应用于相控阵收发组件的射频/微波集成电路设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文重点研究了不同工艺下用于相控阵雷达和通信系统的射频/微波单片集成电路设计。
     首先采用三维电磁场仿真方法建立了TSMC0.18um工艺的传输线的模型,根据此模型,采用传输线匹配的方法设计了工作在X波段(8-12GHz)的低噪声放大器(LNA)和功率放大器(PA),LNA的噪声系数小于4.5dB,小信号增益大于20dB,PA输出功率大于18.3dBm,功率增加效率为15%,并设计了SPDT开关,插入损耗2.5dB,隔离度大于20dB,最终实现收发模块。根据多层金属耦合的方法采用金属4和金属6设计了Balun结构,并在此基础上设计二极管环形混频器,混频器在17dBm的LO功率驱动下带内变频损耗小于14.2dB,最小变频损耗12dB。提出了一种高隔离度低损耗的CMOS工艺开关设计方法,设计了工作在S波段的隔离度为39.27dB,插入损耗1.03dB的高性能射频单刀双掷开关(SPDT),并设计了工作在3.1-10.6GHz的噪声系数小于3.55dB,增益大于15dB的超宽带低噪声放大器。
     采用GaAs0.25um工艺设计了两种类型的六位数字移相器,分别工作在S波段和C波段。由于两种移相器的电路结构相同,文章中只讨论了S波段移相器的详细设计,分别对各个移相单元180°、90°、45°、22.5°、11.25°、5.625°进行了详细设计。并对移相器的级联散射抑制和降低相位误差的方法进行了详细说明。S波段移相器测试结果表明在2.1-2.7GHz频率范围,移相器以5.625°为步进,相位均方根误差(RMS)小于1.7°,插入损耗小于6.3dB,输入输出反射系数小于-10dB。C波段移相器工作在3.6-4.2GHz频率范围,测试相位RMS小于1.73°,插入损耗小于6.4dB,波动小于0.4dB。输入输出驻波比分别为小于1.58和1.52。
     论文研究了基于GaN工艺的微波晶体管开关建模,提出了基于开关GaNHEMT晶体管物理结构分析的等效开关模型,对模型中各种本征和寄生参数进行了详细分析,并验证了模型的正确性,为在GaN基板上设计微波控制电路比如数字移相器、数控衰减器等打下基础。论文还研究了GaN MMIC工艺的器件建模,分别对电容、电感、微带线以及接地通孔进行建模。最后采用E/D模工艺设计了TTL电平转换电路,将数字控制信号的TTL电平转换成一组高低电平,电压分别为0V和-4V,实现数字电平直接控制耗尽型微波控制器件。
Radio Frequency Integrated Circuit (RFIC) and Mo nolithic Microwave IntegratedCircuit (MMIC) design used in phase array radar and communication syste m areinvestigated in this dissertation.
     Microstrip transmission line model in TSMC0.18μm CMOS technology wasfound using3-D electromagneticm field simulation method. Transmission line matchmethod was used in X band (8-12GHz) lower noise amplifier (LNA) and poweramplifier, the NF of the LNA is less than4.5dB, and small signal gain is above20dB.The P1dB output power of PA is high than18.3dBm and power add efficiency is15%.The SPDT switch is design, which insert loss is2.5dB and ports isolation is high than20dB. Transmit and receive module including two SPDTs, a LNA and a PA wasimplemented. A balun was designed in metal4and meral6layer coupling method witchreduce the loss and the chip area. The diode ring mixer contains4diode and2baluns,with17dBm LO driver power, the mixer’s frequency conversion loss is less than14.2dB, and the least conversion loss is12dB. The mixer can use in up frequencyconversion and down frequency conversion at the same time, which reduce the systemdesign。High isolation and low insertion loss performance CMOS T/R switch designtechnique was proposed and an S band high isolation and low insert loss switch wasdesigned, the switch isolation is39.27dB and insert loss is1.03dB. Finally wedemonstrate a SiGe HBT ultra-wideband (UWB) low-noise amplifier (LNA), achievedby the current-reused technique. Input matching ameliorated by Miller effect and simplematching network are used. Feedback technique produce a pole-zero, which canimprove the voltage gain flatness and extend bandwidth. The SiGe UWB LNA achievesS11below9dB and S22below10dB for frequencies from3.1to10.6GHz, S21above15dB and gain flatness undulate less than0.84dB, noise figure of2.32and3.55dB atthe UWB frequency range.
     An S-band and a C-band6-bit digital phase shifter are presented, which adopted byGaAs0.25μm technology. The S-band phase shifter was discussed particularly becauseof the same structure adopted in two phase shifters.180°、90°、45°、22.5°、11.25°、5.625°bit are designed. The series scatter restrain and the phase shifter error debasemethod are also discussed. The relative phase shift varies from0to360at the step of5.625°. The S-band phase shifter test result shows Over the design band of2.1–2.7GHz, the minimum rms phase error is1.13°, and a low insertion loss of less than6.3dB, ofwhich amplitude fluctuate less than0.4dB, the input and output scatter parameter lessthan-10dB at all conditions. The C-band phase shifter achieves less than6.4dB ofinsertion loss, with an rms phase error of1.73°. The relative phase shift varies from0to360in step of5.625°. The phase shifter the input and output VSWR are less than1.6atall conditions. The chip size is4mm×1.95mm.
     The symmetrical property GaN high-electron mobility transistor (HEMT) as acontrol transistor has widely investigated, and the equivalent model is proposed. Themodel was verified with experimental data taken on test HEMT devices. The on-stateresistance and the off-state capacitance are measured. The measurement data show quitegood agreement with the simulation results, demonstrating the effectiveness of theproposed model.The passive device model was research in GaN MMIC technology, andthe capacitance, inductance, microstrip line and the grounding hole model were found.At last, the TTL Voltage Convertion circuit was designed using E/D mode in GaNMMIC technology, which transmit the TTL voltage into0V and-4V, this can realizedigital voltage control exhaust microwave device.
引文
[1.1]丁鹭飞,耿富录.雷达原理.西安电子科技大学出版社,2002.
    [1.2] A. Hoess et al., Design and realization of a novel, synchronized77GHz radarnetwork for automotive use2002IMS Workshop on circuit and antennatechnologies for automotive radars, Seattle, USA, June3,2002, pp.327
    [1.3]张光义.相控阵雷达系统.国防工业出版社,1994, pp.171~271.
    [1.4] E.li.Brookner. Phased Arrays And Radars–Past, Present and Future.MicrowaveJ,2006,149(1), pp.24-41
    [1.5]将庆全.有源相控阵雷达技术发展趋势.装备与技术,2005,4, pp.9-11
    [1.6] Donald J.Hoft, Solid State Transmit/Receive Module for the PAVE PAWSPhased Array Radar, Microwave Journal.1978, October, pp.33-35.
    [1.7]李明.雷达射频集成电路的发展及应用,现代雷达,第34卷第9期,pp.8-15
    [1.8] E.Brookner, Phased arrays for the new millennium,2000IEEE InternationalConference on Phased Array Systems and Technology,2000, pp.3-13.
    [1.9] E. Brookner, Phased arrays around the world—Progress and future trends, inProc. IEEE Int. Symp. Phased Array Syst. Technol., Oct.2003, pp.1–8.
    [1.10] Colin, Jean-Marie, Phased Array Radars in France: Present and Future,1996IEEE International Symposium on Phased Array Systems and Technology,October15-18,1996, pp.458-462
    [1.11] Palumbo, E., Some Examples of System Developments in Italy Based onPhased Array Technology,1996IEEE International Symposium on PhasedArray Systems and Technology, Boston, MA, October15-18,1996, pp.444-449.
    [1.12]百度百科,www.baidu.com
    [1.13]李静. T/R模块的发展现状及趋势.半导体情报,1999,36(4), pp.22-28
    [1.14] McQuiddy D N, Hull P et al. Transmit/receive module technology for X-bandactive array radar. Proceedings of the IEEE,1991,79(3),pp.308
    [1.15]殷连生.相控阵雷达馈线技术,国防工业出版社,2007
    [1.16] Bruce A Kopp. X-band transmit/receive module overview. IEEE MTT-SDigest,2000, pp705-707
    [1.17]王剑,罗军.舰载相控阵雷达的现状及发展趋势.电讯技术,2005,3, pp.9-11
    [1.18]周希辰,朱乙平. MMICT/R组件与舰载多功能相控阵雷达.微电子学,1994,24(1), pp.72-74
    [1.19] S. Bhaumik D. Kettle, Broadband X-band low noise amplifier based on70nmGaAs metamorphic high electron mobility transistor technology for deepspace and satellite communication networks and oscillation issues,Microwaves, Antennas&Propagation,10th June2009, pp.1208-1215
    [1.20] Chih-Ming Lin, A16–44GHz Compact Doubly Balanced Monolithic RingMixer, IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS,VOL.18, NO.9, SEPTEMBER2008, pp.620-622
    [1.21] Corrado Florian, The Charge-Controlled Nonlinear Noise Modeling Approachfor the Design of MMIC GaAs-pHEMT VCOs for Space Applications, IEEETRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL.59, NO.4, APRIL2011, pp.901-912
    [1.22] Hakan Dogan, Analysis and Design of RF CMOS Attenuators, IEEEJOURNAL OF SOLID-STATE CIRCUITS, VOL.43, NO.10, OCTOBER2008, pp.2269-2283
    [1.23] H. Z. Ferndahl, Broadband7GHz VCO in mHEMT technology, Asia–PacificMicrow. Conf., Dec.4–7,2005, vol.2,(4), pp153-155
    [1.24] B. Piernas, K. Nishikawa, T. Nakagawa, and K. Araki, A compact andlow-phase-noise Ka-band pHEMT-based VCO, IEEE Trans. Microw. TheoryTech., Mar.2003.vol.51, no.3, pp.778–783,
    [1.25] www.hittite.com
    [1.26]吴群.单片微波集成电路技术的军事应用.硕士生微波学科前沿动态系列讲座介绍,2003
    [1.27] R.S.Pengelly, Integrated T/R modules employs GaAs ICS, Microwave RF.,Feb,1985, pp.77-84.
    [1.28] C.R.Green, etal. A2Watt GaAs Tx/Rx Module with Integral Control Circuitryfor S-Band Phased Array Radars,1987IEEE MTT-S Digest, pp.933-936
    [1.29] B.A.Kopp, M. Borkowski, and G. Jerinic, Transmit/receive modules, IEEETrans. Microwave Theory Tech., Mar.2002. vol.50, no.3, pp.827–834
    [1.30] Sung-Ku Yeo, A3-D X-Band T/R Module Package With an AnodizedAluminum Multilayer Substrate for Phased Array Radar App lications, IEEETRANSACTIONS ON ADVANCED PACKAGING,2010, VOL.33, NO.4,NOVEMBER, pp.883-890
    [1.31] Eliot D.Coher., Trends in the development of MMICs and packages for activeelectronically scanned arrays(AESAs),1996IEEE Int. Symp. On phased arraysystem and technology, pp.1-4
    [1.32] G. E. Moore, Cramming more components onto integrated circuits, Electronics,1965Apr. vol.38, no.8, pp.114–117
    [1.33][1.33] E.O.Johnson, Physical limitations on frequency and power parametersof transistors, RCA Rev.1965, vol.26, pp.163-163,
    [1.34] Thomas H.Lee, CMOS射频集成电路设计(第二版),电子工业出版社,2006
    [1.35] Babakhani A,Guan X, A77GHz4-element phased array receiver withon-chip dipole antennas in silicon, IEEE International Solid-State CircuitConference Digest.IEEE Press,2006, pp.180-181.
    [1.36] Shigematsu H,Hirose T,Brewer F, Millimeter-wave CMOS circuit design,IEEE Transactions on Microwave Theory and Techniques,2005,53(2),pp.472-477
    [1.37] Krishnaswamy H,Hashemi H. A4-channel,24-27GHz UWB phased arraytransmitter in0.13um CMOS for vehicular radar, IEEE Custon IntegratedCircuits Conference.IEEE Press,2007, pp.753-756.
    [1.38] Krishnaswamy H. Architectures and integrated circuits for RF and mm-wavemultiple-antenna systems on silicon, Los Angeles CA: University of SouthernCalifornia,2009.
    [2.1]张光义.相控阵雷达系统.国防工业出版社,1994. pp.171~271.
    [2.2]殷连生,相控阵雷达馈线技术,国防工业出版社,2007
    [2.3] A. K. Agrawal and E. L. Holzman, Active phased array architectures for highreliability, in Proc. IEEE Int. Phased Array Syst. Technol. Symp., Oct.1996,pp.159–162.
    [2.4] T.R. Turlington, F.E. Sacks, J.W. Gipprich, T/R Module ArchitecturalConsideration for Active Electronically Steerable Arrays,1992IEEE MTT-SInternational Microwave Symposium Digest, pp.1523-1526.
    [2.5] Richard Hodges, Suzanne Spitz, T/R Module Development for Large ApertureL-band Phased Array, IWEEAC paper1179Versioln5Updated December102004, pp.1-11
    [2.6] Ashok Agrawal, Richard Clark, T/R Module Architecture Tradeoffs forPhased Array Antennas,1996IEEE MTT-S Digest, pp.995-998
    [2.7] R. Jones and B. Kopp, Duplexer Considerations for X-band T/R Modules,Microwave Journal,2000, pp.348-353.
    [2.8] Thomas H.Lee, CMOS射频集成电路设计(第二版),电子工业出版社,2006
    [2.9] Vizmuller Peter. RF design guide: systems, circuits, and equations. ArtechHouse.1995
    [2.10] J. Crols and M. Steyaert. CMOS Wireless Transceiver Design. KluwerAcademic Publishers,1997
    [2.11] D.K. Shaeffer. THE DESIGN AND IMPLEMENTATION OF LOW-POWERCMOS RADIO RECEIVERS. Ph.D. Dissertation, Stanford University,1998
    [2.12] Behzad Razavi. RF Microelectronics-2nd ed. Upper Saddle River, NJ:Prentice-Hall,2012.
    [2.13] J. Crols and M. Steyaert. Low-IF Topologies for High-Performance AnalogFront Ends of Fully Integrated Receivers. IEEE Transactions on Circuits andSystems-II: Analog and Digital Signal Processing,1998,45(3), pp.269-282
    [2.14]吴曼青,相控阵雷达数字T/R组件研究,现代雷达2001年4月, pp.57-60
    [2.15] Adrian Garrod. Digital Modules for Phase Array Radar. IEEE InternationRadar Conference,1995, pp.726~731.
    [2.16]吴曼青,基于DDS的收发全DBF,相控阵技术,高技术通讯2000.8,
    [2.17]苏保伟,阵列数字波束形成技术,国防科技大学博士论文,2006年
    [2.18] B.Cantrell,J.deGraaf. Development of a Digital ArrayRadar (DAR)[C].2001IEEE Radar Conferenc,2001, pp.157-162
    [2.19] Mattias Südow, Martin Fagerlind, An AlGaN/GaN HEMT-Based MicrostripMMIC Process for Advanced Transceiver Design, IEEE TRANSACTIONSON MICROWAVE THEORY AND TECHNIQUES, VOL.56, NO.8,AUGUST2008, pp.1827-1833
    [2.20] T. Edwards, Semiconductor technology trends for phased array antenna poweramplifiers, in European Radar Conference Proceedings,(Manchester), Oct.2006, pp.269-272
    [2.21] C. Costrini, M. Calori, A20watt microstrip X-Band AlGaN/GaN HPA MMICfor advanced radar applications, in European Microwave Integrated CircuitConference Proceedings,(Amsterdam),2008Oct. pp.565-569
    [2.22] S. Piotrowicz, E. Morvan, R. Aubry, et al., State of the art58W,38%PAEX-Band AlGaN/GaN HEMTs microstrip MMIC amplifiers, in CompoundSemiconductor Integrated Circuits Symposium Proceedings, Oct.2008, pp.1-4,
    [2.23] R. Schwindt, V. Kumar, O. Aktas, J.-W. Lee, and I. Adesida, AlGaN/GaNHEMT-based fully monolithic X-band low noise amplifier, Physica StatusSolidi (c),2005May. vol.2, pp.2631-2634,
    [2.24] J. Janssen, M. van Heijningen, G. Provenzano, G. Visser, E. Morvan, and F.van Vliet, X-Band robust AlGaN/GaN receiver MMICs with over41dBmpower handling, in Compound Semiconductor Integrated Circuits SymposiumProceedings,2008Oct., pp.1-4
    [2.25] P. Schuh, H. Sledzik, R. Reber, GaN MMIC based T/R-Module front-end forX-Band applications, in European Microwave Integrated Circuit ConferenceProceedings,(Amsterdam),2008Oct., pp.274-277,
    [3.1] D.M. PozarMicrowave engineering, Wiley, NewYork,1998.
    [3.2] Ali M. Niknejad, Analysis, Simulation, and Applications of Passive Deviceson Conductive Substrates, PHD University of California at Berkeley,2005
    [3.3] C. H. Doan, Millimeter-wave CMOS design, IEEE Journal of Solid-StateCircuits,2005Jan., vol.40, pp.144-155
    [3.4] T.C. Edwards and M. B. Steer, Foundations of Interconnect and MicrostripDesign,3rd ed. NewYork: Wiley,2000.
    [3.5] G.Carchon, W.De Raedt, Novel approach for a design-oriented measurementbased fully scalable coplanar waveguide transmission line model, IEE Proc.Microwave, Antennas Propagat.,2001Aug. vol.148, pp.227–232
    [3.6] A.Abidi, High-frequency noise measurements on FETs with small dimensions,IEEE Trans. Electron Devices,1986Nov. vol.33, pp.1801-1805
    [3.7] C. McAndrew, G. Coram, A. Blaum and O. Pilloud, Correlated NoiseModeling and Simulation, Workshop on Compact Modeling,2005, pp.40-45
    [3.8] A. J. Scholten, L. F.Tiemeijer, Noise Modeling for RF CMOS CircuitSimulation, IEEE Trans. on Electron Devices, vol.50, pp.618-625
    [3.9] M.W. Pospieszalski, Modeling of Noise parameters of MESFETs andMODFETs and Their Frequency and Temperature Dependence, IEEE Trans.on Microwave Theory and Techniques,1989Sept., vol.37, pp.1340-1350
    [3.10] Thomas H.Lee, CMOS射频集成电路设计(第二版),电子工业出版社,2006
    [3.11] WU X, SUN L, WANG Z. Low-Power915MHz CMOS LNA DesignOptimization Techniques for RFID[C].2007, pp.1–4.
    [3.12] ALAM S, DEGROAT J. A1.5-V2.4GHz Diferential CMOS Low NoiseAmplifer for Bluetooth and Wireless LAN Applications[C].2006, pp.13–16.
    [3.13]支传德,杨华中,汪蕙. CMOS射频功率放大器的设计方法,电子技术应用,2008,04, pp.1-3
    [3.14] S. C. Cripps, RF Power Amplifiers forWireless Communications, ArtechHouse,1999.
    [3.15] A. Komijani, A. Natarajan, and A. Hajimiri, A24-GHz,+14.5-dBmFully-Integrated Power Amplifier in0.18μmCMOS, IEEE Journal ofSolid-State Circuits,2005, Sept., vol.40, no.9, pp.1901-08
    [3.16] R. Aparicio and A. Hajimiri, Capacity Limits and Matching Properties ofIntegrated Capacitors, IEEE Journal of Solid-State Circuits,2002, March., vol.37, no.3, pp.384-393
    [3.17] Hwann-Kaeo Chiou, Low-Loss and Broadband AsymmetricBroadside-Coupled Balun for Mixer Design in0.18-um CMOS Technology,IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES,2008APRIL, VOL.56, NO.4, pp.835-848
    [3.18] Tsung-Yu Yang, A16–46GHz Mixer Using Broadband Multilayer Balun in0.18-um CMOS Technology, IEEE MICROWAVE AND WIRELESSCOMPONENTS LETTERS,2007JULY, VOL.17, NO.7, pp.534-536
    [3.19] A.Verma, L.Gao, K.K.O, and J.Lin, A K-band down-conversion mixer with1.4-GHz bandwidth in0.13-um CMOS technology, IEEE Microw. WirelessCompon. Lett.,2005, Aug., vol.15, no.8, pp.493–495
    [3.20] Chih-Ming Lin, A16–44GHz Compact Doubly Balanced Monolithic RingMixer, IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS,2008, SEPTEMBER, VOL.18, NO.9, pp.620-622
    [3.21] F.-J. Huang and K. O, A0.5-um CMOS T/R switch for900-MHzwirelessapplications, IEEE J. Solid-State Circuits,2001, Mar., vol.36, no.3,pp.486–492
    [3.22] Z. Li, H. Yoon, F.J. Huang, K. K. O,5.8-GHz CMOS T/R switches with highand low substrate resistance in a0.18-um CMOS process, IEEE Microw.Wireless Compon. Lett.,2003, Jan., vol.13, no.1, pp.1–3
    [3.23] C. Tinella, J. M. Fournier, D. Belot, and V. Knopik, A high-performanceCMOS-SOI antenna switch for the2.5-5-GHz band, IEEE J. Solid-StateCircuits,2003, Jul., vol.38, no.7, pp.1279–1283
    [3.24] N.A.Talwalkar, C.P. Yue, H. Gan, and S.S.Wong, Integrated CMOStransmit-receive switch using LC-tuned substrate bias for2.4-GHzand5.2-GHz applications, IEEE J. Solid-State Circuits,2004, Jun., vol.9, no.6, pp.863–870
    [3.25] Z. Li,15-GHz fully integrated nMOS switches in a0.13-um CMOS process,IEEE J. Solid-State Circuits,2005, Nov., vol.40, no.11, pp.2323–2328
    [3.26] T. Ohnakado, S. Yamakawa, T.Murakami,21.5-dBm power-handling5-GHztransmit/receive CMOS switch realized by voltage division effect of stackedtransistor configuration with depletion-layer-extended transistors(DETs),IEEE J. Solid-State Circuits,2004, Apr., vol.39, no.4, pp.577–584
    [3.27] Thomas H.Lee. CMOS射频集成电路设计(第二版),电子工业出版社2006,pp.133-135
    [3.28] Qiang Li, Y. P. Zhang, CMOS T/R Switch Design: Towards Ultra-Widebandand Higher Frequency, IEEE J. Solid-State Circuits,2007, Mar., vol.42, No.3,pp.563–570
    [3.29] C.Y.Ou, C.Y.Hsu, H.R.Lin, H.R.Chuang, A High-Isolation High-Linearity24-GHz CMOS T/R Switch in the0.18-um CMOS Process, Proceedings ofthe4th European Microwave Integrated Circuits Conference,2009,pp.250-253
    [3.30] Piljae Park, Dong Hun Shin, C. Patrick Yue,High-Linearity CMOS T/RSwitch Design Above20GHz Using Asymmetrical Topology andAC-Floating Bias, IEEE Trans. Microw. Theory Tech.,2009, Apr., vol.57, no.4, pp.948–956
    [3.31] S. Roy et al., Ultra-wideband radio design: The promise of high-speed,short-range wireless connectivity, Proc. IEEE,2004, Feb., vol.92, no.2, pp.295–311
    [3.32] Yi-Jan, Emery Chen and Yao-I. Huang, Development of IntegratedBroad-Band CMOS Low-Noise Amplifiers, IEEE Trans. on Circuits andSystems—I: Regular Papers,2007, Oct., Vol.54, No.10, pp.2120-2127
    [3.33] P. Heydari, Design and Analysis of a Performance-Optimized CMOS UWBDistributed LNA,IEEE J. Solid-State Circuits,2000, Feb., Vol.35, No.2, pp.1892-1920
    [3.34] A. Ismail and A. Abidi, A3-10-GHz low-noise amplifier with widebandLC-ladder matching network, IEEE J. Solid-State Circuits,2004, Dec., vol.39, no.12, pp.2269-2277
    [3.35] Yi-Jing Lin, Shawn S. H. Hsu, A3.1-10.6GHz Ultra-Wideband CMOS LowNoise Amplifier With Current-Reused Technique, IEEE Microwave andWireless Components Letters,2007, Mar., Vol.17, No.3, pp232-234.
    [3.36] Shih-Chih Chen, Ruen-Lun Wang, Cheng-Lung Tsai, Jui-Hao Shang,Chien-Hsuan Liu, A Low Power,Good Gain Flatness SiGe Low noiseAmplifier for3.1-10.6GHz Ultra Wide Band Radio,MWSCAS2007,50thMidwest symposiun on Digital Object Identifier, pp750-753.
    [3.37] Yu-Tso Lin, Hsiao-Chin Chen, Tao Wang,3–10-GHz Ultra-WidebandLow-Noise Amplifier Utilizing Miller Effect and Inductive Shunt–ShuntFeedback Technique, IEEE Trans. on Microwave theory and techniques,2006,Sep., Vol.55, No.9, pp1832-1843
    [4.1]殷连生,相控阵雷达馈线技术,国防工业出版社,2007
    [4.2] Bahl I, Bhartia P.微波固态电路设计[M],电子工业出版社,2006,pp.467-469.
    [4.3] I. Bahl, Lumped Elements for RF and Microwave Circuits. Artech House,2003.
    [4.4] S. Lee, J. Park, H. Kim, J. Kim, Low-loss analog and digital reflection-typeMEMS phase shifters with1:3bandwidth, IEEE Trans. Microw. TheoryTech.,2004, Jan., vol.52, no.1, pp.211–219
    [4.5] Q. Meng, X. Zhang, F. Li, An impedance matched phase shifter using BaSrTiOthin film, IEEE Microw. Wireless Compon. Lett.,2006, Jun., vol.16, no.6, pp.345–347
    [4.6] K. Chang, I. Bahl, and V. Nair, RF and Microwave Circuit andComponentDesign for Wireless Systems. Wiley,2002.
    [4.7] P. R. Maloney, M. A. Merger, and J. P. Sasonoff, L-band GaAs transceivercomponents, in IEEE GaAs IC Symp. Dig.,1985, pp.121–124.
    [4.8] S. Marsh, Practical MMIC Design. Artech House,2006.
    [4.9] Y. Ayasli, S. W. Miller, R.Mozzi, and L. K. Hanes, Wide-band monolithicphase shifter, IEEE Trans. Microw. Theory Tech.,1984, Dec., vol. MTT-32,no.12, pp.1710–1714
    [4.10] I. D. Robertson and S. Lucyszyn, Eds., RFIC and MMIC Design andTechnology,2001.
    [4.11] H. Hayashi and M. Muraguchi, An MMIC active phase shifter using a variableresonant circuit, IEEE Trans. Microw. Theory Tech.,1999, Oct., vol.47, no.10, pp.2021–2026
    [4.12] P. Miller and J. S. Joshi, MMIC phase shifters for space applications, in Proc.ESA Int. MMICs for Space Applicat. Workshop, Noordwijk, Mar.1990.
    [4.13] Campbell C F, Brown S A. A Compact5-bit Phase-shifter MMIC for K-bandSatellite Communication Systems [J]. IEEE Microw. Theory Tech.,2000,48(12), pp.2652–2656.
    [4.14] Kang D W, Lee H D, Kim C H, et al. Ku-Band MMIC Phase Shifter Using aParallel Resonator With0.18-um CMOS Technology [J]. IEEE Microw.Theory Tech.,2006,54(1), pp.294–301
    [4.15] Morton M A, Comeau J P, Cressler J D, et al.5bit, silicon-based, X-bandphase shifter using a hybrid pi/t high-pass/low-pass topology [J]. IET Microw.Antennas Propag.2008,2(1), pp.19–22
    [4.16] Yang J G, Yang K. Ka-band5-Bit MMIC phase shifter using InGaAs PINswitching diodes [J]. IEEE Microwave and wireless components letters,2011,21(3), pp.151-153
    [4.17] Le Wang, et al. Highly linear Ku-Band SiGe PIN diode phase shifter instandard SiGe BiCMOS process. IEEE Microwave and wireless componentsletters,2010,20(1), pp.37-39
    [4.18] Daniel G. Swanson, Jr. and Wolfgang J. R. Hoefer, Microwave CircuitModeling Using Electromagnetic Field Simulation, Artech House,2006.
    [4.19] Hangai M, Hieda M, Yunoue N, et al. S-and C-Band Ultra-Compact PhaseShifters Based on All-Pass Networks [J]. IEEE Microw. Theory Tech.,2010,58(1), pp.41–47
    [4.20] Qun Xiao. A Compact L-Band Broadband6-bit MMIC Phase Shifter with LowPhase Error [C]. Proceedings of the6th European Microwave IntegratedCircuits Conference.2011, pp.410-413.
    [4.21] Inder J. Bahl, David Conway. L-and S-band compact octave bandwidth4-bitMMIC phase shifters [J]. IEEE Trans. Microw. theory tech.,2008,56(2),pp.293-299
    [4.22] D. Adler et al. Broadband switched-bit phase shifter using all-pass networks,IEEE MTT-S Int. Microw. Symp. Dig.,1991, Jun., pp.265-268.
    [5.1] H.M.Macksey, and F.H.Doerbeck,GaAs FET’s having high output power perunit gate width, IEEE Electron Device Letters,1981,2(6), pp.147-148
    [5.2] C.L.Chen,F.W.Smith,B.J.Clifton, et al, High-power-density GaAs MISFET’swith a low-temperature-grown epitaxial layer as the insulator, IEEE ElectronDevice Letters,1991,12(6), pp.306-308.
    [5.3] Yifeng Wu, AlGaN/GaN Microwave Power High-Mobility-Transistors, Theph.D dissertation of University of California,Santa Barbara,1997
    [5.4] M.S.Shur, R.Gaska, A.khan et al, Wide band gap electronic devices. FourthIEEE international caracas conference on devices,Circuits andSystems,2002,4
    [5.5] E.O.Johnson,physical limitations on frequency and power parameters oftransistors,RCA Rev,1965, pp.163-177
    [5.6] A.J.Baliga, Power semiconductor device figure of merit for high frequencyapplications IEEE Electron Device Lett,1989, vol(10), pp.455-457
    [5.7] Mingqi Chen, A1–25GHz GaN HEMT MMIC Low-Noise Amplifier, IEEEMICROWAVE AND WIRELESS COMPONENTS LETTERS,2010, OCT.,VOL.20, NO.10, pp.563-565
    [5.8] Hongtao Xu, A C-Band High-Dynamic Range GaN HEMT Low-NoiseAmplifier, IEEE MICROWAVE AND WIRELESS COMPONENTSLETTERS,2004, JUNE, VOL.14, NO.6, pp.262-264
    [5.9] Mattias Südow, A Single-Ended Resistive X-Band AlGaN/GaN HEMT MMICMixer, IEEE TRANSACTIONS ON MICROWAVE THEORY ANDTECHNIQUES,2008, OCT., VOL.56, NO.10, pp.2201-2206
    [5.10] X. Lan, A V-Band Monolithic AlGaN/GaN VCO, IEEE MICROWAVE ANDWIRELESS COMPONENTS LETTERS,2008, JUNE, VOL.18, NO.6,pp.407-409
    [5.11] Gopinath, Comparison of GaAs MESFET and GaAs p-i-n diodes as switchelements, IEEE Electron Device Lett.,1985, Oct., vol.6, pp.505–506
    [5.12] Y. Ayalsi, Microwave switching with GaAs FET’s, Microwave J.,1982, May.,vol.25, pp.719–723
    [5.13] Gopinath, GaAs FET RF switches, IEEE Trans. Elec-tron Devices,1985, July,vol.32, pp.1272–1278
    [5.14] Nikolai V. Drozdovski, GaN-Based High Electron-Mobility Transistors forMicrowave and RF Control Applications, IEEE Trans. on Microwave Theoryand Techniques,2002, Jan., vol.50, no.1, pp.4-8
    [5.15] P. M. Cabral, New nonlinear device model for microwave power GaN HEMTs,IEEE MTT-S Int. Microwave Symp. Dig.,2004, June, pp.51–54.
    [5.16] Dong-Ming Lin, A Symmetrical Model for Microwave Power AlGaAs/InGaAspHEMTs for Switch Circuit Applications‖, IEEE TRANSACTIONS ONELECTRON DEVICES, VOL.56, NO.11, NOVEMBER2009
    [5.17] Donald A. Neamen,半导体物理与器件,电子工业出版社,2008
    [5.18]施敏,―现代半导体器件物理‖,科学出版社,2011
    [5.19] Angelov, A new empirical nonlinear model for HEMT and MESFET devices,IEEE Trans. Microwave Theory Tech.,1992, Dec., vol.40, pp.2258–2266
    [5.20] G. Dambrine, A new method for determining the FET small-signal equivalentcircuit, IEEE Trans. Microw. Theory Tech.,1988, Jul., vol.36, no.7, pp.1151–1160
    [5.21]张雨桐. F等离子体处理GaN E/D模电路工艺与设计:[D]西安:西安电子科技大学,2013.
    [5.22] Y Cai, Z Q Cheng, W C W Tang. et al, Monolithic Integration of Enhancement-and Depletion-mode AlGaN/GaN HEMTs for GaN Digital Integrated Circuits,IEDM Tech. Dig.,2005, pp.771
    [5.23]全思.氮化镓基增强型HEMT器件与集成电路研究:[D]西安:西安电子科技大学,2011.
    [5.24]赵静.带GaAs TTL电平驱动器的SPDT开关的模拟和性能.半导体情报,1999,36(1), pp.44-46.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700