氧化钒薄膜的制备及电学性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为过渡金属元素,钒可以和氧以V_xO_y形式结合成多种氧化物。各种氧化钒薄膜以其优良的性能成为国内外功能材料研究的热点,具有广阔的应用前景。但由于钒的多价态,制备具有纯净化学计量比的氧化钒非常困难。本文利用真空蒸发—真空还原方法以高纯V_2O_5粉末为原料制备出纯度较高、结晶度好的几种主要的氧化钒薄膜(V_2O_5、VO_2(B)、VO_2(A)、V_2O_3),通过控制各个工艺参数(薄膜衬底材料、薄膜厚度、真空度、衬底温度、蒸发电流、蒸发时间、退火时间、退火温度等)来探索最佳制备条件,并运用各种测试方法对薄膜性能进行分析,研究各工艺参数对氧化钒薄膜晶体结构、表面形貌、V离子价态及电学性质等方面的影响。经过多次实验取得了一定成果。本论文的研究工作如下:
     1.研究了衬底温度和衬底材料对薄膜晶体结构和电阻温度系数的影响。发现衬底温度对退火后薄膜的晶粒生长影响不大。而单晶衬底利于氧化钒薄膜生长,且制备的薄膜较非晶衬底具有较高的电阻—温度系数。
     2.研究了退火温度对氧化钒薄膜制备的影响。发现随退火温度升高,薄膜先后经历了单斜晶系VO_2(B)型→单斜晶系VO_2(A)型→四方晶系VO_2→V_2O_3的变化,并对VO_2薄膜进行深入研究。研究发现,三种VO_2薄膜中V均以V~(4+)为主,且VO_2(A)型薄膜中V~(4+)含量最高。薄膜电阻以退火温度460℃时为分界,低于460℃时,VO_2(B)型薄膜电阻和电阻温度系数随退火温度升高而增大,高于460℃时,四方晶系VO_2薄膜电阻及其电阻温度系数随退火温度升高呈现相反的趋势。在460℃时,薄膜的电阻温度系数最大,能达到3.2%/℃.经查新说明,使用这种工艺方法和条件制备各种氧化钒薄膜是本工作的创新。
Vanadium as a transition element can compose varial Vanadium oxides by V_xO_y with oxygen and Vanadium oxides have been widely studied because of their excellent characters. But Vanadium has so many valence that Vanadium Oxides with strict metric are not available. In this paper, good crystal thermal-sensitive Vanadium oxides (V_2O_5, VO_2(B), VO_2(A), V_2O_3) thin films are prepared from V_2O_5 powder by vacuum evaporation and vacuum annealing. We selected the best qualifications by experimenting with various fabricative parameters such as underlay material and temeprature, thin film thickness, vacuum degree, evaporation current, evaporation time, anealing hour, anealing temperature. The structural properties, surface morphology, electrical properties, and V ion valence state of VOx thin films were measured by tesing and analysed and some instructive results were got. The contents of the work are listed as following:
    1. The effects on the crystal structure and the temperature coefficient of Vanadium oxide thin films were studied because of different underlay temperatures and materials. Rusults were found underlay temperature did not influence obviously the crystals' sizes of the thin films, but Vanadium oxide thin films on single-crystal underlay had better crystal structure and temperature coefficient of
引文
[1] Morin F. J., Phys. Rev. Lett., 1959, 3: 34
    [2] 申文等著.《无机化学丛书》第八卷.北京:科学出版社,1998.224
    [3] Partlow D. P., Gukovich S. R., Radford K. C., et al. J. Appl. Phys.,1991, 70: 443
    [4] Kimizuka Noboru, Ishii Motihiko, Kawada Isao et al. BEHAVIOR OF VANADIUM DIOXIDE SINGLE CRYSTALS SYNTHESIZED UNDER THE VARIOUS OXYGEN PARTIAL PRESSURES AT 1500 K, Journal of Solid State Chemistry, 1974, 9(1): 69
    [5] M. L. Gray, W. J. Croft, K. Dwight et al. Effect of high pressure on the electronic properties of VO_2, J. of solid state chemistry, 1984, 54: 421
    [6] J. przedmojsky, B. pura, W. Piekarczyk et al.. Phase transformation of twinned VO_2 crystals obtained by means of chemical transport method, Phys. Stat. Sol. (a), 1972, 11: K1
    [7] Hans W. Verleur, A. S. Barker, C. N. Berglund et al. Optical properties of VO_2 between 0.25 and 5 eV, Physical Review, 1968, 172(3): 788
    [8] W. Bruckner, W. Moldenhauer, H. Wich et al. The Range of homogeneity of VO_2 and the influence of the composition on the physical properties, Phys. Stat. Sol.(a), 1975, 29: 63
    [9] D. B. Mcwhan, M. Marezio, J. P. Remeika et al. X-ray diffraction study of metallic VO_2, Phys. Rev. B, 1974, 10(2): 490
    [10] Larry A, Ladd, William Paul, Solid State Communications, 1969, 7: 425
    [11] Noboru Kimizuka, Motohiko Ishh, Isao Kawada et al. Behavior of vanadium dioxide single crystals synthesized under the various oxygen partial pressures at 1500K, J. of Solid state chemistry, 1974, 9: 69
    [12] H. oppermann, W. Reichelt, U. Gerlach et al. The range of homogeneity of VO_2 and the influence of the composition on the physical properties, Phys. stat. sol. (a), 1975, 28: 439
    [13] Ramakant Srivastava, L. L. Chase. Raman spectrum of semiconducting and metallic VO_2. Physical Review Letters, 1971, 27(11): 727-730
    [14] F. C. Case. Simple resistance model fit to the oxidation of a vanadium film into VO_2, J. Vac. Sci. Technol. A, 1988, 6(1): 123
    [15] F. C. Case. Modification in the phase transition properties of predeposited VO_2 films, J. Vac. Sci. Technol. A, 1984, 2(4): 1509
    [16] J. Livage, G. Guzman, F. Beteille. Optical properties of Sol-Gel derived vanadium oxide films, J. of Sol-Gel Sci. and Technol.. 1997, 8: 857
    [17] Songwei LU, Lisong Hou, Fuxi Gan. Preparation and optical properties of phase-change VO_2 thin films, J. of Mat. Sci.. 1993, 28: 2169
    [18] P. Jin, M. Tazawa, K. Yoshimura et al.. Thermochromism of metal-doped VO_2 films deposited by dual-target sputtering, SPIE Vol. 2255, 1994: 415
    [19] 吴召平,方平安.二氧化钒薄膜在α-Al_2O_3衬底上的外延生长及其金属半导体相变特性研究,无机材料学报,1999,14(5):823
    [20] A. Razavi, L. Bobyak, P. Fallon. The effects of biasing and annealing on the optical properties of radio-frequency sputtered VO_2, J. Vac. Sci. Technil. A, 1990, 8(3): 1391
    [21] Yin DaChuan, Xu Niankan, Zhang Jingyu et al.. Vanadium dioxide films with good electrical switching property, J. Phys. D:Appl. Phys.,1996, 29: 1051
    [22] S. -J. Jiang, C. -B. Ye, M. S. R. Khan et al.. Structural and compositional evolution during oxidation of vanadium coatings, SPIE Vol. 1272, 1990: 185
    [23] 陈长虹、易新建、张静等.基于VO_2薄膜非致冷红外探测器性能研究,红外与毫米波学报,2001,20(2):136
    [24][68] 李华高,杨子文,刘爽.非致冷红外探测器用VO_2薄膜的制备,半导体光电,2001,22(1):38
    [25] 王宏臣、易新建、黄光等.一种制备氧化矾薄膜的新工艺,半导体光电,2003,24(4):280
    [26] E. Kusano, J. A. Theil et al. J. Vac. Sci. Technol. A, 1988, 6(3): 1663
    [27] F. C. Case. J. Vac. Sci. Technol. A, 1987, 5(4): 1762
    [28] A. Razavi, L. Bobyak, P. Fallon. The effects of biasing and annealing on the optical properties of radio-frequency sputtered VO_2, J. Vac. Sci. Technil. A, 1990, 8(3): 1391
    [29] 崔敬忠,达道安,姜万顺.VO_2热致变色薄膜的结构和光电性能研究,物理学报,1998,47(3):454
    [30] Mitsuhiro Nagashima, Hideo Wada, Kunihiro tanikawa et al.. The electronic behaviors of oxygen-deficient VO_2 thin films in low temperature region, Jpn. J. appl. Phys., 1998, 37: 4433
    [31] F. C. Case. J. Vac. Sci. Technol. A, 1987, 5(4): 1762
    [32] K. D. Ufert. Phys. Stat. Sol. (a), 1977, 42: 187
    [33] Leonov A. S., Podsvirov O. A.. Degradation of the phase transition in vanadium dioxide during electron bombardment and heat treatment, Soviet Technical Physocs Letters, 1984, 10(9): 440
    [34] 卢勇,林理彬,邹萍,等.辐照VO_2薄膜光学的底注量电子辐照方法.中国激光,2001,28(10):941
    [35] Foex M. Etude dilatometrique et electrique de I'anomalie, presentee a basse temperature, par le sesquioxyde de vanadium. Compt. Rend., 1946, 223: 1126.
    [36] McWhan D B, Remeika J P. Metal-insulator transition in (V_(1-x)Cr_x)_2O_3. Phys. Kev. ti, 1970, 2: 3734.
    [37] Mattheiss L F. Band properties of metallic corundum-phase. J. Phys.: Condens. Matter, 1994, 6: 6477.
    [38] Di Matteo S, Jansen A G M. Magnetoclectricity in V_2O_3. Phys. Rev. B, 2002, 66: 100402
    [39] Shiina. R, Mila F, Zhang F-C, et al. Atomic spin, molecular orbitals, and anomalous antiferromagnetism in insulating V_2O_3. Phys. Rev. B, 2001, 63: 144422.
    [40] M cWhan D B, Rice T M, Remeika J P. Mott transition in Cr-doped V_2O_3. Phys. Rev. Lett., 1969, 23: 1384.
    [41] McWhan D B, Menth A, Remeika J P, et al. Metal-insulator transitions in pure and doped V_2O_3. Phys. Rev. B, 1973, 7: 1920.
    [42] 吴广明,吴永刚,等.锂离子注入对V_2O_5薄膜光吸收的影响,光学学报,1999,19(5):640
    [43] 吴广明,吴永刚,等.V_2O_5薄膜电荷存储特性研究,无机材料学报,1997,12(4):545
    [44] 周静,陈文,V_2O_5复合薄膜材料的电子结构研究,硅酸盐学报(2002)Vol.30,No.2
    [45] I. Czekaj, M. Witko, K. Hermann. Structure and electronic properties of the V_2O_3, Surface Science 525 (2003): 46
    [46] A. Razavi, L. Bobyak, P. Fallon. The effects of biasing and annealing on the optical properties of radio-frequency sputtered VO_2, J. Vac. Sci. Technil. A, 1990, 8(3): 1391
    [47] Hideo Wada, Mitsuhiro Nagashima, Naoki Oda et al. Design and performance of 256x256 botometer-type uncooled infrared detector. SPIE, 1998, 3379: 90
    [48] E. C. Jelks, R. M. Walser, R. W. Bene et al.. Response of thermal filament in VO_2 to laser-produced thermal perturbations, Applied Physics Letters, 1975, 26(7): 355
    [49] I. Balberg, S. Trokman. High-contrast optical storage in VO_2 films, Journal of Applied Physics, 1975, 46(5): 2111
    [50] 邱家伟,达道安.卫星激光防护技术研究真空与低温,1996,5(2):6465
    [51] Kimizuka, N., Saeki. M., Mater. Res. Bull1970, 5: 403
    [52]. Kwan, C. C. Y, Griffiths, C. H. ect. Appl. Phys. Lett., 1972, 20: 93
    [53] Griffiths, C. H. and Eastwood, H. K, J. Appl. Phys., 1974, 45(5): 2201
    [54] Jorominek, H., Picard, F ect. Opt. Eng. 1993, 32(9): 2092
    [55] Robert C. Weast, Melvin J. Astle, William H. Beyer. CRC Handbook of Chemistry and Physics: 69th Edition, CRC Press, Inc. 1988, Boca Raton, Florida: D-91
    [56] 尚东.四川大学硕士学位论文,《适用于非致冷红外探测器的氧化钒薄膜的制备及电学性质研究》.2005:19
    [57] Di Matteo S, Perkins N B, Natoli C R. Ground-state electronic properties of V_2O_3. J. Phys. Condens. Matter, 2002, 14: 37.
    [58] Di Matteo S, Perkins N B, Natoli C R. Spin-1 effective Hamiltonian with three degenerate orbitals: an application to the case of V_2O_3. Phys. Rev. B, 2002, 65: 54413.
    [59] Goodenough J B. Role of the crystal c/a ratio in Ti_2O_3 and V_2O_3. Proceedings of the Tenth International Conference on the Physics of Semiconductors (US Atomic Energy Commission). Oak Ridge, 1970: 304.
    [60] Abe H, Terauchi M, Tanaka M, et al. Electron Energy-Loss Spectroscopy study of the metal-insulator transition in (V_(1-x)Cr_x)_2O_3 (x=0.012). Jpn. J. Appl. Phys., 1999, 38: 1043
    [61] Frenkel. A. I, Stern. E. A, Chudnorsky. F. A. Local structure changes in V_2O_3 below and above the metal-insulator transition. Solid State Commun., 1997, 102: 637.
    [62] 杨邦朝,王文生.薄膜物理与技术,电子科技大学出版社,成都,1997:34
    [63] 潘梦宵,曹兴忠,李养贤,等.氧化钒薄膜微观结构的研究[J].物理学报,2004,53:1958.
    [64] Yuan. N. Y, Li. J. H., Lin. C. L. Valence reduction process from sol-gel V_2O_5 thin films[J]. Appl. Surf. Sci. 2002, 191: 176.
    [65] Takahashi. I, Hibino. M, Kudo. T. Jpn. J. Appl, 1985, 235: 485.
    [66] Griffiths. C. H, Eastwood. H. K. Influence of stoichiometryon the metal-semicondu-ctor transition in vanadium dioxide[J]. J. Appl. Phys. 1974, 45 (5): 2201.
    [67] Cui. J. Z, Da. D. A, Iiang. W. S. Structure characterization of vanadium oxide thin films prepared by magnetron sputtering methods[J]. Appl. Surf. Sci. 1998, 133: 225.
    [69] 卢勇,林理彬.利用制备参数的改变调整VO_2薄膜的电阻温度系数[J].半导体光电,2001,22(3):181.
    [70] 刘中华,等.退火真空度与氧化钒薄膜物相相关性的研究。待发表
    [71] 卢勇,VO_2薄膜的制备及其辐照效应研究,四川大学博士论文,2002:2
    [72] P. Jin, S. Nakao, S. Tanemura, T. Belletal. Characterization of mechanical properties of VO_2 thin film on sapphire and silicon by ultra-microindentation, Thin solid films, 1999, 343-344: 134-137
    [73][74] 谢建生,李金华,袁宁一,退火对IBED氧化钒薄膜结构和性能的影响.微细加工技术,2004.12(4):36.
    [75] 尚东、林理彬、何捷,等.特性二氧化矾薄膜的制备及电阻温度系数的研究.四川大学学报,2005,6(3):524
    [76] 李金华.袁宁一.离子束增强沉积VO_2多晶薄膜的温度系数.物理学报,2004,53(8):2683
    [77] 杨邦朝,王文生,薄膜物理与技术,机械电子工业出版社,158
    [78][79] 袁宁一,氧化钒红外敏感膜和非致冷焦平面成象阵列研究,中国科学院研究生院博士论文,2002:28

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700