氧化钒薄膜及非致冷红外探测器阵列研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自上世纪九十年代以来,非致冷红外成像技术取得了重大突破,引发了红外技术的第三次革命。与前两代致冷型光子红外探测器相比,第三代非致冷热敏红外探测器由于在室温下工作,无需制冷,因此在系统成本、重量、功耗和可靠性等方面都具有明显优势。
     第三代非致冷红外探测器主要包括微测辐射热计和热释电探测器两种类型。与具有相当竞争力的热释电红外探测器相比,微测辐射热计具有动态范围大,响应线性度好、制造成本低等独特优点。此外,微测辐射热计工作时无需斩波,成像系统无任何活动部件,这有助于降低成像系统成本和提高系统可靠性,在军事或者民用诸多领域内都具有更广泛的应用前景。
     本文围绕微测辐射热计的热敏材料、工作原理、绝热结构、读出电路和器件集成等关键技术,展开了深入系统的研究,主要研究内容和成果综述如下:在材料制备方面,
     (1)开展了氧化钒热敏薄膜制备技术研究,利用低温反应离子束溅射和磁控溅射在石英和Si3N4/Si衬底上制备了方块电阻为20~50 k?的混合相VOx和亚稳态相VO2(B)热敏薄膜,薄膜淀积温度控制在250℃以下,与大规模集成电路工艺兼容。所制备的热敏薄膜室温时的电阻温度系数约为-2.2%~-2.5%K-1,达到国际先进水平。
     (2)完成了纳米VO2薄膜生长方法的研究,利用两步法(低温溅射和后退火)工艺在Si3N4薄膜覆盖的石英和硅衬底上制备了晶粒尺寸约为8~10 nm的VO2薄膜。测试结果表明该纳米VO2薄膜的热滞回线明显向室温移动,薄膜的金属-半导体相变温度由常规VO2材料的68℃下降到纳米VO2的34℃,该结果为国际首次报道。
     在器件研制方面,
     (1)研究了微测辐射热计的工作原理,依据微测辐射热计的电热模型和热敏材料的电压-电流关系曲线,利用等效热导概念简化了探测器的热平衡方程,对探测器在直流、脉冲偏置以及非小信号条件下的响应率进行了分析计算。讨论了影响微测辐射热计红外探测信噪比的关键影响因素,为后续测辐射热计红外探测器的结构和电学参数设计提供了依据。
     (2)开展了微测辐射热计绝热微桥结构制作方法的研究,利用多孔硅和光敏聚酰亚胺薄膜作为牺牲层材料,在国内率先研制出了128元单层线阵和32×32双层面阵微桥结构阵列。
     (3)针对由CMOS制造工艺引入的读出电路芯片表面的不平坦特性,进行了芯片平坦化研究。利用BCB旋涂和化学镀技术,对电路芯片进行了平坦化,芯片表面不平坦度从平坦化前的2μm减少至平坦化后的0.13μm,为微测辐射热计阵列和读出电路的单片集成铺平了道路。
     (4)进行了微测辐射热计阵列与读出电路的单片集成研究,研制出国内首个单片式带微桥结构的32×32微测辐射热计红外探测器焦平面阵列。在真空封装环境下,焦平面的像元黑体响应率和噪声等效功率分别达到1.4×104 V/W和8.4×10-10 W,为进一步研制单片式、高性能的非致冷红外焦平面阵列奠定了基础。
The development of infrared detector arrays capable of imaging scenes at room temperature has been an outstanding technical achievement and enables a new revolution in infrared technology since 1990s. Compared with cryogenic photon infrared detector arrays, since cooling to cryogenic temperatures is not required, major reductions in package complexity and cost can be achieved for uncooled focal plane arrays (FPAs). The elimination of the cryogenic coolers also reduces power consumption and improves device reliability, thus, room temperature FPAs have significant cost, weight, power and reliability advantages over cryogenic IRFPAs.
     Major types of high performance uncooled thermal infrared FPAs include bolometer and pyroelectric detectors, in which the microbolometer has the lowest unit cost, as it uses a monolithic fabrication process that is compatible with standard silicon process. Chopperless operation can be obtained using the microbolometer, thereby eliminating all mechanical parts from the imaging system. This not only decreases the ultimate unit cost, but also improves both the reliability and the operating range. Greater dynamic range and a more linear response make the microbolometer technology more highly suited for wide range of civilian applications besides greatly increased military uses.
     In this dissertation, the thermal-sensitive materials, operating principles, thermal isolated structure and device integration in microbolometer FPAs have been described in detail. It mainly includes:
     In the aspect of vanadium oxide films fabrication, firstly, mixed vanadium oxide VOx and metastable phase VO2(B) thin films for uncooled bolometric detectors have been fabricated on Si3N4/Si substrates by methods of low temperature reactive ion beam sputtering and magnetic sputtering in a controlled oxygen atmosphere. The typical growth temperature is kept below 250℃?, which is compatible with the post-CMOS technology. The as-deposited film exhibits sheet resistance and temperature coefficient resistant of 20~50 k? and -2.2%~-2.5%K-1 at room temperature, respectively.
     Secondly, nanostructural vanadium dioxide thin films are fabricated on Si3N4-film-coated Si and silica substrates using reactive ion beam sputtering and post annealing. A reversible metal to semiconductor phase transition for as-fabricated VO2 films with grain size of 8~10 nm takes place at take place around 34℃, which lowers about 34℃in comparison with a phase transition temperature of 68℃in conventional VO2 films.
     In the aspect of bolometer FPAs developing, firstly, the heat balance equation for a microbolometer is simplified by introducing effective thermal conductance concept. From the the electrical and thermal model of microbolometer and V-I curve of TCR material, the useful practical equations and numerical estimates for the responsivity under different bias and large radiation signals are derived. Furthermore, the author also considered the noise properties of microbolometer. Using the expressions for signal and noise of bolometer, useful expressions of performance parameters such as noise equivalent temperature difference (NETD), noise equivalent power (NEP), and detectivity is derived, laying the groundwork for future device design.
     Secondly, one-level 128 linear array and two-level 32×32 array of microbridges have been designed and fabricated on Si substrate by means of surface micromachining, utilizing porous silicon and photo-sensitive polyimide sacrificial layer.
     Thirdly, Readout Integrated Circuits (ROIC) for microbolometer FPAs have been designed and fabricated on 4-inch silicon wafers. The CMOS fabrication processes produce about 2μm surface roughness on the silicon wafers, which is too rough for the integration with microbolometer array. To acquire a satisfying surface roughness, bisbenzocyclobutene (BCB) spin coating and electroless nickel-plating method have been developed. With those planarization processes, the surface roughness of ROIC dies smoothes from 2μm to less than 0.13μm, which is sufficient for subsequent bolometer FPAs fabrication.
     Fourthly, the 32×32 microbolometer array is fabricated onto the planarized ROIC using a micromachining process, which is completely compatible with CMOS technology. Measurements and calculations for the fabricated FPAs show that the responsivity of 1.4×104 V/W and a NEP of 8.4×10-10 W are obtained at a pulse bias of 1V and vacuum packaging environments.
引文
[1] W. Herschel. Experiments on the Refrangibility of the Invisible Rays of the Sun. Philosophical Transactions of the Royal Society of London, 1800, 90: 284~292
    [2] 陈衡.红外物理学.北京:国防工业出版社,1985.1~5
    [3] (美)威拉德森,比尔著.红外探测器.《激光与红外》编辑组译.北京:国防工业出版社,1973.7~15
    [4] 纪红.红外技术基础与应用.北京: 科学出版社,1979.181~402
    [5] S.B. Horn, D. Lohrmann, J. Campbell, et al. Uncooled IR technology and applications. Proc. SPIE, 2003, 4369: 210~221
    [6] 邵式平.热释电效应及其应用. 北京:兵器工业出版社,1994.1~7
    [7] H.R. Beratan, C.M Hanson, E.G. Meissner. Low-cost uncooled ferroelectric detector. Proc. SPIE, 1994, 2274: 147~156
    [8] J.M Belcher, C.M. Hanson, H. R. Beratan, et al. Uncooled monolithic ferroelectric IRFPA technology. Proc. SPIE, 1998, 3436: 611~622
    [9] C.M Hanson, H.R. Beratan, J.M. Belcher. Uncooled infrared imaging using thin film ferroelectrics. Proc. SPIE, 2001, 4288: 298~303
    [10] C.M. Hanson, H.R. Beratan. Thin film ferroelectrics: breakthrough. Proc. SPIE, 2002, 4721: 91~98
    [11] 刘卫国,金娜.集成非制冷热成像探测阵列.国防工业出版社,2004.40~62
    [12] 刘恩科,朱秉升,罗晋生.半导体物理学.(第 4 版).北京:国防工业出版社,1994.286~294
    [13] N. Teranishi. Thermoelelctric uncooled infrared focal plane arrays, in: P.W. Kruse, D.D. Skatrud (Eds.), Semiconductors and Semimetals, Academic Press, 1997, 47: 203~218
    [14] T. Kanno, M. Saga, S. Matsumoto, et al. Uncooled infrared focal plane array having 128×128 thermopile detector elements. Proc. SPIE, 1994, 2269: 450~459
    [15] 王跃林.微机械热电堆红外探测器:[博士学位论文].上海:中国科学院上海微系统与信息技术研究所,2002
    [16] J.S. Shie, P.K. Weng. Design considerations of metal-film bolometer with micromachined floating membrane. Sensors and Actuators, A: Physical, 1992, 33(3): 183~189
    [17] A. Tanaka, S. Matsumoto, N. Tsukamoto. Silicon IC process compatible bolometerinfrared focal plane array. International Conference on Solid-State Sensors and Actuators, 1995, 2: 632~635
    [18] L. Brunetti. Thin-film bolometer for high-frequency metrology. Sensors and Actuators, A: Physical, 1992, 32(1-3): 423~427
    [19] W. Lang, P. Steiner, U. Schaber, et al. Thin film bolometer using porous silicon technology. Sensors and Actuators, A: Physical, 1994, 43(1-3): 185~87
    [20] H. Jerominek, F. Picard, D. Vincent. Vanadium oxide films for optical switching and detection. Optical Engineering, 1993, 32(9): 2092~2099
    [21] V.G. Malyarov, I.A. Khrebtov, Yu. V. Kulikov, et al. Comparative investigations of bolometric properties of thin-film structures based on vanadium dioxide and amorphous hydrated silicon. Proc. SPIE, 1999, 3819: 136~142
    [22] C. Vedel, J.L. Martin, J.L. Ouvrier Buffet. Amorphous silicon based uncooled microbolometer IRFPA. Proc. SPIE, 1999, 3698: 276~283
    [23] K. Yamashita, A. Murata, M. Okuyama. Miniaturized infrared sensor using silicon diaphragm based on Golay cell. Sensors and Actuators, A: Physical, 1998, 66(1-3): 29~32
    [24] T.W. Kenny, W.J. Kaiser, J.A. Podosek, et al. Micromachined electron tunneling infrared sensors. Technical Digest- IEEE Solid-State Sensor and Actuator Workshop, 1992, 174~177
    [25] J.R. Vig, R.L Filler, Y. Kim. Uncooled IR imaging array based on quartz microresonators. Journal of Microelectromechanical Systems, 1996, 5(2): 131-137
    [26] P.G. Datskos, N.V. Lavrik, S. Rajic. Performance of uncooled microcantilever thermal detectors. Review of Scientific Instruments, 2004, 75(4): 1134~1148
    [27] R. Amantea, L.A. Goodman, F. Pantuso. Progress towards an uncooled IR imager with 5 mK NEDT. Proc. SPIE, 1998, 3436(2): 647~659
    [28] T. Perazzo, M. Mao, O. Kwon, et al. Infrared vision using uncooled micro-optomechanical camera. Applied Physics Letters, 1999, 74(23): 3567~3569
    [29] Zhao Yang, Mao Minyao, Horowitz Roberto. Optomechanical uncooled infrared imaging system: Design, microfabrication, and performance. Journal of Microelectromechanical Systems, 2002, 11(2): 136~146
    [30] J.F Li, D. Diehland, A.S. Bhalla, L.E. Cross. Pyro-optic studies for infrared imaging. Journal of Applied Physics, 1992, 71(5): 2106~2112
    [31] E.S. Barr. Historical survey of the early development of the infrared spectral region.American Journal of Physics, 1960, 28: 42~54
    [32] E.S. Barr. The infrared pioneers-II. Macedonio Melloni. Infrared Physics, 1962, 2: 67~73
    [33] E.S. Barr. The Infrared Pioneers-III. Samuel Pierpont Langley. Infrared Physics, 1963, 3: 195~206
    [34] T.W. Case. Notes on the change of resistance of certain substrates in light. Physics Reviews, 1917, 9: 305~310
    [35] E.H. Putley. Solid State Devices for Infrared Detection. J. Sci. Instr. 1966, 43: 857~868
    [36] R.A. Wood. Monolithic silicon microbolometer arrays. Semiconductors and Semimetals. 1997, 47: 45~119
    [37] R.A. Wood. Uncooled thermal imaging with monolithic silicon focal planes. Proc. SPIE, 1993, 2020: 322~329
    [38] R.A. Wood, C.J. Han, P.W. Kruse. Integrated uncooled infrared detector imaging array. Technical Digest- IEEE Solid-State Sensor and Actuator Workshop, 1992, 132~135
    [39] B. Cole, R. Horning, B. Johnson, et al. High performance infrared detector arrays using thin film microstructures. IEEE International Symposium on Applications of Ferroelectrics. 1994, 653~656
    [40] B. Cole, S. Weeres, R. Higashi, et al. Honeywell resistor array development and future directions. Proc. SPIE, 1999, 3697: 188~196
    [41] B.E. Cole, R.E. Higashi, J.A. Ridley, et al. Integrated vacuum packaging for low-cost light-weight uncooled microbolometer arrays. Proc. SPIE 2001, 4369: 235~239
    [42] B.E. Cole, R.E. Higashi, R.A. Wood. Monolithic two-dimensional arrays of micromachined microstructures for infrared applications. Proceedings of the IEEE, 1998, 86(8): 1679~1686
    [43] W. Radford, D. Murphy, A. Finch, et al. Sensitivity improvements in uncooled microbolometer FPAs. Pro. SPIE, 1999, 3698: 119~130
    [44] D. Murphy, M. Ray, R. Wyles, et al. High sensitivity (25μm pitch) microbolometer FPAs and application development. Proc. SPIE, 2001, 4369: 222~234
    [45] D.F. Murphy, M. Ray, J. Wyles, et al. Performance improvements for VOx microbolometer FPAs . Proc. SPIE, 2004, 5406: 531~540
    [46] P.E. Howard, C.J. Han, J.E. Clarke, et al. Advances in microbolometer focal plane technology at Boeing. Proc. SPIE, 1998, 3379, 47~57
    [47] P.E. Howard, J.E. Clarke, W.J. Parrish, et al. Advanced high-performance 320×240 VOx microbolometer uncooled IR focal plane. Proc.SPIE, 1999, 3698: 131~136
    [48] P.E. Howard, J.E. Clarke, A.C. Ionescu, et al. DRS U6000 640×480 VOX uncooled IR focal plane. Proc. SPIE, 2002, 4721: 48~55
    [49] K. Grealish, T. Kacir, B. Backer, et al. An advanced infrared thermal imaging module for military and commercial applications. Proc. SPIE, 2005, 5796: 186~192
    [50] C. Trouilleau, A. Crastes, O. Legras, et al. 35 μm pitch at ULIS, a breakthrough. SPIE, 2005, 5783: 578~585
    [51] T.D. Pope, H. Jerominek, C. Alain, et al. Commercial and custom 160×120, 256×1, and 512×3 pixel bolometric FPAs. Proc. SPIE, 2002, 4721:64~74
    [52] A. Tanaka, S. Matsumoto, N. Tsukamoto, et al. Infrared focal plane array incorporating silicon IC process compatible bolometer. IEEE Transactions on Electron Devices, 1996, 43(11): 1844~1850
    [53] Y. Tanaka, A. Tanaka, K. Iida, et al. Performance of 320×240 uncooled bolometer-type infrared focal plane arrays. Proc. SPIE, 2003, 5074: 414~424
    [54] 许旻,崔敬忠,贺德衍.微测热辐射计氧化钒薄膜工艺研究.红外与毫米波学报,2003, 22(6):419~422
    [55] 周进,茹国平.氧化钒热敏薄膜的制备及其性质的研究.红外与毫米波学报,2001,20(4):291~295
    [56] 吴志明,蒋亚东,牟宏等. 氧化钒热敏特性研究.仪器仪表学报, 2003,24(4) S2:237~238
    [57] 尚东,林理彬,何捷等.特型二氧化钒薄膜的制备及电阻温度系数的研究. 四川大学学报(自然科学版),2005, 42(3):523~527
    [58] 袁宁一. 氧化钒红外敏感膜和非致冷焦平面成像阵列研究:[博士学位论文].中国科学院上海微系统与信息技术研究所,2002
    [59] 李志栓,李静,吴孙桃等.射频磁控溅射方法制备氧化钒薄膜的研究.厦门大学学报:自然科学版,2005,44(1):37~40
    [60] L. Dong, R.F. Yue, L.T. Liu. An uncooled microbolometer infrared detector based on poly-SiGe thermistor. Sensors and Actuators, A: Physical, 2003, 105(3): 286~292
    [61] 陈永平,梁平治,张学敏等.128×1 非制冷微测辐射热计红外探测器阵列研制.2003 年全国光电学术交流会论文集,2003,4~7
    [62] P.E. Howard, J.E. Clarke, R.D. Costa, et al. Uncooled infrared focal plane producibility improvements at DRS. Proc. SPIE, 2002, 4820(1): 175~182
    [63] B. Fieque, A. Crastes, J.L. Tissot, et al. 320 × 240 uncooled microbolometer 2D array for radiometric and process control applications. Proc. SPIE, 2004, 5251:114~120
    [64] J.L. Tissot, A. Crastes, C. Trouilleau, et al. Multipurpose high performance 160×120 uncooled IRFPA. Proc. SPIE, 2004, 5406(2): 550~556
    [65] B. Backer, T. Breen, N. Hartle, et al. Improvements in state of the art uncooled microbolometer system performance based on volume manufacturing experience. Proc. SPIE, 2003, 5074: 500~510
    [66] J. Anderson, D. Bradley, R. Chin, et al. Low cost microsensors program. Proc. SPIE, 2000, 4040: 31~36
    [67] A. Astier, A. Arnaud, J. Ouvrier-Buffet, et al. Advanced packaging development for very low cost uncooled IRFPA. Proc. SPIE, 2005, 5640: 107~116
    [68] P. Topart, S. Leclair, C. Alain, et al. Wafer-Level Vacuum Packaging Technology Based on Selective Electroplating. Proc. SPIE, 2004, 5342: 26~34
    [69] R. Gooch, T. Schimert. Low-cost wafer-level vacuum packaging for MEMS. MRS Bulletin, 2003, 28(1): 55~59
    [70] G.L. Francisco. Amorphous silicon bolometer for fire/rescue. Proc. SPIE, 2001, 4360: 138~148
    [71] P.E. Howard, J.E. Clarke, C. Li, et al. Recent advances in TEC-less uncooled FPA sensor operation. Proc. SPIE, 2003, 5074: 527~536
    [72] P.E. Howard, J.E. Clarke, A.C. Ionescu, et al. Advances in uncooled 1-mil pixel size focal plane products at DRS. Proc. SPIE, 2004: 512~520
    [73] J. Brady, T. Schimert, D. Ratcliff, et al. Advances in amorphous silicon uncooled IR systems. Proc. SPIE, 1999, 3698: 161~167
    [74] K. Dagge, W. Frank, A. Seeger, et al. 1/f noise as an early indicator of electromigration damage in thin metal films. Applied Physics Letters, 1996, 68(9): 1198~1200
    [75] J.L. Tissot, J.P. Chatard, E. Mottin. Technical trends in amorphous silicon based uncooled IR focal plane arrays. Proc. SPIE, 2002, 4820(1): 220~226
    [76] S. Sedky, P. Fiorini, M. Caymax, et al. Characterization of bolometers based on polycrystalline silicon germanium alloys. IEEE Electron Device Letters, 1998, 19(10): 376~378
    [77] M. Kimata, H. Yagi, M. Ueno, et al. Silicon infrared focal plane arrays. Proc. SPIE, 2001, 4288: 286~297
    [78] H. Wada, T. Sone, H. Hata, et al. YBaCuO uncooled microbolometer IRFPA. Proc. SPIE, 2001, 4369: 297~304
    [79] R.J. Choudhary, A.S. Ogale, S.R. Shinde, et al. Evaluation of manganite films on silicon for uncooled bolometric applications. Applied Physics Letters, 2004, 84(19): 3846~3848
    [80] K.K Deb. Update: A protein microbolometer for focal plane arrays. Materials Research Innovations, 1999, 3(1): 66~68
    [81] K.K. Deb, A.C. Ionescu, C. Li. Protein-based thin films: A new high-TCR material. Sensors (Peterborough, NH), 2000, 17(8): 52~55
    [82] P.W Kruse. Principles of uncooled infrared focal plane arrays. Semiconductors and Semimetals, 1997, 47: 17~40
    [83] P.W. Kruse. Uncooled infrared focal plane arrays. IEEE International Symposium on Applications of Ferroelectrics, 1994, 643~646
    [84] F. J. Morin. Oxides which show a metal-to-insulator transition at the neel temperature. Phys.Rev. Lett. 1959, 34(3): 34~36
    [85] A.A. Bugayev, M.C. Gupta. Femtosecond holographic interferometry for studies of semiconductor ablation using vanadium dioxide film. Optics Letters, 2003, 28(16): 1463~1465
    [86] Chen Sihai, Ma Hong, Yi Xinjian, et al. Smart VO2 thin film for protection of sensitive infrared detectors from strong laser radiation. Sensors and Actuators, A: Physical, 2004, 1(115): 28~31
    [87] T.D. Manning, I.P. Parkin, M.E. Pemble, et al. Intelligent Window Coatings: Atmospheric Pressure Chemical Vapor Deposition of Tungsten-Doped Vanadium Dioxide. Chemistry of Materials, 2004, 16(4): 744~749
    [88] L.J. Jiang, W.N. Carr. Design, fabrication and testing of a micromachined thermo-optical light modulator based on a vanadium dioxide array. Journal of Micromechanics and Microengineering, 2004, 14(7): 833~840
    [89] J. Shi, R. Bruinsma, A.R. Bishop. Theory of vanadium dioxide. Synthetic Metals, 1991, 43(1-2): 3527~3530
    [90] G.I. Petrov, V.V. Yakovlev, J. Squier. Raman microscopy analysis of phase transformation mechanisms in vanadium dioxide. Applied Physics Letters, 2002, 81(6): 1023~1025
    [91] D.H. Yin; N.K. Xu, J.Y. Zhang, et al. Vanadium dioxide films with good electricalswitching property. Journal of Physics D: Applied Physics, 1996, 29(4): 1051~1057
    [92] A. Ilinski, F. Silva-Andrade, E. Shadrin, et al. Variations in optical reflectivity in the semiconductor-metal phase transition of vanadium dioxide. Journal of Non-Crystalline Solids, 2004, 338-340(1): 266~268
    [93] B. Cole, R. Horning, B.Johnson, et al. High performance infrared detector arrays using thin film microstructures. IEEE International Symposium on Applications of Ferroelectrics, 1994, 653~656
    [94] H. Jerominek, T.D. Pope, C. Alain, et al. 128×128 pixel uncooled bolometric FPA for IR detection and imaging. Proc. SPIE, 1998, 3436(2): 585~592
    [95] T.D. Pope, H. Jerominek, C. Alain, et al. Commercial and custom 160×120, 256×1, and 512×3 pixel bolometric FPAs. Proc. SPIE, 2002, 4721: 64~74
    [96] H. Wada, M. Nagashima, N. Oda, et al. Design and performance of 256×256 bolometer-type uncooled infrared detector. Proc. SPIE, 1998, 3379: 90~100
    [97] H. Wada, M. Nagashima, M. Kanzaki, et al. Fabrication process for 256×256 bolometer-type uncooled infrared detector. Proc. SPIE, 1997, 3224: 40~51
    [98] M.H. Lee, M.G. Kim. RTA and stoichiometry effect on the thermochromism of VO2 thin films”, Thin Solid Films, 1996, 286(1-2): 219~222
    [99] S.K. Narayandass, V. R. Gopal, T. R. Kumar, et al. Study of a pulsed laser deposited vanadium oxide based microbolometer array. Smart Materials and Structures, 2003, 12(2): 188~192
    [100] J.Y. Suh, R. Lopez, L.C. Feldman, et al. Semiconductor to metal phase transition in the nucleation and growth of VO2 nanoparticles and thin films. Journal of Applied Physics, 2004, 96(2): 1209~1213
    [101] Y. Dachuan, X. Niankan, Zh. Jingyu, et al. High quality vanadium dioxide films prepared by an inorganic sol-gel method. Materials Research Bulletin, 1996, 31(3): 335~340
    [102] T.D. Manning, I.P. Parkin, M.E. Pemble, et al. Intelligent Window Coatings: Atmospheric Pressure Chemical Vapor Deposition of Tungsten-Doped Vanadium Dioxide. Chemistry of Materials, 2004, 16(4): 744~749
    [103] D. Vernardou, M.E. Pemble, D.W. Sheel. Vanadium oxides prepared by liquid injection MOCVD using vanadyl acetylacetonate. Surface and Coatings Technology, 2004, 188-189(1-3): 250~254
    [104] J.Z. Cui, D.A. Da, W.S. Jiang. Structure characterization of vanadium oxide thin filmsprepared by magnetron sputtering methods. Applied Surface Science, 1998, 133(3): 225~229
    [105] 刘金声.离子束技术及应用.北京:国防工业出版社, 1995.52~120
    [106] 马咸尧 主编.X 射线衍射与电子显微分析基础.武汉:华中理工大学出版社,1993.32~87
    [107] 王力衡.薄膜技术.北京:清华大学出版社,1991.10~21
    [108] M.B. Sahana, G.N. Subbanna, S.A. Shivashankar. Phase transformation and semiconductor-metal transition in thin films of VO2 deposited by low-pressure metalorganic chemical vapor deposition. Journal of Applied Physics, 2002, 92(11): 6495~6504
    [109] 陈光华,邓金祥.纳米薄膜技术与应用.北京:化学工业出版社,2004.11~18
    [110] E. Kusano, J.A. Theil. Effects of microstructure and nonstoichiometry on electrical properties of vanadium dioxide films. Journal of Vacuum Science & Technology A (Vacuum, Surfaces, and Films), 1989, 7(3): 1314~17
    [111] F.C. Case. Improved VO2 thin films for infrared switching. Applied Optics, 1991, 30(28): 4119~4123
    [112] E.E. Chain. The influence of deposition temperature on the structure and optical properties of vanadium oxide films. Journal of Vacuum Science & Technology A (Vacuum, Surfaces, and Films), 1986, 4(3): 432~5
    [113] F. Guinneton, J.C. Valmalette, J.R. Gavarri. Nanocrystalline vanadium dioxide: synthesis and mid-infrared properties. Optical Materials, 2000, 15(2): 111~114
    [114] R. Lopez, L.A. Boatner, T.E. Haynes, et al. Enhanced hysteresis in the semiconductor-to-metal phase transition of VO2 precipitates formed in SiO2 by ion implantation. Applied Physics Letters, 2001, 79(19): 3161~3163
    [115] R. Lopez, L.A. Boatner, T.E. Haynes, et al. Synthesis and characterization of size-controlled vanadium dioxide nanocrystals in a fused silica matrix. Journal of Applied Physics, 2002, 92(7): 4031~6
    [116] R. Lopez, L.C. Feldman, R.F. Haglund Jr. Size-dependent optical properties of VO2 nanoparticle arrays. Physical Review Letters, 2004, 93(17): 177403-1 ~177403-4
    [117] J.Y. Suh, R. Lopez, L.C. Feldman, et al. Semiconductor to metal phase transition in the nucleation and growth of VO2 nanoparticles and thin films. Journal of Applied Physics, 2004, 96(2): 1209~1213
    [118] V. Petkov, V. Parvanov, P. Trikalitis, et al. Three-dimensional structure ofnanocomposites from atomic pair distribution function analysis: Study of polyaniline and (polyaniline)0.5V2O5·1.0H2O. Journal of the American Chemical Society, 2005, 127(24): 8805~8812
    [119] 傅群,储向峰,林晨等.纳米VO2 粉体的制备及性能特征.无机材料学报,2004, 19(4): 767~771
    [120] 尹大川,王猛,黄卫东. 纳米结构二氧化钒(VO2 )的制备技术.西北工业大学学报.1999, 17(3): 493~495
    [121] 陈文,麦立强,徐庆等.氧化钒纳米管的自组装合成机理.无机材料学报,2005, 20(1):65~70
    [122] 许静, 龙永福, 谢凯等.纳米氧化钒薄膜的制备.国防科技大学学报,2003,25(6):35~38
    [123] F.C. Case. Modification in the phase transition properties of predeposited VO2 films. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1984, 2(4): 1509~1512
    [124] T.D. Manning, I.P. Parkin. Atmospheric pressure chemical vapour deposition of tungsten doped vanadium (IV) oxide from VOCl3, water and WCl6. Journal of Materials Chemistry, 2004, 14(16): 2554~2559
    [125] P. Jin, S. Nakao, S. Tanemura. Tungsten doping into vanadium dioxide thermochromic films by high-energy ion implantation and thermal annealing. Thin Solid Films, 1998, 324(1-2): 151~158
    [126] J. Goodenough. The two components of the crystallographic transition in VO2. Journal of Solid State Chemistry, 1971, 3(4): 490~500
    [127] F. Beteille, L. Mazerolles, J. Livage. Microstructure and metal-insulating transition of VO2 thin films. Materials Research Bulletin, 1999, 34(14-15): 2177~2184
    [128] V. A. Klimov, I. O. Timofeeva, S. D. Khanin, et al. Hysteresis Loop Construction for the Metal–Semiconductor Phase Transition in Vanadium Dioxide Films. Technical Physics, 2002, 47(9): 1134~1139
    [129] J.Y. Suh, R. Lopez, L.C.Feldman, et al. Semiconductor to metal phase transition in the nucleation and growth of VO2 nanoparticles and thin films. Journal of Applied Physics, 2004, 96(2): 1209~1213
    [130] A.A. Bugayev, M.C. Gupta. Femtosecond holographic interferometry for studies of semiconductor ablation using vanadium dioxide film. Optics Letters, 2003, 28(16): 1463~1465
    [131] D.F Salisbury. VO2 - Natures quick change artist. Materials Technology, 2005, 20(2): 105~106
    [132] E. Sovero, D. Deakin, J. A. Higgins, et al. Fast thin film vanadium dioxide microwave switches. Technical Digest - GaAs IC Symposium (Gallium Arsenide Integrated Circuit), 1990, 101~103
    [133] J.L Tissot. Uncooled IRFPA technologies: State of the art and developments at LETI/LIR. Proc. SPIE, 1998, 3410: 2~9
    [134] D. Murphy, M. Ray, R. Wyles, et al. High sensitivity (25 μm pitch) microbolometer FPAs. Proc. SPIE, 2001, 4454: 147~159
    [135] W. Lang, K. Kuehl, H. Sandmaier. Absorbing layers for thermal infrared detectors. Sensors and Actuators, A: Physical, 1992, 34(3): 243~248
    [136] A. Hadni, X. Gerbaux. Infrared and millimeter wave absorber structures for thermal detectors. Infrared Physics, 1990, 30(6): 465~487
    [137] M. Modreanu, C. Moldovan, R. Iosub. The etching behavior of APCVD PSG thin films used as sacrificial layers for surface micromachined resonant microstructures. Sensors and Actuators, A: Physical, 2002, 99(1-2): 82~84
    [138] A. B. Frazier, M.G. Allen. Metallic microstructures fabricated using photosensitive polyimide electroplating molds. Journal of Microelectro- mechanical Systems, 1993, 2(2): 87~94
    [139] A.J. Dowling, M.K. Ghantasala, E.D. Doyle, et al. Selective wet-etching of filtered arc deposited TiN films on Cr sacrificial layers. Proc. SPIE, 2004, 5276: 213~220
    [140] T.E. Bell, P.T.J. Gennissen, D. DeMunter, et al. Porous silicon as a sacrificial material. Journal of Micromechanics and Microengineering, 1996, 6(4): 361~369
    [141] 方丹.红外焦平面阵列读出电路技术分析.红外技术,2004,26(2):23~18
    [142] D. Jakonis, C. Svensson, C. Jansson. Readout architectures for uncooled IR detector arrays. Sensors and Actuators, A: Physical, 2000, 84(3): 220~229
    [143] Schiltz, A. A review of planar techniques for multichip modules. IEEE Transactions on Components, Hybrids and Manufacturing Technology, 1992, 15(2): 236~244
    [144] P. Chiniwalla, R. Manepalli, K. Farnsworth, et al. Multilayer planarization of polymer dielectrics. IEEE Transactions on Advanced Packaging, 2001, 24(1): 41~53
    [145] P.L. Pai, M. Paunovic, A.T. Wu, et al. Selective electroless deposition for via filling. 1988 Proc Fifth Int IEEE VLSI Multilevel Interconnect Conf, 1988, 331~337
    [146] P.L Pai, C.H Ting. Selectively deposited nickel film for via filling. IEEE ElectronDevice Letters, 1989, 10(6): 257~259
    [147] C.H. Ting, M. Paunovic, P.L. Pai, et al. Selective electroless metal deposition for via hole filling in VLSI multilevel interconnection structures. Journal of the Electrochemical Society, 1989, 136(2): 462~466
    [148] 姜晓霞,沈伟.化学镀理论及实践.北京:国防工业出版社,2000.8~21
    [149] A. Rogalski. Infrared detectors: An overview. Infrared Physics and Technology, 2002, 43(3-5): 187~210
    [150] P. Eriksson, J.Y. Andersson, G. Stemme. Thermal characterization of surface- micromachined silicon nitride membranes for thermal infrared detectors. Journal of Microelectromechanical Systems, 1997, 6(1): 55~61
    [151] 国家质量技术监督局.红外焦平面阵列特性参数测试技术规范.中华人民共和国国家标准:GB/T 17444-1998

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700