还原五氧化二钒制备钒的低价氧化物
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Preparation of Vanadium Oxides V_2O_3/VO_2 Via V_2O_5 Reduction
  • 作者:原晨光
  • 论文级别:硕士
  • 学科专业名称:材料加工工程
  • 学位年度:2005
  • 导师:潘颐
  • 学科代码:080503
  • 学位授予单位:浙江大学
  • 论文提交日期:2005-03-01
摘要
自从Mott提出了“金属——绝缘体/半导体”相变(MIPT,MSPT)以来,具有这种相变的材料就成为材料科学研究的热点。这些材料中,最引入注目的是钒的低价氧化物,尤其二氧化钒(VO_2)和三氧化二钒(V_2O_3),它们是最典型的具有MIPT的材料。当温度改变时,二氧化钒和三氧化二钒发生相变,即原子的排列方式发生变化。这些相变伴随着材料磁、电、光学性能上的相当可观的突变,使得用二氧化钒和三氧化二钒制造各种电子、光学器件如限流元件、热敏器件和智能窗涂层等应用材料成为可能。因此,最近几年来,世界上又掀起了一股研究二氧化钒和三氧化二钒掺杂的复合材料的热潮。本文以高纯度的五氧化二钒粉末为原料,用还原反应制备所需的二氧化钒和三氧化二钒。其中,三氧化二钒是通过氢气直接还原五氧化二钒来生成的。而制备二氧化钒的方法有如下几种:
     1)氢气直接还原五氧化二钒。
     2)碳(炭黑或石墨)以一定的摩尔比混和五氧化二钒在惰性气体保护下还原。
     3)铜做还原剂还原五氧化二钒。
     另外,本文也尝试了在惰性气体保护下直接热解五氧化二钒的方法。
     本文主要采用了XRD、DSC/TGA和阻温测试的测试手段。其中,XRD用来分析生成物的相结构,DSC/TGA的分析结果用来推测反应历程。最后,将制成的钒氧化物与LAS玻璃复合烧结成陶瓷,对其进行阻温测试,来确定制备的二氧化钒和三氧化二钒确具有期望的MIPT效应。
     根据XRD分析的结果,随着反应温度的不同,氢气还原五氧化二钒可以生成V_6O_(13),VO_2,V_3O_5,V_2O_3等多种低价氧化物,而制备纯化学计量比的三氧化二钒的理想条件是:在纯的干燥氢气中,将五氧化二钒加热到600℃保温3h,然后升温到900—1000℃继续保温5h,最后随炉冷却。
     炭黑和石墨还原效果相似,但它们还原五氧化二钒的最终产物分别是二氧化钒和五氧化三钒,制备二氧化钒理想条件是:在氮气/氩气保护下,将炭黑和五氧化二钒的混和粉末(C:V_2O_5=1:2)加热到600℃处理3h,然后升温到800-850℃热处理5h,最终随炉冷却。
     铜还原会产生不可分离的杂质,因此不是制备低价钒氧化物的理想还原剂。
    
    根据DSC汀GA分析,五氧化二钒还原的顺序是:V205~V6013~V02~V3OS~
    V203,对于不同的还原剂,还原的最终产物不同。
    阻温测试的结果表明,所制得的三氧化二钒和二氧化钒均具有明显的热敏相变效
    应,并伴随着电阻的突变。
Materials exhibiting metal-insulator/semiconductor phase transitions (MIPT/MSPT for short, also Mott phase transition and MPT) have been extensively studied ever since Mott suggested the possibility of this many-body phenomenon. The materials which have received most attention are low valenced vanadium oxides, in particular vanadium dioxide VO2 (also V2O4) and vanadium sesquioxide V2O3. VO2/V2O3 undergoing MIPT on cooling/heating accompanied by lattice distortions and fantastic changes in magnetic susceptibility, electrical resistivity and optical properties are of interest for producing starting-current limiters, thermistors, thermochromic window coatings and so on. That is why lately there has been much interest in synthesizing and characterizing new vanadium oxides doped composites (for instance, ceramics, polymers, glasses).In this thesis, VO2 and V2O3 were prepared by the reduction reaction. The V2O5 powder of a high purity was used as a starting material. Initially, vanadium oxide V2O3 was prepared through direct reduction using high purity hydrogen. Vanadium oxide VO2 was prepared by several methods as follows.1) Directly reduced V2O5 using hydrogen of a high purity or mixed with N2/Ar.2) Synthesized from a formulated mixture of V2O5 and Carbon/Graphite by the reaction:2V2O5+C→4VO2+CO23) Other reductants, Cu for instance, were also used in our study.What is more, thermal dissociation of V2O5 in N2/Ar of a high purity was employed as a try.The research was carned out by the XRD, DSC/TGA and Resistance-Temperature Testing (RTT for short). The XRD method was applied to analyze the phases of the products. The DSC/TGA was used to study the routine of the reduction reaction. And the RTT
    
    was employed to testify that the materials synthesized will undergo the MSPT .From XRD patterns analysis, at different temperatures, V2O5 was reduced by H2 to various vanadium oxides: V6O13, VO2, V3O5, V2O3. By Carbon: V6O13, VO2. By Graphite: V6O13, VO2, V3O5. By Cu: CUV2O5+V3O5+VO2.And from DSC/TGA analysis, the reaction routine was defined as: H2: V2O5→V6O13→VO2→V3O5→V2O3. Carbon: V2O5→V6O13→VO2 Graphite:From resistance-temperature testing, the VO2/V2O3 doped LAS glass based ceramics underwent aMIPT accompanied by fantastic resistance jumps on cooling/heating.
引文
1.N.N.Greenwood,A.E.著.李.译.,元素化学.1996,北京:高等教育出版社.
    2. J. Miki, Y. O., T. Konoshi, Y. Tachibana, T. Shikada, Appl. Catal. A, 1996. 137: p. 93.
    3. W. Li, J. R. D., D. S. Wainwright, Science, 1994. 264: p. 1115.
    4.胡克俊,国内外三氧化二钒提取工艺发展状况.钢铁钒钛,1995.16(4):p.55-62.
    5. M. Calatayud, B. S., J. Andres, A. Beltran, A theoretical study on the structure, energetics and bonding of VO_x~+ and VO_x(x=1-4) systems. Chemical Physics Letters, 2001. 333: p. 493-503.
    6. R. B. Freas, B. I. D., B. A Waite, J. E. Campna, J. Chem. Phys., 1987. 86: p. 1276.
    7. E. L. King, B. I. d, D. C. Parent, J. Chem. Phys., 1991. 94: p. 2578.
    8. Cox, EA., Transition Metal Oxides. 1992: Clarendon Press, Oxford.
    9. P. Ziemann, A. WJ. C., Phys. Rev. B, 1992. 46: p. 13480.
    10. L. S. Wang, HW., S. R. Desai, Phys. Rev. Lett., 1996. 76: p. 4853.
    11. J. L. Persson, M. A., L. Holmgren, T. Aklint, A. Rosen, Chemical Physics Letters, 1997. 271: p. 61.
    12. J. B. Goodenough, A. H., Landolt-Bemstein New Series Group Ⅲ: Semiconductor. Subvol. G Vol. 17. 1984. 129-291.
    13. R. E. Newnham, Y. MD. H, Z. Kristallogr., 1962. 117: p. 235.
    14. S. Asbrink, S. E, A. Magneli, G Anderson, Acta Chem. Scand., 1959. 13: p. 603.
    15. H. Horiuchi, N. M., M. Tokonami, J. Solid state Chem., 1976. 17: p. 407.
    16. J. Twu, C. S., T. Guo, K. Chen, J. Mater. Chem., 1997. 7: p. 2273.
    17. Andersson, G, Acta Chem. Scand., 1954. 8: p. 1599.
    18. Andersson, G, Acta Chem. Scand., 1956. 10: p. 623.
    
    19. Metsuishi, T., Jpn. J. Appl. Phys., 1967. 6: p. 1060.
    20. Theobald, E, J. Less-Common Met., 1977. 53: p. 55.
    21. Y. Oka, T. T., N. Yamamoto, J. Solid state Chem., 1990. 86: p. 116.
    22. F. Theobald, R. C., J. Bemald, J. Solid state Chem., 1977. 17: p. 431.
    23. C. Tsang, A. M., J. Electrochem Soc., 1997. 144: p. 520.
    24. D. Hagrman, J. Z., C. J. Warren, L. M. Meyer, M J. Treacy, R. C. Haushalter, J. Solid state Chem., 1998. 138: p. 178.
    25. S. A. Selim, CAP., R. Ch. Mikhait, Thermochimica Acta, 1980. 36: p. 287.
    26. C. L. Onnerud, J. O. T., J. Mater. Chem., 1995. 5: p. 1075.
    27. Z. Gui, R. F., X. H. Chen, and Y. C. Wu, A new metastable phase of needle-like nanocrystalline VO_2·H_2O and phase transformation. Journal of solid state chemistry, 2001. 157(250-254).
    28. Douglas Hagrman, J. Z., Christopher J. Warren, Linda M. Meyer, Michael M. J. Treacy, and Robert C. Haushalter, A new polymorph of VO_2 prepared by soft chemical methods. Journal of solid state chemistry, 1998. 138: p. 178-182.
    29. Foex M., A. C. R., Sci., 1946. 223: p. 1126.
    30. M., Y., J. Solid state Chem., 1990. 88: p. 53.
    31. E, M., Phys. Rev. Lett., 1959. 3(1): p. 34.
    32. S. Minomura, H. N., J. Phys. Soc. Jpn, 1964. 19: p. 131.
    33. A. Razavi, T. H., J. Antinovitch, J. Hoffman, Temperature effects on structure and optical properties of radio-frequency sputtered VO_2. J. Vac. Sci. Technol. A, 1989. 7(3): p. 1310-1313.
    34. G Golan, AA., B. Sigalov, B. Gorenstein, Metal-insulator phase transition in vanadium oxides films. Microelectronics Journal, 2003. 34: p. 255-258.
    35. V. G Golubev, D. A. K., A. B. Pevtsov, et. al., PHotonic band gap hysteresis in VO_2 photonic crystal under semiconductor-metal phase transition. Semiconductors, 2002. 36(9): p. 1122-1127.
    36. Kucharezyk D., NT., J. Appl. Cryst., 1979(12): p. 370.
    37.陈长琦,方应翠,朱武,干蜀毅,王先路,二氧化钒相变分析及应用.真
    
    空, 2001(6) : p. 9-13.
    38. Sidorov, A.I., J. Opt. Technol., 1999. 66: p. 41.
    39. O. P. Konovalova, A.I.S., I. I. Shaganov, Opt. Spectrosc, 1998. 85: p. 967.
    40. V. L. Gal'perin, I.A.K., F. A. chudnovskii, E. B. Shadrin, Tech. Phys., 1998. 43(2) : p. 235.
    41. R. T. Kivaisi, M.S., Solar Energy Mater. Solar Cell, 1999. 57(2) : p. 141.
    42. S. J. Jiang, C.B.Y.e.a., Appl. Opt, 1991. 30: p. 847.
    43. D. C. Yin, M.W., W. D. Huang, J. Mater. Sci. Lett., 1999. 18: p. 1239.
    44. J.-C. Valmalette, J.-R.G, Solar Energy Mater. Solar Cell, 1994. 33: p. 135.
    45. J.-C. Valmalette, J.-R.G, High efficiency thermochromic VO_2(R) resulting from the irreversible transformation of VO_2(B). Materials Science and Engineering B, 1998. 54: p. 168-173.
    46. J.-C. Valmalette, J.-R.G, P. Satre, Eur. J. Solid State Inorg. Chem., 1995. 32: p. 71.
    47. Ch. Leroux, GN., G. Van Tendeloo, Phys. Rev. B, 1998. 57: p. 5111.
    48. A. I. Ivon, V.R.K., I. M. Chemenko, Vanadium Dioxide Ceramics. Inorganic Materials, 1996. 32(5) : p. 555-557.
    49. A. I. Ivon, V.R.K.a.I.M.C., Stability of Electrical Properties of Vanadium Dioxide Based Ceramics. Journal of the European Ceramics Society, 1999. 19: p. 1883-1888.
    50. A. I. Ivon, V.R.K.a.I.M.C., Voltage-current characteristics of vanadium dioxide. Journal of the European Ceramics Society, 2003. 23: p. 2113-2118.
    51. T. Christmann, B.F., W. Niessner, D. Schalch, A. Scharmann, Thermochromic VO_2 thin films studied by photoelectron spectroscopy. Thin Solid Films, 1996. 287: p. 134-138.
    52. Frederic Guinneton, J.-C.V, Jean-Raymond Gavarri, Nanocrystalline vanadium dioxide: synthesis and mid-infrared properties. Optical Materials, 2000. 15: p. 111-114.
    53. Granqvist, C.G, Thin Solid Films, 1990. 193/194: p. 730.
    54. W. Burkhardt, T.C., S. Franke, W. Kriegseis, D. Meister B. K. Meyer, W. Niessner, D. Schach, A. Scharmann, Thin Solid Films, 2002. 402: p. 226.
    55
    
    55. Lee, M. H, Sol. Enemy Mater. Sol. Cells, 2002. 71: p. 537.
    56. G V. Jorgenson, J. C. L., Sol. Energy Mater., 1986. 14: p. 205.
    57. Smith, A. W., Appl. Phys. Lett., 1973. 23: p. 437.
    58. I. Balberg, S. T., J. Appl. Phys., 1975. 46: p. 2111.
    59. M. E Becker, A. B. B., R. M. Walser, T. Iepine, P. Georges, A. Brun, Appl. Phys. Lett., 1994. 65: p. 1507.
    60. W., H., J. Mater. Sci., 1971(6): p. 1214.
    61. B., M. D., Phys. Rev. B, 1970(2): p. 3734.
    62.徐庆,陈文,阎家强,崔万秋,掺杂V_2O_3系PTC陶瓷的研究及进展.材料导报,1997.11(4):p.36.
    63. Kimizuka N., I. M, Behavior of Vanadium Dioxide Single Crystals Synthesized under the Various Oxygen Partial Pressures at 1500K. Solid State Chem., 1974(9): p. 69.
    64.郑臣谋,张介立,二氧化钒纳米粉体和纳米陶瓷的制备方法:中国专利,CN 1279211A.2002-1-10.
    65.莱格兰德P,加.J.R,二氧化钒微粒及其制法和用作表面涂层的用途:中国专利,CN 1162949A,1997-10-22.
    66.徐时清,赵康,谷臣清,VO2纳米粉末的溶胶-凝胶法合成及表征.稀有金属.26(3):p.169.
    67. P Jin, S. T., Jpn. J. Appl. Phys., 1995. 34: p. 2459.
    68. P. Jin, S. T., Thin Solid Films, 1996. 281/282: p. 239.
    69. Schlag H. J., S. W., New Sputter Process for VO2 Thin Films and Examination with MIS-Elemants and C-V-Measurements. Thin Solid Films, 2000. 366: p. 199.
    70. T. J. Hanlon, R. EW., J. A. Coath, M. A. Richardson, Thin Solid Films, 2002. 405: p. 234.
    71. Yastaka Takahashi, M. k., et. al., Preparation of VO2 films by organomatallic Chemical vapour depositon and dip-coating J. Mater. Sci., 1989. 24: p. 192.
    72. Tsang C., M. A., Sythesis of Nanocrystalline VO2 and Its Electrochemical Behavior in Lithium Batteries. Electrochem Soc., 1997. 144(2): p. 520.
    73
    
    73.郭宁,何延春,邱家稳,二氧化钒粉末制备工艺研究的现状和发展趋势.钢铁钒钛,2003.24(2):p.61-64.
    74. F. Beteille, J. L., J. Sol-Gel Sci. Technol., 1998. 13: p. 915.
    75. E. Cavanna, J. P. S., J. Livage, Mat. Res. Bull., 1999. 34: p. 167.
    76. Songwei Lu, L. H., Fuxi Gan, Surface analysis and phase transition of gel-derived VO_2 thin films. Thin Solid Films, 1999. 353: p. 40-44.
    77. Yin Dachuan, X. N., Zhang Jingyu, Zheng Xiulin, High quality vanadium dioxide films prepared by an inorganic sol-gel method. Materials Research Bulletin, 1996. 31(3): p. 335-340.
    78. V. Keppens, D. M., L. A. Boatner, Mater. Res. Soc. Symp. Proc., 1998. 495: p. 439.
    79. T. J. Hanlon, J. A. C., M. A. Richardson, Molybdenum-doped vanadium dioxide coatings on glass produced by the aqueous sol-gel method. Thin Solid Films, 2003. 436: p. 269-272.
    80.陆松伟,侯立松,干福熹,溶胶-凝胶法制备VO_x薄膜的半导体-金属相转变.无机材料学报,1990.5(2):p.175-180.
    81.陆松伟,侯立松,干福熹,氧化钒薄膜的成分及相转变的研究.硅酸盐学报,1991.19(2):p.142-146.
    82.尹大川,王猛,黄卫东,纳米结构二氧化钒的制备技术.西北工业大学学报,1999.17(3):p.493-495.
    83.尹大川,许念坎,刘正堂,张晶宇,郑修麟,VO_2薄膜的主要制备工艺参数研究.功能材料,1997.29(1):p.52-55.
    84.尹大川,许念坎,郑修麟,一种制备VO_2薄膜的新技术.西北工业大学学报,1994.12(1):p.147-148.
    85.张绪礼等,电子元件与材料,1998(7):p.13.
    86.杨朝晖等,材料科学进展,1991(5):p.342.
    87.潘颐,吴国章,益小苏,浙江大学学报,1994.28(4):p.425-432.
    88.张驰,刘梅冬,曾亦可,刘少波,黄焱球,VO_2薄膜的研究和应用进展.材 料导报,2003.17:p.214-217.
    89
    
    89.杨绍利,徐楚韶,陈厚生,胡再勇.由工业V_2O_5制取VO_2薄膜.钢铁钒钛,2002.23(2):p.7-10.
    90.杨绍利,徐楚韶,陈厚生,胡再勇.工业VO_2薄膜的电阻突变及其稳定性.中国有色金属学报,2002.12(5):p.925-930.
    91. Valmalette J. C., GJ. R., Vanadium Dioxide/Polymer Composites: Thermochromic Behaviour and Modeling of Optical Transimittance. Solar Energy Mater Solar Cell, 1994. 33: p. 125.
    92.葛欣,尚志航,秦岩,卢志玉,氢水平衡法制备二氧化钒薄膜及XPS能谱分析.光谱实验室,2002.19(6):p.819-821.
    93. V. L'vov, B., Mechanism of carbonthermal reduction of iron, cobalt, nickel and copper oxides. Thermochimica Acta, 2000. 360: p. 109-120.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700