构的饱和电容值呈上升趋势,C-V曲线回滞窗口宽度逐渐缩小,C-V曲线逐渐向正向漂移。
     (3)研究了磁控溅射法制备的HfO2薄膜与InP衬底间的界面,包括其界面处化学信息与能带结构。利用XPS对HfO2/InP栅堆栈结构进行研究发现,HfO2/InP的界面处存在着In203和InPO4,是O原子扩散到界面处与衬底发生反应形成的;In原子和P原子没有向Hf02中扩散。HfO2/InP在有无界面层影响时能带结构存在明显的差异:在有界面影响的情况下,由价带谱得出HfO2相对于InP的价带偏移△Ev的值为3.43eV,计算得出导带偏移量△Ec为1.11eV;在无界面影响的情况下,由价带谱和In3d、Hf4f芯能级谱得出△Ev为1.99eV,计算得出△Ec为2.55eV。
     (4)采用磁控溅射的方法在InP(100)衬底上沉积了GDH薄膜,对薄膜的界面及界面处的能带结构进行了分析,研究了结构为W/GDH/InP/Ni的MOS结构的电学特性。HRTEM结果显示GDH薄膜与InP衬底间并无明显的界面层,仅是在衬底靠近界面位置的部分区域有几个原子层发生了反应。XPS分析发现InP与扩散至衬底的O元素发生反应生成了InPO4;但与纯Hf02薄膜比较,GDH薄膜中O扩散的现象有所缓和。利用XPS对GDH/InP堆栈层界面处的电子结构进行研究,得出GDH/InP的价带和导带偏移量分别为2.1eV和2.61eV。W/GDH/InP/Ni的MOS结构具有优异的电学性能,包括适中的介电常数(k~16)以及很小的漏电流(栅压为-1V时仅有10-SA/cm2)。GDH与InP衬底存在的较大的价带和导带偏移为其应用展现了广阔前景。在未来的集成电路中具有潜在的应用价值。
     (5)分别采用磁控溅射和ALD的方法在热氧化的Si(100)衬底上沉积了更高介电常数的HfTiO薄膜,研究了其漏电流-电压特性以及电容-电压特性,并对比了不同Ti含量以及后续RTA处理对于HfTiO薄膜电学特性的影响。结果显示:磁控溅射法制备的HfTiO薄膜介电常数均在40以上,相应的MOS结构的漏电流密度在10-7~10-6A/cm2之间(栅压为-1V时),且随Ti含量的上升,磁控溅射法制备的HfTiO薄膜的饱和电容值呈上升趋势,HfTiO/SiO2/Si栅堆栈结构的漏电流相应的有所下降;ALD法制得的HfTiO薄膜的介电常数约为30左右,界面缺陷要明显少于磁控溅射法制得的薄膜,且随退火温度的上升,样品的饱和电容有所下降。RTA处理后C-V曲线的回滞窗口明显变窄,曲线向负栅压方向偏移的现象有明显改善,C-V曲线的积累区平台也有所增长。
With the rapid development of ultra-large scale integrated circuit, the traditional SiO2-gate dielectric has reached its limitation. It is necessary to employ alternative high dielectric constant(high-k) materials. However, some problems follows with the application of high-k gate dielectric, such as high defect density, poor-quality interlace, thermal unstability of high-k/substrate gate stack and so on. Moreover, high speed devices require new channel materials with higher carrier mobility. Ⅲ-Ⅴ group semiconductors have attracted more and more attention. Additionally, new gate dielectrics with higher k (k>30) are demanded for IC application at16nm technology node and beyond. In this paper, CeO2-HfO2(CDH), Gd2O3-HfO2(GDH), HfTiO are selected as gate dielectric materials. Magnetron sputtering or atomic layer deposition (ALD) is employed to deposite high-k oxides on Si or InP substrates. Structure characterizations and electrical properties of these systems are investigated. The main contents of the research are as follows.
     (1)CDH films are grown on p-type Si(100) by magnetron sputtering. The influence of O2/Ar ratio during deposition and Ce content on the electrical properties of CDH film has been investigated. XPS indicates that CDH film has fewer oxygen vacancies, confirming that Ce doping can help suppress the generation of oxygen vacancy. Pt/CDH/Si MOS capacitor has tower leakage current density and higher maximum accumulation capacitance than Pt/HfO2/Si MOS capacitor. The k value of CDH film is about20, indicating broad prospects for high-k gate dielectric. Additionally, the content of Ce in CDH film and the O2/Ar during deposition also affect the electrical properties of CDH film.
     (2)GDH films are grown on p-type Si(100) substrate by magnetron sputtering. The GDH/Si gate stack shows significant thermal stability in NH3atmosphere. According to HRTEM images, GDH film keeps amorphous after900℃annealing. GDH film with rapid thermal annealing (RTA) has fewer oxygen vacancies. The content of interfacial silicates and SiOx decreases after RTA. GDH film with RTA has better electrical properties. The leakage current is two orders of magnitude lower and the maximum accumulation capacitance rises. Additionally, the width of hysteresis windows reduces obviously. The effect of NH3annealing temperature on the electrical properties of Pt/GDH/Si MOS structure are investigated. The results show that the leakage current firstly decreases and then increases with the rising temperature. The C-V characteristic performs better at high annealing temperature, including higher maximum accumulation capacitance and a narrower hysteresis window.
     (3)HfO2film is deposited on p-InP(100) substrate and the chemical states and band alignment of HfO2/InP interface are studied. XPS analysis shows that there are interfacial In2O3and InPO4, which are the products of the reaction between diffused O atoms and InP substrate. In3d and Hf4f core level spectra and valence spectra are employed to obtain the valence band offset of HfO2/InP. A comparison of band structure is made between thick HfO2film without the influence of interface and thin HfO2film with the influence of interface. For thick HfO2film, experimental results indicate that the5.88±0.05eV band gap of HfO2is aligned to the band gap of InP with a conduction band offset△Ec of2.55±0.05eV and a valence band offset△Ev of1.99±0.05eV. For thin HfO2film, the conduction band offset is1.11eV and the valence band offset is3.43eV.
     (4)GDH film is deposited on p-InP(100) substrate. The interface chemical states and band alignment are investigated and the electrical properties of W/GDH/InP/Ni MOS structure are characterized. HRTEM results illustrate that there is no obvious interface layer between GDH film and InP substrate. XPS shows that O atoms diffuse less in GDH film than in pure HfO2film and thus the generation of interfacial In2O3is suppressed. The6.05±0.05eV band gap of GDH is aligned to the band gap of InP with a conduction band offset△Ec of2.61±0.05eV and a valence band offset△Ev of2.1±0.05eV. W/GDH/InP/Ni MOS capacitor exhibits good electrical properties, including dielectric constant of16and leakage current density of10-5A/cm2(gate voltage at-1V).
     (5)Higher-k HfTiO film are deposited on thermally oxidized Si(100) substrate using magnetron sputtering and ALD respectively. The electrical characteristics of Pt/HfTiO/SiO2/Si are investigated. The influence of Ti content and RTA on the electrical properties of HfTiO films are studied. Both magnetron-sputtered HfTiO films and ALD-deposited films show high dielectric constant (k>30), but ALD-deposited film has a lower interfaces state density. With the increase of Ti content, the maximum accumulation capacitance rises and the leakage current decreases. After RTA, although the maximum accumulation capacitance becomes smaller, the hysteresis becomes narrower.
引文
[1]Jack S. K. Integrated semiconductive circuit structure[P]. US Patent:US3138743A, 1964-6-23
    [2]Noyce R. N. Semiconductor device-and-lead structure[P]. US Patent:US2981877, 1961-4-25
    [3]Gordan E. M. Cramming more components onto integrated circuits[J]. Electronics, 1965,V38(8):114-117
    [4]Hei W., Hiroshi I. On the scaling issues and high-j replacement of ultrathin gate dielectrics for nanoscale MOS transistors[J]. Microelectronic Engineering,2006, V83(10):1867-1904
    [5]The International Technology Roadmap For Semiconductors:2012 Update[EB/OL], http://ww.itrs.net/Links/2012ITRS/Home2012.htm,2012
    [6]Wolfgang A., Michel B., Patrick C, et aL More than Moore White Paper[EB/OL], http/www. itrs. net/Links/2010ITRS/IRC-ITRS-MtM-v2%203.pdf
    [7]Lo S.H., Taur Y. Gate dielectric scaling to 2.0-1.0nm:SiO2 and silicon oxynitride, high dielectric constant materials[M]. Prentice Hall, Springer Berlin Heidelberg,2005: 123-142
    [8]邓志杰,郑安生.半导体材料[M].北京:化学工业出版社,2004:350-352
    [9]Packan P. A. Pushing the Limits [J]. Science,1999, V285(5436):2079-2081
    [10]Smith C. M., Douglas E. H., William W. T. Key steps to the integrated circuit[J]. Bell Labs Technical Journal,1997, V2(4):15-28
    [11]Nahar R. K., Vikram S., Aparna S., et al. Study of Electrical and Microstructure Properties of High Dielectric Hafnium Oxide Thin Film for MOS Devices[J]. Journal of Materials Science:Materials in Electronics,2007, V18(6):615-619
    [12]甘学温,黄如,刘晓彦.纳米CMOS器件[M].北京:科学出版社,2004:10-20
    [13]Thompson S. E., Chau R. S., Ghani T., et aL In search of "forever" continued transistor scaling one new material at a time[J]. IEEE Transactions on Semiconductor Manufecturing,2005, V18(1):26-36
    [14]Wei F., Tu H. L., Wang Y., et al. Epitaxial La2Hf207 thin films on Si(001) substrates grown by pulsed laser deposition for high-k gate dielectrics [J]. Applied Physics Letters,2008, V92(1):25-28
    [15]Wilk G. D., Wallace R M., Anthony J. M. High-K Gate Dielectrics:Current Status and Materials Properties Considerations[J]. Journal of Applied Physics,2001, V89(10):5243-5275
    [16]李驰平,王波,宋雪梅,等.新一代栅介质材料——高K材料[J].材料导报,2006,V20(2):17-25
    [17]Robertson J. High Dielectric Constant Oxides[J]. The European Physical Journal Applied Physics,2004, V28(3):265-291
    [18]岳守晶.氧化钆高介电常数栅介质的制备及性能研究[D].北京:北京有色金属研究总院,2008
    [19]Khomenkova L., Portier X., Cardin J., et al. Thermal stability of high-k Si-rich HfO2 layers grown by RF magnetron sputtering[J]. Nanotechnology,2010, V21(28): 5707-5714
    [20]Chang J. P., Lin Y. S. Thermal stability of stacked high-k dielectrics on silicon[J]. Applied Physics Letters,2001, V79(23):3824-3826
    [21]Wong H., Cheng Y. C. Generation of interface states at the silicon/oxide interface due to hot-electron injection[J]. Applied Physics Letters,1993, V74(12):7364-7368
    [22]Engstrom O., Raeissi B., Piscator J., et al. Charging phenomena at the interface between high-k dielectrics and SiOxinterlayers[J]. Journal of telecommunications and information technology,2010, V23(3):81-88
    [23]翁妍,汪辉.高k材料作为纳米级MOS晶体管栅介质薄层(上)[J].半导体技术,2008,V33(2):93-98
    [24]屠海令,杜军.高介电常数栅介质的性能及与硅衬底问的界面稳定性[J].稀有金属,2007,V31(3):265-278
    [25]Xu M., Xu C. H., Ding S. J., et al. Spectroscopic and electrical properties of atomic layer deposition Al2O3 gate dielectric on surface pretreated Si substrate[J]. Journal of Applied Physics,2006, V99(7):074109-074109-4
    [26]Sivasubramani, P., Zhao P., Kim M. J., et al. Thermal stability studies of advanced gate stack structures on Si(100)[A].5th Conference on Characterization and Metro fogy for ULSI Technology[C]. AIP Conference Proceedings,2005,3:156-160
    [27]Chuang K. C, Hwu J. G. Improvement in electrical characteristics of high-k Al2O3 gate dielectric by field-assisted nitric oxidation[J]. Applied Physics Letters,2006, V89(23):232903-232903-3
    [28]Zhao Y., Kita K., Kyuno K., et al. Band gap enhancement and electrical properties of La2O3 films doped with Y2O3 as high-k gate insulators[J]. Applied Physics Letters, 2009,V94(3):042901-042901-4
    [29]Jeutter N. M., Hennemeyer H., Stark R., et al. Growth of epitaxial Pr2O3 layers on Si(111)[J]. Materials Science in Semiconductor Processing,2006, V9(6):1079-1083
    [30]Wei F., Tu H. L, Wang Y., et al. Epitaxial growth of Nd2Hf207(111) thin films on Ge(111) substrates by pulsed laser deposition[J]. Applied Surface Science,2009, V256(3):615-618
    [31]Osten H. J., Czernohorsky M., Dargis R., et al. A fissel integration of functional epitaxial oxides into silicon:from high-k application to nanostructures[J]. Microelectronics Engineering,2007, V84(9):109-112
    [32]方俊鑫,陆栋.固体物理学(上)[M].上海:上海科学出版社,2001:211-212
    [33]Wang J. Z.,Xia Y.,Shi Y., et al.1.54μm photo luminescenee emission and oxygen vacancy as sensitizer in Er-doped HfO2 films [J]. Applied Physics letter,2007,V91(19):191115-191115-4
    [34]Kim H., McIntyre P. C., Saraswat K. C. Effects of crystallization on the electrical properties of ultrathin HfO dielectrics grown by atomic layer deposition[J]. Applied physics letters,2003,V82(1):106-110
    [35]Lucovsky G., Seo H., Fleming L. B., et al. Intrinsic bonding defects in transition metal elemental oxides[J]. Microelectronics Reliability,2006,V46(9):1623-1628
    [36]郭亿文.界面钝化对Gd203掺杂Hf02高k薄膜电性能影响的研究[D].北京:北京有色金属研究总院,2012
    [37]Chui O. C., Hyoungsub K., Chi D., et al. A Sub-400℃ Germanium MOSFET Technology With High-K Dielectric and Metal Gate [A]. Electron Devices Meeting, 2002. IEDM02. International[C].2002:437-440
    [38]Thompson S. E., Chau R S., Ghani T., et al. In Search of "Forever," Continued Transistor Scaling One New Material at a Time[J]. IEEE Transactions on Semiconductor Manufacturing,2005, V18(1):26-36
    [39]郑晓虎,黄安平,杨志超,等.稀土元素掺杂的Hf基栅介质材料研究进展[J].物理学报,2011,V60(1):017702-017702-12
    [40]Wiemer C., Lamagna L., Baldovino S., et al. Dielectric properties of Er-doped HfO2 (Er-5%) grown by atomic layer deposition for high-gate stacks. Applied Physics Letters,2010, V96(18):182901-182901-3
    [41]Adelmann C., Sriramkumar V., Elshocht S., et al. Dielectric properties of dysprosium-and scandium-doped hafnium dioxide thin films [J]. Applied Physics Letters,2007, V91(16):162902-162902-3
    [42]Yamamoto Y., Kita K., Kyuno K., et al. Structural and electrical properties of HfLaO films for an amorphous high-k gate insulator. Applied Physics Letters,2006, V89(29): 032903-032903-3
    [43]Xiong Y. H., Tu H. L., Du J., et al. Band structure and electrical properties of Gd-doped HfO2 high K gate dielectric[J]. Applied Physics Letters,2010, V97(l): 012901-012901-3
    [44]Umezawa N., Shiraishi K., Sugino S., et al. Suppression of oxygen vacancy formation in Hf-based high-k dielectrics by lanthanum incorporation[J]. Applied Physics Letters, 2007,V91(13):132904-132904-3
    [45]Chen G. H., Hou Z. F., Gong X. G., et al. Effects of Y doping on the structural stability and defect properties of cubic HfO2[J]. Journal of Applied Physics,2008, V104(7):074101-074101-6
    [46]Arimura H., Oku Y., Saeki M., et al. Fabrication of advanced La-incorporated Hf-silicate gate dielectrics using physical-vapor-deposition-based in situ method and its effective work function modulation of metal/high-k stacks[J]. Journal of Applied Physics,2010,V107(3):034104-034104-9
    [47]Kirsch P. D., Quevedo-Lopez M. A., Krishnan S. A., et al. Band edge n-MOSFETs with high-k/metal gate stacks scaled to EOT= 0.9 nm with excellent carrier mobility and high temperature stability[A]. International Electron Devices Meeting[C]. IEEE, 2006:1-4
    [48]Xu Q., Xu G., Wang W., et al. Study on characteristics of thermally stable HfLaON gate dielectric with TaN metal gate[J]. Applied Physics Letters,2008, V93(25): 252903-252903-3
    [49]The International Technology Roadmap For Semiconductors:2011 Update[EB/OL], http://www. itrs. net/Links/2012ITRS/2012C hapters/2012Overview.pdf
    [50]Kobayashi M., Chen P. T., Y. Sun, et al. Synchrotron radiation Photoemission Spectroscopic Study of Band Offsets and Interface Self-Cleaning by atomic Layer Deposited HID2 on Ino.53Gao.47As and Ino 52Al0.48As[J]. Applied Physics Letters,2008, V93(18):2103-2105
    [51]Chang Y. C, Huang M. L., Lee K. Y., et al. Atomic-layer-deposited HO2 on Ino.53Gao.47As:Passivation and Energy-band Parameters[J]. Applied Physics Letters, 2008,V92(7):2901-2903
    [52]Wieder H. H. Some Aspects of the Technology of Ⅲ-Ⅴ Compound Semiconducting Layers[J]. Thin Solid Films,1983, V100(4):391-394
    [53]Ye P. D., Gu J. J., Wu Y. Q., et al. ALD High-k as a Common Gate Stack Solution for Nano-electronics[J]. ECS Transactions,2010, V28(2):51-68
    [54]王占国,陈立泉,屠海令.中国材料工程大典(第11卷)(信息功能材料工程)(上)[M].北京:化学工业出版社,2006
    [55]Boltovets N. S., Ivanov V. N., Belyaev A. E, et al. 150 GHz Microwave Si-IMPATT, GaAs Gunn and InP Schottky Diodes on the Base of Nanoscale Structures, in Nanotechnologies in the Area of Physics[A]. Chemistry and Biotechnology, Fifth ISTC SAC Seminar, St.-Petersburg, A.F. Ioffe Physico-Technical Institute[C], Russia, 2002:359-36
    [56]Arsentyev I. N., Bobyl A. V., Tarasov Ⅰ.S., et al. New Technological Possibilities to Prepare InP Epitaxial Layers, as well as Ohmic and Barrier Contacts to Them, and the Properties of Microwave Diodes made on their Basis[J]. Semiconductor Physics, Quantum Electronics & Optoelectronics,2005, V8(4):105-114
    [57]Belyaev A. E., Boltovets N. S., Bobyl A. V., et al. 100-150 GHz Microwave Si IMPATT and GaAs (InP) Gunn Diodes on The Basis of Nanoscale Structures (New Aspects in Elaboration)[A]. Abstr.1st Ukraine-Korea Seminar on Nanophotonics and Nanophysics[C]. Kiev Ukraine,2005:11-16
    [58]Wu Y. Q., Xuan Y., Shen T., et al. Enhancement-mode InP N-channel Metal-oxide-semiconductor Field-effect transistors with Atomic-layer-deposited Al2O3 Dielectrics[J]. Applied Physics Letters,2007, V91(02):2108-2111
    [59]Amir A. L.. Device-quality SiO2 films on InP and Si Obtained by Operating The Pyrolytic CVD Reactor in The Retardation Regime [J]. Solid-State Electronics,1984, V27(10):921-924
    [60]Osten H. J., Laha A., Czernohorsky M., et al. Crystalline rare-earth oxides as high-K materials for future CMOS technologies[J]. ECS Transactions,2007, V11(4): 287-297
    [61]Draid R., Sah R. E., Schmidt R., et al. Passivation of InP heterojunction bipolar transistors by strain controlled plasma assisted electron beam evaporated hafnium oxide[J]. Applied Physics Letters,2006, V100(1):014102-014102-4
    [62]O'Connor E., Monaghan S., Cherkaoui K., et al. Analysis of the minority carrier res-ponse of n-type and p-type Au/Ni/Al203/Io.53Ga0.47As/InP capacitors following an optimized (NH4)2S treatment[J]. Applied Physics Letters,2011, V99(21): 212901-212901-4
    [63]O'Connor E., Brennan B., Djara V., et al. A systematic study of (NH4)2S passivation (22%,10%,5%, or 1%) on the interface properties of the Al2O3/In053Gao.47As/InP system for n-type and p-type Ino.53Gao.47As epitaxial layers[J]. Jounnal of Applied Physics,2011, V109(2):024101-024101-10
    [64]Galatage R. V., Dong H., Zhernokletov D. M., et al. Effect of post deposition anneal on the characteristics of HiO2/InP metal-oxide-semiconductor capacitors [J]. Applied Physics Letters,2011, V99(17):172901-172901-4
    [65]Wang Y. Z., Chen Y. T., Zhao H., et al. Impact of SF6 plasma treatment on performance of TaN-HfD2-InP metal-oxide-semiconductor field-effect transistor[J]. Applied Physics Letters,2011, V98(4):043506-043506-4
    [66]Wang Y. Z., Chen Y. T., Xue F., et al. HfO2 dielectrics engineering using low power SF6 plasma on InP and Ino.53Ga0.47As metal-oxide-semiconductor field-e fleet-transistors[J]. Applied Physics Letters,2012, V100(24):243508-243508-4
    [67]Yum J. H., Akyol T., Lei M., et al. Inversion type InP metal oxide semiconductor field effect transistor using novel atomic layer deposited BeO gate dielectric[J]. Applied Physics Letters,2011, V99(03):033502-033502-4
    [68]Zhang X. Q., Tu H. L., Zhao H. B., et al. Band structure and electronic characteristics of cubic La2O3 gate dielectrics epitaxially grown on InP substrates[J]. Applied Physics Letters,2011, V99(13):132902-132902-3
    [69]Lee B. H., Oh J., Tseng H. H., et al. Gate stack technology for nanoscale devices[J]. Materials Today,2006, V9(6):32-40
    [70]Robertson J. High dielectric constant gate oxides for metal oxide Si transistors[J]. Reports on Progress in Physics,2006, V69(2):327-333
    [71]Robertson J. Maximizing performance for higher K gate dielectrics [J]. Journal of Applied Physics,2008, V103(12):124111-124111-7
    [72]Triyoso D. H., Hegde R. I., Zoliner S., et al. Impact of titanium addition on film characteristics of HfO2 gate dielectrics deposited by atomic layer deposition[J]. Journal of Applied Physics,2005, V98(5):054104-054104-8
    [73]LuN., Li H. J., Gardner M., et al. Electrical properties of amorphous high-K HfTaTiO gate dielectric with dielectric constants of 40-60[J]. IEEE Electron Device Letters, 2005, V26(5):298-300
    [74]Sivasubramani P., Kirsch P. D., Huang J., et al. Aggressively Scaled High-k Gate Dielectric with Excellent Performance and High Temperature Stability for 32nm and Beyond[A]. IEEE International Electron Devices Meeting[C]. IEEE International, 2007:543-546
    [75]Choi C., Cartier E., Wang Y. Y., et al. Dual layer SrTi03/HO2 gate dielectric for aggressively scaled band-edge nMOS devices[J]. Microelectronic Engineering,2007, V84(9-10):2217-2221
    [76]Wu Y H, Yang M Y, Chin A, et al. Electrical characteristics of high quality La2O3 gate dielectric with equivalent oxide thickness of 5/spl Aring/[J]. IEEE Electron Device Letters,2000, V21(7):341-343
    [77]Hattori T., Yoshida T., Shiraishi T., et al. Composition, chemical structure, and electronic band structure of rare earth oxide/Si (100) interfacial transition layer[J]. Microelectronic Engineering,2004, V72(1):283-287
    [78]Lopes J. M. J., Roeckerath M., Heeg T., et al. Amorphous lanthanum lutetium oxide thin films as an alternative high-κ gate dielectric[J]. Applied physics letters,2006, V89(22):222902-222902-3
    [79]Schubert J., Trithaveesak O., Zander W., et al. Characterization of epitaxial lanthanum lutetium oxide thin films prepared by pulsed-laser deposition[J]. Applied Physics A, 2008, V90(3):577-579
    [80]Afanasev V. V., Stesmans A., Zhao C, et al. Band alignment between (100) Si and complex rare earth/transition metal oxides[J]. Applied physics letters,2004, V85(24): 5917-5919
    [81]Afenasev V. V., Shamuilia S., Badylevich M., et al. Electronic structure of silicon interfaces with amorphous and epitaxial insulating oxides:Sc2O3, Lu2O3, LaLuO3[J]. Microelectronic engineering,2007, V84(9):2278-2281
    [82]Triyoso D. H., Gilmer D. C. Jiang J., et al. Characteristics of thin lanthanum lutetium oxide high-k dielectrics[J]. Microelectronic Engineering,2008, V85(8):1732-1735
    [83]Schlom D. G., Guha S., Datta S. Gate oxides beyond SiO2[J]. MRS bulletin,2008, V33(11):1017-1025
    [84]Edge L. F., Schlom D. G., Chambers S. A., et al. Measurement of the band offsets between amorphous LaAlCO3 and silicon[J]. Applied physics letters,2004, V84(5): 726-728
    [85]Edge L. F., Schlom D. G., Brewer R. T., et al. Suppression of subcutaneous oxidation during the deposition of amorphous lanthanum aluminate on silicon[J]. Applied physics letters,2004, V84(23):4629-4631
    [86]Edge L. F., Schlom D. G., Sivasubramani P., et al. Electrical characterization of amorphous lanthanum aluminate thin films grown by molecular-beam deposition on siicon[J]. Applied physics letters,2006, V88(11):112907-112907-3
    [87]Devine R. A. B. Infrared and electrical properties of amorphous sputtered (LaxAl1-x)2O3 films[J]. Journal of applied physics,2003, V93(12):9938-9942
    [88]Wang X. P., Li M. F., Chin A., et al. Physical and electrical characteristics of high-K gate dielectric Hf(1-X)LaxOy [J]. Solid-state electronics,2006, V50(6):986-991
    [89]Wang X. P., Yu H. Y., Li M. F., et al. Wide Vfb and Vth tunability for metal-gated MOS devices with HfLaO gate dielectrics[J]. IEEE Electron Device Lett,2007, V28(4):258-260
    [90]Rittersma Z. M, Hooker J. C., Vellianitis G., et al. Characterization of field-effect transistors with La2Hf2O7 and HfD2 gate dielectric layers deposited by molecular-beam epitaxy [J]. Journal of applied physics,2006, V99(2): 024508-024508-8
    [91]Yamamoto Y., Kita K., Kyuno K., et al. Structural and electrical properties of HfLaO films for an amorphous high-k gate insulator [J]. Applied physics letters,2006, V89(3): 032903-032903-3
    [92]Wu C. H., Hung B. F., Chin A., et al. High-Temperature Stable HfLaON p-MOSFETs With High-Work-Function Ir3Si Gate[J]. IEEE Electron Device Letters,2007, V28(4): 292-294
    [93]Ceresoli D, Vanderbilt D. Structural and dielectric properties of amorphous ZrO2 and HfO2[J]. Physical Review B,2006, V74(12):125108-125108-6
    [94]Gusev E. P., Cartier E., Buchanan D. A., et al. Ultrathin high-K metal oxides on silicon:processing, characterization and integration issues[J]. Microelectronic Engineering,2001, V59(1):341-349
    [95]Gilmer D. C., Hegde R., Cotton R., et al. Compatibility of silicon gates with hafnium-based gate dielectrics[J]. Microelectronic engineering,2003, V69(2): 138-144
    [96]Li P., Chen Ⅰ. W., Penner-Hahn J. E. Effect of Dopants on Zirconia Stabilization-An X-ray Absorption Study:I, Trivalent Dopants[J]. Journal of the American Ceramic Society,1994, V77(1):118-128
    [97]Goff J. P., Hayes W., Hull S., et al. Defect structure of yttria-stabilized zirconia and its influence on the ionic conductivity at elevated temperatures[J]. Physical Review B, 1999,V59(22):14202-14219
    [98]Stapper G., Bernasconi M., Nicoloso N., et al. Ab initio study of structural and electronic properties of yttria-stabilized cubic zirconia[J]. Physical Review B,1999, V59(2):797-810
    [99]Tomida K., Kita K., Toriumi A. Dielectric constant enhancement due to Si incorporation into HfO2[J]. Applied physics letters,2006, V89(14):142902-142902-3
    [100]Migita S., Watanabe Y., Ota H., et al. Design and demonstration of very high-k (k-50) HfO2 for ultra-scaled Si CMOS[A]. VLSI Technology,2008 Symposium on[C]. IEEE,2008:152-153
    [101]Tsipas P., Volkos S. N., Sotiropoulos A., et al. Germanium-induced stabilization of a very high-k zirconia phase in ZrO2GeO2 gate stacks[J]. Applied physics letters,2008, V93(8):082904-082904-3
    [102]Fischer D., Kersch A. The effect of dopants on the dielectric constant of HfO2 and ZrO2 from first principles[J]. Applied Physics Letters,2008, V92(1): 012908-012908-3
    [103]Lee C. K., Cho E., Lee H. S., et al. First-principles study on doping and phase stability of HfO2[J]. Physical Review B,2008, V78(1):012102-012102-4
    [104]Hegde R. I., Triyoso D. H., Samavedam S. B., et al. Hafnium zirconate gate dielectric for advanced gate stack applications[J]. Journal of applied physics,2007, V101(7): 074113-074113-7
    [105]Triyoso D. H., He gde R I., Schaeffer J. K., et al. Characteristics of atomic-layer-deposited thin HfxZr1-xO gate dielectrics[J]. Journal of Vacuum Science & Technology B:Microelectronics and Nanometer Structures,2007,V25(3):845-847
    [106]Triyoso D. H., Hegde R. I., Jiang J., et al. Improved electrical properties of ALD HfxZr1-xO2 dielectrics deposited on ultrathin PVD Zr underlayer[J]. IEEE Electron Device Letters,2008, V29(1):57-59
    [1]吴自勤,王兵.薄膜生长[M].北京:科学出版社,2001
    [2]郑伟涛等.薄膜材料与薄膜技术[M].北京:化学工业出版社,2004
    [3]孙清清.先进CMOS高k栅介质的实验与理论研究[D].上海:复旦大学,2009
    [4]刘瑞鹏,李刘合.磁控溅射镀膜技术简述[J].科技前沿,2006,8:56-59
    [5]张志刚.磁控溅射法制备MgxNi(1-X)0薄膜及其表征[D].山东:山东大学,2006
    [6]Barker P., Petty M. C., Adams P., et al. A photolithographic technique for patterning spin-coated polyaniline films[J]. Advanced Materials for Optics and Electronics, 1993, V2(5):233-236
    [7]Michael Quirk, Julian Serda. Semiconductor Manufacturing Technology[M]. Prentice Hall; Untied States edition,2000
    [8]朱永法.纳米材料的表征与测试技术[M].北京:化学工业出版社,2006
    [9]杨旭敏.新型Hf基高K栅介质薄膜的制备及性能的研究[D].苏州:苏州大学,2012
    [10]Aarik J, Mandar H, Kirm M, et al. Optical characterization of HfO2 thin films grown by atomic layer deposition[J]. Thin Solid Films,2004, V466(1):41-47
    [11]Yang C., Li X. M., Gu Y. F., et al. Applied Physics Letters,2008, V93(11): 112114-112114-4
    [12]郭亿文.界面钝化对Gd20O掺杂HfD2高k薄膜电性能影响的研究[D].北京:北京有色金属研究总院,2012
    [13]王成刚,韩德栋,杨红,等.HfO2高k栅介质漏电流机制和SILC效应[M].半导体学报,2004,V25(7):841-846
    [14]Neamen D. A.半导体物理与器件(第三版)[M].北京:电子工业出版社,2010:333-339
    [1]Bonvalot M., Kahn M., Vallee C., et al. Combined spectroscopic ellipsometry and attenuated total reflection analyses of Al2O3/HfO2nanolaminates[J]. Thin Solid Films, 2010,V518(2):5057-5059
    [2]陈长春,刘江锋,余本海,等.亚45nm技术节点平面式硅基CMOS电路制作的材料选择[J].稀有金属,2007,V31(1):31-33
    [3]Chen G. H., Hou Z. F., Gong X. G., et al. Effects of Y doping on the structural stability and defect properties of cubic HfO2[J]. Journal of Applied Physics,2008, V104(7):4101-4103
    [4]Rauwel E., Dubourdieu C., Hollander B., et al. Stabilization of the cubic phase of HfO2 by Y addition in films grown by metal organic chemical vapor deposition[J]. Applied Physics Letters,2006, V89(l):2902-2903
    [5]Sasakawa K., Fujikawa K., Toyoda T. Interlayer analysis of HfO2/SiOSi by SIMS and HRBS[J]. Applied Surface Science,2008, V255(4):1551-1554
    [6]Alexander A. D., Sharia O., Luo X., et al. Modeling complexity of a complex gate oxide [J]. Microelectronic Engineering,2009, V86(7-9):1763-1766
    [7]Matthew A. P., Michael S., Jeremy A. R., et al. Thermal Properties of Ultrathin Hafnium Oxide Gate Dielectric Films[J]. IEEE electron device letter,2009, V30(12): 1269-1271
    [8]张心强.铪基及稀土高k薄膜在Si, Ge及InP上的外延生长及性能研究[D].北京:北京有色金属研究总院,2011
    [9]杨萌萌,屠海令,张心强,等.Ce02掺杂对Hf02栅介质电学特性的影响[J].稀有金属,2012,V36(2):2-5
    [10]Xiao W. D., Guo Q. L., Wang E. G. Transformation of CeO2(111) to Ce2O3(001) films[J]. Chemical Physics Letters,2003, V368(5):527-531
    [11]Van-Dover R. B. Amorphous lanthanide-doped TiOx dielectric films[J]. Applied Physics Letters,1999, V74(12):3041-3043
    [12]UmezawaN., Shiraishi K., Sugino S., et al. Suppression of oxygen vacancy formation in Hf-based high-k dielectrics by lanthanum incorporation[J]. Applied Physics Letters, 2007,V91(13):132904-132904-3
    [13]Cho M. H., Chung K. B., Whang C. N., et al. Phase separation and electronic structure of Hf-silicate film as a function of composition[J]. Applied Physics Letters,2005, V87(24):2906-2909
    [14]Guha S., Narayanan V. Oxygen Vacancies in High Dielectric Constant Oxide-Semiconductor Films[J]. Physical Review Letters,2007, V98(19):6101-6104
    [15]Fabris S., Gironcoli S., Baroni S., et al. Taming multiple valency with density functional:A case study of defective ceria[J]. Physical Review B,2005, V71(4): 041102
    [16]Tomaszewski H., Poelman H., Depla D., et aL TiO2 films prepared by DC magnetron sputtering from ceramic targets[J]. Vacuum,2002, V68(1):31-38
    [17]Pereira L., Barquinha P., Fortunato E., et al. Influence of the oxygen/argon ratio on the properties of sputtered hafniumoxide[J]. Materials Science and Engineering B,2005, V118(1):210-213
    [1]Xiong Y. H., Tu H. L., Du J., et al. Band structure and electrical properties of Gd-doped HfO2 high k gate dielectric[J]. Applied Physics Letters,2010, V97(1): 2901-2904
    [2]Chen G. H., Hou Z. F., Gong X. G., et al. Effects of Y doping on the structural stability and defect properties of cubic HfO2[J]. Journal of Applied Physics,2008, V104(7):4101-4105
    [3]Rauwel E., Dubourdieu C., Hollander B., et al. Stabilization of the cubic phase of HfO2 by Y addition in films grown by metal organic chemical vapor deposition[J]. Applied Physics Letters,2006,V89(1):2902-2905
    [4]Yang Z. K., Lee W. C., Lee Y. J., et al. Cubic HfO2 doped with Y2O3 epitaxial films on GaAs(001) of enhanced dielectric constant[J]. Applied Physics Letters,2007, V90(15):2908-2911
    [5]Wong H., Ng K. L., Zhan N., et al. Interface bonding structure of hafnium oxide prepared by direct sputtering of hafnium in oxygen[J]. Journal of Vacuum Science & Technology B:Microelectronics and Nanometer Structures,2004, V22(3):1094-1100
    [6]Xiong Y. H., Tu H. L., Du J., et al. Effects of rapid thermal annealing on structure and electrical properties of Gd-doped HfO2 high k film[J]. Applied Physics Letters.2011, V98(8):2906-2909
    [7]Gao L. G,. Yin K. B., Xia Y. D., et al. Effect of NH3 and N2 annealing on the interfacial and electrical characteristics of La2O3 films grown on fully depleted SiGe-on-insulator substrates[J]. Journal of Physics D:Applied Physics,2009, V42(1): 5306-5310
    [8]Quevedo-Lopez M. A., Bouanani M., Kim M. J., et al. Effect of N incorporation on boron penetration from p+ poly crystalline-Si through HfSixOyfilms[J]. Applied Physics Letters,2003, V82(26):4669-4671
    [9]He G., Liu M., Zhu L. Q., et al. Effect of postdeposition annealing on the thermal stability and structural characteristics of sputtered HfO2 films on Si(100)[J]. Surface Science,2005, V576(1):67-75
    [10]岳守晶.氧化钆高介电常数栅介质的制备及性能研究[D].北京:北京有色金属研究总院,2008
    [11]杨萌萌,屠海令,张心强,等.Ce02掺杂对HfO2栅介质电学特性的影响[J].稀有金属,2012,V36(2):2-5
    [12]郭亿文.界面钝化对Gd2O3掺杂HfO2高k薄膜电性能影响的研究[D].北京,北京有色金属研究总院,2012
    [13]Wong H., Cheng Y. C. Generation of interlace states at the silicon/oxide interface due to hot-electron injection[J]. Journal of Applied Letters,1993, V74(12):7364-7369
    [14]Wang L., Xue K., Xu J. B., et al. Effects of plasma immersion ion nitridation on dielectric properties of HfO2[J]. Applied Physics Letters,2007, V90(12):2901-2903
    [15]张心强.铪基及稀土高k栅介质薄膜在不同衬底上外延生长及性能研究[D].北京:北京有色金属研究总院,2011
    [16]Deng L. F., Lai P. T., Chen W. B., et al. Effects of Different Annealing Gases on Pentacene OTFT With HfLaO Gate Dielectric[J]. IEEE Electron Device Letters,2011, V32(1):93-95
    [17]Chyuan H. K., Chao S. L. Performance and reliability improvements in thin-film transistors with rapid thermal N2O annealing[J]. Semiconductor Science and Technology,2008, V23(2):5020-5023
    [18]Xu H. X., Xu J. P., Li C. X., et al. Electrical properties of Ge metal-oxide-semiconductor capacitors with La2O3 gate dielectric annealed in different ambient[J]. Thin Solid Films,2010, V518(23):6962-6965
    [1]Chang Y. C., Huang M. L., Lee K. Y., et al. Atomic-layer-deposited HfD2 on Ino.53Gao.47As:Passivation and energy-band parameters[J]. Applied Physics Letters, 2008,V92(7):072901-072901-3
    [2]Kobayashi M, Chen P. T., Sun Y., et al. Synchrotron radiation photoemission spectroscopic study of band offsets and interface self-cleaning by atomic layer deposited HfO2 on Ino.53Ga0.47As and Ino.52Alo.48As[J]. Applied Physics Letters,2008, V93(18):182103-182103-3
    [3]Ye P., Gu J., Wu Y., et al. ALD High-k as a Common Gate Stack Solution for Nanoelectronics[J]. ECS Transactions,2010, V28(2):51-68
    [4]Wieder H. H. Some aspects of the technology of Ⅲ-Ⅴ compound semiconducting layers[J]. Thin Solid Films,1983, V100(4):391-394
    [5]Ye P. D., Wilk G. D., Yang B., et al. GaAs metal-oxide-semiconductor field-effect transistor with nanometer-thin dielectric grown by atomic layer deposition[J]. Applied physics letters,2003, V83(1):180-182
    [6]Lile D. L. The history and future of InP based electronics and optoelectronics[A]. Indium Phosphide and Related Materials,1998 International Conference on[C]. IEEE, 1998:6-9
    [7]Hanson C. M., Wieder H. H. A-heterojunction and dielectrically insulated gate InP field effect transistors[J]. Thin Solid Films,1987, V153(1):497-505
    [8]Boltovets N. S., Ivanov V. N., Belyaev A. E., et al.150 GHz microwave Si-IMPATT, GaAs Gunn and InP Schottky diodes on the base of nanoscale structures, in Nanotechnologies in the Area of Physics[A]. Chemistry and Biotechnology, Fifth ISTC SAC Seminar[C]. Russia, St.-Petersburg, A.F. Ioffe Physico-Technical Institute, 2002:359-36
    [9]Arsentyev I. N., Bobyl A. V., Tarasov I. S., et al. New technological possibilities to prepare InP epitaxial layers, as well as ohmic and barrier contacts to them, and the properties of microwave diodes made on their basis[J]. Semiconductor Physics, Quantum Electronics & Optoelectronics,2005, V8(4):105-114
    [10]A.E. Belyaev, N.S. Boltovets, A.V. Bobyl, et al.100-150 GHz microwave Si IMPATT and GaAs (InP) Gunn diodes on the basis of nanoscale structures (new aspects in elaboration)[A].1st Ukraine-Korea Seminar on Nanophotonics and Nanophysics[C]. Kiev Ukraine,2005:11
    [11]Kim H. S., Ok Ⅰ., Zhang M., et al. HfO2-based InP n-channel metal-oxide- semiconductor field-effect transistors and metal-oxide-semiconductor capacitors using a germanium interfacial passivation layer. Applied Physics Letters,2008, V93(10):102906-102906-3
    [12]Xu M., Gu J., Wang C., et al. New insights in the passivation of high-k/InP through interface characterization and metal-oxide-emiconductor field effect transistor demonstration:Impact of crystal orientation. Journal of Applied Physics,2013, V113(1):013711-013711-6
    [13]Wang Y., Chen Y. T., Zhao H., et aL Impact of SF6 plasma treatment on performance of TaN-HfO2-InP metal-oxide-semiconductor field-effect transistor[J]. Applied Physics Letters,2011, V98(4):043506-043506-3
    [14]Xu K., Sio H., Kirillov O. A., et al. Band offset determination of atomic-layer-deposited Al2O3 and HfO2 on InP by internal photoemission and spectroscopic ellipsometry[J]. Journal of Applied Physics,2013, V113(2):024504-024504-6
    [15]Hollinger G., Bergignat E., Joseph J., et al. On the nature of oxides on InP surfaces[J]. Journal of Vacuum Science & Technology A:Vacuum, Surfaces, and Films,1985, V3(6):2082-2088
    [16]Galatage R. V., Dong H., Zhernokletov D. M., et al. Effect of post deposition anneal on the characteristics of HfO2/InP metal-oxide-semiconductor capacitors [J]. Applied Physics Letters,2011, V99(17):172901-1702901-4
    [17]Kikuchi D., Adachi S. Chemically cleaned InP(100) surfaces in aqueous HF solutions[J]. Materials Science and Engineering:B,2000,76(2):133-138
    [18]Kraut E. A., Grant R W., Waldrop J. R, et al. Precise Determination of the Valence-Band Edge in X-Ray Photoemission Spectra:Application to Measurement of Semiconductor Interface Potentials [J]. Physical Review Letters,1980, V44(24): 1620-1622
    [19]朱燕艳.Er2O3高k栅介质材料的分子束外延生长、结构及其物理特性[D].上海:复旦大学,2006
    [20]Bell F. G., Ley L. Photoemission study of SiOx (0    [21]Xiong Y. H., Tu H. L., Du J., et al. Band structure and electrical properties of Gd-doped HfO2 high k gate dielectric[J]. Applied Physics Letters,2010, V97(1): 2901-2904
    [1]Kim H. S., Ok I., Zhang M., et al.HfO2-based InP n-channel metal-oxide-semiconductor field-effect transistors and metal-oxide-semiconductor capacitors using a germanium interfacial passivation layer[J]. Applied Physics Letters, 2008,V93(10):102906-102906-3
    [2]张心强.铪基及稀土高k薄膜在Si, Ge及InP上的外延生长及性能研究[D].北京:北京有色金属研究总院,2011
    [3]Zhang X. Q., Tu H. L., Zhao H. B., et al. Band structure and electronic characteristics of cubic La2O3 gate dielectrics epitaxially grown on InP substrates[J]. Applied Physics Letters,2011, V99(13):2902-2905
    [4]Robertson J. High Dielectric Constant Oxide[J]. The European Physical Journal-Applied Physics,2004, V28(3):265-291
    [5]Ceresoli D., Vanderbilt D. Structural and dielectric properties of amorphous ZrO2 and HfO2[J]. Physical Review B,2006, V74(12):125108-125108-6
    [6]Robertson J. High dielectric constant gate oxides for metal oxide Si transistors[J]. Reports on Progress in Physics,2006, V69(2):327-333
    [7]Cheng X. R., Qi Z. M., Zhang H. J., et a.. Growth and interface amorphous La2Hf207/Si thin film[J].Journal of Rare Earths,2012, V30(2):189-193
    [8]Ji M., Wang L., Xiong Y. H., et al. Electrical characteristics of MOS capacitor using amorphous Gd2O3-doped HfO2 insulator[J]. Journal of Rare Earths,2010, V28(3): 396-398
    [9]Zhang X. Q., Tu H. L., Wei F., et al. Cube-on-cube epitaxy of Gd2O3-doped HfO2 films on Si(100) substrates by pulse laser deposition[J]. Journal of Crystal Growth, 2009,V312(1):41-43
    [10]Xiong Y. H., Tu H. L., Du J., et al. Effects of rapid thermal annealing on structure and electrical properties of Gd-doped HfO2 high k film[J]. Applied Physics Letters,2011, V98(8):082906-082906-3
    [11]Xiong Y. H., Tu H. L., Du J., et al. Band structure and electrical properties of Gd-doped HfO2 high k gate dielectric[J]. Applied Physics Letters,2010, V97(1): 012901-012901-4
    [12]Zhang X. Q., Tu H. L, Guo Y. W., et al. Atomic configuration of the interface between epitaxial Gd doped HfO2 high k thin films and Ge (001) substrates[J]. Journal of Applied Physics,2012, V111(1):014102-014102-4.
    [13]Zhang X., Tu H., Wang X., et al. Fabrication and electronic characterization of epitaxial Gd2O3-doped HfO2 dielectrics on Si[A]. Solid-State and Integrated Circuit Technology(ICSICT),2010 10th IEEE International Conference on[C]. IEEE,2010: 1036-1038
    [14]Galatage R. V., Dong H., Zhernokletov D. M., et al. Effect of post deposition anneal on the characteristics of HfO2/InP metal-oxide-semiconductor capacitors[J]. Applied Physics Letters,2011, V99(17):172901-172901-3
    [15]Hollinger G., Bergignat E., Joseph J., et al. On the nature of oxides on InP surfaces[J]. Journal of Vacuum Science & Technology A:Vacuum, Surfaces, and Films,1985, V3(6):2082-2088
    [16]Kikuchi D., Adachi S. Chemically cleaned InP (100) surfaces in aqueous HF solutions[J]. Materials Science and Engineering:B,2000, V76(2):133-138
    [17]Bell F. G., Ley L. Pho toe miss ion study of SiOx (0≤x≤2) alloys[J]. Physical Review B, 1988,V37(14):8383-8393
    [18]朱燕艳.Er2O3高k栅介质材料的分子束外延生长、结构及其物理特性[D].上海:复旦大学,2006
    [19]郭亿文.界面钝化对Gd2O3掺杂HfO2高k薄膜电性能影响的研究[D].北京,北京有色金属研究总院,2012
    [1]Triyoso D. H., Hegde R. I., Zollner S., et al. Impact of titanium addition on film characteristics of HfO2 gate dielectrics deposited by atomic layer deposition[J]. Journal of Applied Physics,2005, V98(5):054104-054104-8
    [2]Lu N., Li H. J., Gardner M., et al. Electrical properties of amorphous high-κ HfTa TiO gate dielectric with dielectric constants of 40-60[J]. IEEE Electron Device Letters, 2005, V26(5):298-300
    [3]Sivasubramani P., Kirsch P. D., Huang J., et al. Aggressively Scaled High-k Gate Dielectric with Excellent Performance and High Temperature Stability for 32nm and Beyond[A]. IEEE International Electron Devices Meeting[C]. IEEE International, 2007:543-546
    [4]Choi C., Cartier E., Wang Y. Y., et al. Dual layer SrTiO3/HfO2 gate dielectric for aggressively scaled band-edge nMOS devices[J]. Microelectronic Engineering,2007, V84(9-10):2217-2221
    [5]韩楷.面向22nmCMOS技术节点的高K栅介质与金属栅工艺研究[D].北京:中国科学院大学,2013

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700