非金属元素掺杂半导体矿物制备、结构表征及光催化降解高/大分子有机污染物的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,环境中的高/大分子有机污染物的治理已经成为环境科学技术研究的焦点之一。多相光催化作为一种深度氧化技术,已经被公认是最有前景的绿色环境净化技术之一。以TiO2为代表的半导体多相光催化技术已经在环境污染治理领域取得了较大的成效,但其较高的禁带宽度导致其仅能够在紫外光下具有光催化活性,严重限制了其推广和应用。具有较低禁带宽度的针铁矿、锰钾矿等半导体矿物则弥补了这一不足,然而,现阶段对其光催化降解有污染物的报道相对较少,降解机理尚无定论。本文针对半导体矿物光催化技术在走向应用的过程中存在的科学与技术问题,对半导体矿物及其非金属元素掺杂复合体光催化作用机理、催化材料的制备方法及催化剂的固定等方面进行了进一步的探讨。研究结果深化了对半导体矿物光催化机理的认识,为非金属元素掺杂半导体材料的制备提供了新方法,同时也为其应用奠定了理论基础。本文主要内容及结论如下:
     (1)采用溶胶凝胶法合成了常见的半导体矿物针铁矿和锰钾矿,为评价其对环境中高分子有机污染物的光催化降解活性,采用包埋法人工合成了负载针铁矿或锰钾矿的聚乙烯膜,进行了复合膜在紫外光及可见光照射下的光催化降解实验。利用SEM、FT-IR、XPS等技术研究复合膜及纯PE膜在光照前后的表面形貌、结构、成分的变化。研究结果表明,在紫外光照射下,添加了针铁矿或锰钾矿的复合膜降解性能显著提高,降解速率和降解程度均高于纯PE膜。FT-IR和XPS的结果表明,复合膜的光催化降解产中含有羟基、C=O和C-O,降解过程具有环境友好性。复合膜降解的主要机理为聚乙烯高分子长链在紫外光照射下与活性氧发生光解反应,产生了一定量的羰基或羧基基团,而针铁矿或锰钾矿的存在,加速了活性氧基团的生成速度,从而加剧生成的羰基或羧基在紫外光下降解过程。上述过程始于聚乙烯与催化剂的界面处,催化剂表面产生的活性氧物种扩撒至聚乙烯骨架使其降解。由于分子氧在可见光下比较稳定,故聚乙烯高分子链在可见光照射时很少受到活性氧的直接进攻,不易被破坏;另一方面,针铁矿和锰钾矿等半导体矿物在可见光照射下虽可使分子氧活性得以提高,但其量不足以打破聚乙烯的主链结构,进而没有光催化降解现象的产生。
     (2)本文的主要工作之一是以硼酸为B源,采用溶胶凝胶法合成了掺杂硼的针铁矿和锰钾矿等半导体矿物,利用化学组成分析、BET、XRD、TEM、FT-IR、UV-vis DRS、XPS等技术对掺杂B的针铁矿和锰钾矿进行了表征。为进一步测定非金属元素掺杂的半导体矿物光催化降解活性,用包埋法合成了掺杂硼针铁矿(或锰钾矿)-PE复合膜,进行了紫外光和可见光照射下的薄膜降解实验。研究发现,硼的进入,改变了针铁矿和锰钾矿的基本理化性状,阻碍了针铁矿和锰钾矿的结晶生长,减小了其颗粒粒径,增加了矿物的比表面积。紫外可见漫反射图谱证明,硼的掺杂,均提高了矿物的光响应范围。尽管在XPS中未检测到硼元素的存在,然而,对矿物中其他元素的精细图谱对比可以确定,硼的掺杂使矿物中的元素价态及结构发生了改变。在紫外光照射下,掺硼铁锰氧化物-PE复合膜的降解效率明显高于普通铁锰氧化物-PE复合膜及纯PE膜;SEM和FT-IR结果表明,掺硼铁锰氧化物-PE复合膜的降解程度也均高于铁锰氧化物-PE复合膜及纯PE膜的降解程度。这一降解机理应归于掺硼铁锰氧化物更小的颗粒粒径、更大的比表面积及晶格内部中硼的缺电子特性。可见光照射下,掺硼铁锰氧化物-PE复合膜也同样没有光催化降解现象的产生,可能是由于掺硼铁锰氧化物在可见光照射下光激发产生的活性氧自由基仍较少,不足以破坏聚乙烯主链结构。
     (3)为进一步了解非金属元素掺杂的半导体矿物的可见光光催化降解活性,本文以油酸为表面活性剂和C源,采用基于自组装技术的改性溶胶凝胶法合成C掺杂Ti02,通过孔隙率分析、XRD、HR-TEM、XPS、FT-IR、Raman、EPR等技术对其进行了表征,并以C-TiO2为催化剂,进行了在可见光照射下多相光催化降解水体中的微囊藻毒素实验。研究发现,在煅烧温度为350℃,以油酸为碳源合成的C-TiO2呈锐钛矿相,具有较好的介孔结构。不同用量油酸合成的C-TiO2均在可见光区具有光响应,其中OA1的禁带宽度仅为2.68eV,远低于锐钛矿的3.2eV。XPS分析结果表明,实验合成的C-TiO2中含有C-Ti和C-O键,证实了C的掺杂,取代了Ti02中部分的晶格氧。EPR结果也同样证明,油酸处理的C-TiO2具有两种不同结构的含碳基团(C-Ti和C-O)。MC-LR的降解实验表明,在可见光照射下,相对于参照Ti02,C-TiO2实现了对MC-LR的可见光催化降解。
     (4)传统的粉末催化剂由于其纳米级粒径,极难回收,容易造成环境的二次污染,将粉末催化剂固定在特定载体上则成为了研究热点。在催化剂固定方面,本文尝试了以硅酸盐玻璃片为载体,以吐温80为表面活性剂和C源,以乙二胺为N源合成C、N共掺杂Ti02薄膜。为探讨这种半导体薄膜的可见光光催化活性,进行了其在可见光照射下对MC-LR的光催化降解实验,考察了不同薄膜制备煅烧温度对产物结构和性能的影响。研究发现,C-N-TiO2薄膜样品的比表面积、孔隙率、粒径、孔径分布均可以通过煅烧温度来控制。其中,在煅烧温度为400℃时,薄膜样品可以获得较高的比表面积、较小的粒径、较窄的孔径分布及粗糙度较高(360nm)的表面结构。紫外-可见(UV-vis)吸收光谱表明,C、N共掺杂导致了薄膜样品光响应区的红移,增强了其光响应范围。MC-LR降解实验表明,C-N-TiO2薄膜样品能够在可见光照射下光催化降解MC-LR,其中,薄膜样品经过三次循环使用后,其光催化效率并没有发生明显改变,证明了用此方法合成的薄膜催化剂样品具有较高的稳定性。C-N-TiO2半导体薄膜在可见光下增强催化降解效率可归因于C、N的共掺杂和其较高粗糙度的表观结构。
Recently, the macromolecular organic pollutants have become a focus problem in the environmental remediation. As an effective advanced treatment technology, Heterogeneous phototcatalysis is a promising and innovative green purification technology. Photocatlaysis technology based on TiO2has provided an effective and promising means for remediation of environmental pollutants in air and water. However, the widespread technological used of TiO2is impaired by its wide band gap (3.2eV) which can only be activated under UV light. Iron and manganese oxide are abundant semiconductor minerals in soil and play a critical role in many chemical and biological processes due to their lower band gap energy. To our best knowledge, little has been done on the photocatalytic degradation of macromolecular organic pollutants with semiconductor minerals as catalyst and the mechanism of photocatalytic on the semiconductor minerals is not clarified. Therefore, considering the unsolved scientific and technological problems of semiconductor minerals and nonmetal doped semiconductor minerals for future application, valuable explorations have been carried out on photocatalytic mechanism, novel preparation methods of visible light photocatalytic materials, and the immobilization of catalysts in this dissertation. The study provides insights into the visible light photocatalytic mechanism, novel preparation methods for nonmetal doped semiconductor minerals photocatalytic materials and theoretical support for the application of nonmetal doped semiconductor minerals. The major research contents and results are listed as follows:
     (1) Goethite and cryptomelane were successfully synthesized by sol-gel method. In order to evaluate the photocatalytic activity of goethite and cryptomelane, a novel photodegradable polyethylene-goethite (cryptomelane) composite film was prepared by embedding the goethite (cryptomelane) into the commercial polyethylene. The degradation of PE-goethite (cryptomelane) composite films was investigated under ultraviolet and visible light irradiation. The photodegradation activity of the PE plastic was determined by monitoring its weight loss, scanning electron microscopic (SEM) analysis and FT-IR spectroscopy. The results show that the composite films have highly enhanced photodegradation, which decompose much faster and more completed than pure PE film. The main products of photocatalytic degradation of composite film are H2O and small molecular volatile materials with C=O and C-O under the UV light irradiation. The mechanism of the degradation of composite films could be attributed to the photodegradation and photocatalytic degradation of polyethylene. The reaction of polyethylene under UV light irradiation occurred via direct absorption of photons by the polyethylene macromolecule to create exited states, which resulted in some carbonyl and carbonxyl groups produced. The carbonyl and carbonxyl groups could be further destroyed by the reactive oxygen species generated on catalysts surface under the visible light irradiation.The degradation initially on the interface of PE and catalysis and then extended into polymer matrix. The weight loss was not detectable for the composite film and pure PE film under the visible light irradiation, which could be attributed to the stable of polyethylene under the visible light. The reactive oxygen species generated on the goethite and cryptomelane surface might not etch the polymer matrix.
     (2) Boron modified goethite and cryptomelane was successfully by sol-gel method using boric acid as boron source. Chemical composition analysis, BET, XRD, TEM, XPS, FT-IR and UV/Vis diffuse reflectance characterization were performed. In order to investigate the photocatalytic activity of nonmetal doped semiconductor minerals, a novel photodegradable polyethylene-boron-goethite (cryptomelane) composite film was prepared by embedding the boron doped goethite (cryptomelane) into the commercial polyethylene. The goethite (cryptomelane) catalyst was modified by boron in order to improve its photocatalystic efficiency under the ultraviolet and visible light irradiation. Solid-phase photocatalytic degradation of the PE-B-goethite (cryptomelane) composite film was carried out in an ambient air at room temperature under ultraviolet and visible light irradiation. The results showed boron doping changed the basic propersities of the goethite (cryptomelane), inhibit the grain growth, decreased the crystallize size, increased the BET surface area. UV-vis spectra revealed that the optical absorption edge of B-doped goethite (cryptomelane) was red shifted. Though there was no boron peak detected in the XPS results, the valence structure of other elements have been changed with B-doped. The photo-induced degradation of PE-B-goethite (cryptomelane) composite film was higher than that of pure films and the PE-goethite (cryptomelane) composite film under the UV light irradiation. SEM and FT-IR results showed that the PE-B-goethite (cryptomelane) composite film decompose much faster and more completed than pure PE film and PE-goethite (cryptomelane) composite film. The mechanism of degradation of PE-B-goethite (cryptomelane) composite film could be attributed to lower crystallize size, lager BET surface area, electronic characteristics of boron. There was also no degradation phenomenon occurred on the PE-B-goethite (cryptomelane) composite film, which due to the fewer reactive oxygen species generated on the B-doped goethite and cryptomelane surface under the visible light irradiation.
     (3) Heterogeneous photocatalytic degradation of microcystin-LR was demonstrated by visible light-activated carbon doped TiO2(C-TiO2) nanoparticles, synthesized by a modified sol-gel route based on the self-assembly technique exploiting oleic acid as pore directing agent and carbon source. The C-TiO2nanoparticles crystallize in anatase phase despite the low calcination temperature of350℃and exhibit a highly porous structure that can be optimized by tuning the concentration of the oleic acid surfactant. The carbon modified nanomaterials exhibited enhanced absorption in the broad visible-light region together with an apparent red shift of the absorption edge leading to an effective indirect bandgap of2.68eV, compared with3.18eV of a reference anatase TiO2. Carbon species were identified by XPS analysis through the formation of both Ti-C and C-O bonds, indicative of carbon substitution for oxygen atoms and the formation of carbonates, respectively. EPR spectroscopy revealed the formation of two carbon related paramagnetic centers in C-TiO2, whose intensity was markedly enhanced under visible light illumination, pointing to the formation of localized states within the anatase band gap, following carbon doping. The photocatalytic activity of C-TiO2nanomaterials was evaluated for the degradation of microcystin-LR (MC-LR) at pH3.0under visible light (λ>420nm) irradiation. The doped materials showed higher MC-LR degradation rate than reference TiO2, behavior that is attributed to the carbon incorporation into the titania lattice.
     (4) The powder of catalyst has has obvious drawbacks, such as agglomeration and not easy to recover, the possible mobility of suspended TiO2powders in the environment impose a health risk due to the possible toxicity of their nanoscale. Thus, it becomes a challenging to prepare materials immobilized on substrate. In this work, a carbon-based surfactant sol-gel method was employed to synthesize high surface roughness and visible-light-active C-N-TiO2films with borosilicate glass as surstrate. The enhancement of photocatalytic activity of C-N-TiO2films was evaluated for the degradation of the microcystin-LR (MC-LR) under the visible light irradiation in water. The results revealed that the physicochemical properties of the films, such as specific surface area, porosity, crystallite size and pore size distribution could be controlled by the calcination temperature. The higher surface area, smallest crystallite size and narrow pore size distribution were obtained for C-N-codoped TiO2films calcined at400℃, which exhibit very high surface roughness (360nm). UV-vis spectroscopy showed that as-prepared C-N-TiO2films exhibited stronger absorption in the visible light region and a red shift in the band gap transition due to C-N-codoping. C-N-TiO2films effectively degraded MC-LR under visible light compared to reference film. Especially, Similar MC-LR degradation rates under visible light after three cycles revealed high mechanical stability and no irreversible changes of the film during photocatalysis. The enhancement in visible light photocatalytic activities of the C-N-codoped TiO2films was attributed to the synergistic effects of carbon and nitrogen dopants, and high surface roughness of the prepared films.
引文
1.程东升,朱端卫,刘武定.几种矿物与硼作用的红外光谱特性研究.土壤学报.2002,39:671-678
    2.邓芳,李越湘,罗旭彪,涂新满,曾桂生,王玖.煅烧温度、煅烧时间和Fe3+掺杂量对Ti02光催化性能的影响.材料导报,2010,24:83-86
    3.冯雄汉,翟丽梅,谭文峰,刘凡,贺纪正.几种氧化锰矿物的合成及对重金属的吸附和氧化特性.岩石矿物学杂志,2005,24:531-538
    4.侯清玉,张跃,张涛.含氧空位锐钛矿Ti02光学性质的第一性原理研究.光学学报,2008,28:1347-1352
    5.何文清,严昌荣,赵彩霞,常蕊琴,刘勤,刘爽.我国地膜应用污染现状及其防治途径研究.农业科学学报,2009,28:533-538
    6.孔繁翔,高光.大型浅水富营养化湖泊中蓝藻水华形成机理的思考.生态学报,2005,25:589-595
    7.李团结,郑新伟,陈晓军,马天博,张伟,贾乃峰,李萍.农用残膜污染现状及治理措施.现代农业科技,2010,第11期:282-285
    8.李倩,俞颖,赵雅兰,朱丽君,冯雄汉,刘凡,邱国红.锰钾矿氧化硫化物特性与动力学研究.环境科学,2011:32:2012-2018
    9.刘倩辉,裴海燕,胡文荣,蒋波.活性炭去除水体中微囊藻毒素的研究进展.工业水处理,2010,30:8-11
    10.刘琳琳,田华,贺军辉,杨巧文,王东.隐钾锰矿型和水钠锰矿型氧化锰的研究进展.化学通报,2011,74:291-297
    11.廖水姣,王娟,朱端卫,任丽英,周文兵,丁家旺.负载硼的针铁矿结构表征研究.土壤学报,2006,43:742-748
    12.缪恒锋,周勤,王志良,严群,阮文权.微囊藻毒素-RR的臭氧降解研究.环境科学,2010,31:1239-1245
    13.鲁安怀.环境矿物材料基本性能—无机界矿物天然自净化功能.岩石矿物学杂质,2001,20:371-381
    14.鲁安怀.矿物环境属性与无机界天然自净化功能.矿物岩石地球化学通报,2002,21:192-197
    15.苗超林,杨书廷,尹艳红,刘山虎.N掺杂Ti02对聚乙烯复合薄膜的光催化降解研究.化学研究,2011,22:11-14
    16.孙振亚,祝春水,龚文琪.铁(氢)氧化物矿物对有机污染物的光催化氧化作用.矿物学报,2003,23:341-348
    17.熊裕华,李凤仪.Fe3+掺杂Ti02光催化降解聚乙烯薄膜的研究.物理化学学报,2005,21:607-611
    18.熊慧欣,周立祥.α-FeOOH纳米微粒的凝胶网格沉淀法制备及光谱性质.光谱学与光谱分析,2009,29:1590-1594
    19.许宜铭.环境污染物的光催化降解:活性物种与反应机理.化学进展.2009,21:524-533
    20.王朝晖,张玉娟,曹宇,谢隆初.微囊藻毒素对水环境的影响研究进展.生态科学,2006,25:188-191
    21.岳林海,水淼,徐铸德.二氧化钛微晶结构和光催化性能关联性研究.化学学报,1999,57:1219-1225
    22.张璞,王程,李敬敬,刘植凤,李艳.天然半导体矿物光催化性能研究进展.无机盐工业,2008,40:1-4
    23.张嵌,冯雄汉,邱国红,谭文峰,刘凡.不同氧化锰矿物对光催化降解苯酚的影响.矿物学报,2011,31:263-273
    24.张松,李琪,乔庆东.半导体复合Ti02纳米光催化剂.化学通报,2004,第4期:295-299
    25.朱焕扬,杨斌,张剑平,朱惟德,施利毅.纳米二氧化钛催化降解聚乙烯薄膜的研究.功能材料,2007,38:462-468
    26. Atkinson R J, Posner A M, Quirk JP. Adsorption of potential determining ions at the ferric oxide aqueous electrolyte interface. J Phys Chem,1967,71,550-558
    27. Andreozzi R, Caprio V, Marotta R. Oxidation of 3,4-dihydroxybenzoic acid by means of hydrogen peroxide in aqueous goethite slurry. Water Res,2002,36:2761-2768
    28. Antoniou M G, Nicolaou P A, Shoemaker J A, De La Cruz A A, Dionysiou D D. Impact of the morphological properties of thin TiO2 photocatalytic films on the detoxification of water contaminated with the cyanotoxin, microcystin-LR. Appl Catal B,2009,91:165-173
    29. Antoniou M G, Shoemaker J A, De La Cruz A A, Dionysiou D D. LC/MS/MS structure elucidation of reaction intermediates formed during the TiO2 photocatalysis of microcystin-LR. Toxicon,2008,51:1103-1118
    30. Asahi R, Morikawa T, Ohwaki T. Visible-light photocatalytsis in nitrogen doped titanium oxides. Science,2001,293:269-271
    31. Bahnemann D, Bockelmann D, Goslich R. Mechanistic studies of water detoxification in illuminated TiO2 suspensions. Sol Energy Mater,1991,24: 564-583
    32. Baldrian P, Merhautova V, Gabriel J, Nerud F, Stopka P, Hruby M, Benes M J. Decolorization of synthetic dyes by hydrogen peroxide with heterogeneous catalysis by mixed iron oxides. Appl Catal B,2006,66:258-264
    33. Bakardjieva S, Stengl V, Subrt J, Houskova V, Kalenda P. Photocatalytic efficiency of iron oxides:Degradation of 4-chlorophenol. J Phys Chem Solids, 2007,68:721-724
    34. Barrault J, Tatibouet J M, Papayannakos N. Catalytic wet peroxide oxidation of phenol over pillared clays containing iron or copper species. C R Acad Sci Paris Ser IIC Chem,2000,3:777-783
    35. Begum N S, Ahmed H M, Hussain O M. Characterization and photocatalytic activity of boron-doped TiO2 thin films prepared by liquid phase deposition technique. Bull Mater Sci,2008,31:741-745
    36. Bonhomme S, Cuer A, Delort A M, Lemaire J, Sancelme M, Scott G. Environmental biodegradation of polyethylene. Poly Degrad Stab,2003,81:441-452
    37. Carriazo J, Guelou E, Barrault J, Tatibouet J M, Molina R, Moreno S. Catalytic wet peroxide oxidation of phenol by pillared clays containing Al-Ce-Fe.Water Res, 2005,39:3891-3899
    38. Chen C, Ma W, Zhao J. Photocatalytic degradation of organic pollutants by co-doped TiO2 under visible light irradiation. Curr Org Chem,2010,14:630-644
    39. Chen G, Zhao L, Dong Y H. Oxidative degradation kinetics and products of chlortetracycline by manganese dioxide. J Hazard Mater,2011,193:128-138
    40. Chen J, Zhu L. Heterogeneous UV-Fenton catalytic degradation of dyestuff in water with hydroxyl-Fe pillared bentonite. Catal Today,2007,146:463-470
    41. Chen Y J, Dionysiou D D. Bimodal mesoporous TiO2-P25 composite thick films with high photocatalytic activity and improved structural integrity. Appl Catal B, 2008,80:147-155
    42. Chen Y J, Stathatos E, Dionysiou D D. Microstructure characterization and photocatalytic activity of mesoporous TiO2 films with ultrafine anatase nanocrystallites. Surf Coat Tech,2008,202:1944-1950
    43. Chiesa M, Giamello E, Che M. EPR Characterization and Reactivity of Surface-Localized Inorganic Radicals and Radical Ions. Chem Rev,2010,110: 1320-1347
    44. Chirchi L, Ghorbel A. Use of various Fe-modified montmorillonite samples for 4-nitrophenol degradation by H2O2. Appl Clay Sci,2002,21:271-276
    45. Choi H, Sofranko A C, Dionysiou D D. Nanocrystalline TiO2 Photocatalytic Membranes with a Hierarchical Mesoporous Multilayer Structure:Synthesis, Characterization, and Multifunction. Adv Funct Mater,2006,16:1067-1074
    46. Choi H, Antoniou M G, Pelaez M, De La Cruz A A, Shoemaker J A, Dionysiou D D. Mesoporous Nitrogen-Doped TiO2 for the Photocatalytic Destruction of the Cyanobacterial Toxin Microcystin-LR under Visible Light Irradiation. Environ Sci Technol,2007,41:7530-7535
    47. Choi Y, Umbayshi Y, Yoshikawa M. Fabrication and characterization of C-doped anatase TiO2 photocatalysts. J Mater Sci,2004,39:1837-1839
    48. Cong Y, Li X, Qin Y, Dong Z, Yuan G, Cui Z, Lai X. Carbon-doped TiO2 coating on multiwalled carbon nanotubes with higher visible light photocatalytic activity. Appl Catal B,2011,107:128-134
    49. Cornish B J P A, Lawton L A, Robertson P K J. Hydrogen peroxide enhanced photocatalytic oxidation of microcystin-LR using titanium dioxide. Appl Catal B, 2000,25:59-67
    50. Cozzoli P D, Kornowski A, Weller H. Low-Temperature Synthesis of Soluble and Processable Organic-Capped Anatase TiO2 Nanorods. J Am Chem Soc,2003,125: 14539-14548
    51. Di Valentin C, Pacchioni G, Selloni A. Theory of Carbon Doping of Titanium Dioxide. Chem Mater,2005,17:6656-6665
    52. Dong F, Guo S, Wang H, Li X, Wu Z. Enhancement of the Visible Light Photocatalytic Activity of C-Doped TiO2 Nanomaterials Prepared by a Green Synthetic Approach. J Phys Chem C,2011,115:1325-13292
    53. Du W, Xu Y, Wang Y. Photoinduced Degradation of Orange Ⅱ on Different Iron (Hydr) oxides in Aqueous Suspension:Rate Enhancement on Addition of Hydrogen Peroxide, Silver Nitrate, and Sodium Fluoride. Langmuir,2008,24:175-181
    54. Duret A, Cratzel M. Visible Light-Induced Water Oxidation on Mesoscopic γ-Fe2O3 Films Made by Ultrasonic Spray Pyrolysis. J Phys Chem,2005,109: 17184-17191
    55. Fa W, Gong C, Zhong J, Deng K. Solid-phase photocatalytic degradation of polystyrene with TiO2 modified by iron (Ⅱ) phthalocyanine. Appl Catal B,2008,79: 216-223
    56. Fallania F, Ruggeria G, Broncoc S, Bertoldoc M. Modification of surface and mechanical properties of polyethylene by photo-initiated reactions. Polym Degrad Stab,2003,82:257-261
    57. Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature,1972,238:37-38
    58. Gac W, Giecko G, Pasieczna-Patkowska S, Borowiecki T, Kepinski L. The influence of silver on the properties of cryptomelane type manganese oxides in N2O decomposition reaction. Catal Today,2008,137,397-402
    60. Garrido-Ramirez E G, Theng B K G, Mora M L. Clays and oxide minerals as catalysts and nanocatalysts in Fenton-like reactions - A review. Appl Clay Sci, 2009,47:182-192
    61. Guo Y H, Zhang Y. Preparation and surface chemistry characteristics of pure and coated acicular-FeOOH particles. Mater Chem and Phys,1997,47:211-216
    62. Gijsman P, Meijers G, Vitarelli G. Comparison of the UV-degradation chemistry of polypropylene, polyethylene, polyamide and polybutylene terephthalate. Polym Degrad Stab,1999,65:433-441
    63. Gorska P, Zaleska A, Kowalska E, Klimczuk T, Sobczak J W, Skwarek E, Janusz W, Hupka J. TiO2 photoactivity in vis and UV light:The influence of calcination temperature and surface properties. Appl Catal B,2008,84:440-447
    64. Halasz J, Hegediis M, Kun E, Mehn D, Kiricsi I. Destruction of chlorobenzenes by catalytic oxidation over transition metal containing ZSM-5 and Y (FAU) zeolites. Stud Surf Sci Catal,1999,125:793-800
    65. Han C, Pelaez M, Likodimos V, Kontos A G, Falaras P, O'Shea K, Dionysiou D D. Innovative visible light-activated sulfur doped TiO2 films for water treatment. Appl Catal B,2011,107:77-87
    66. He J, Ma W, He J, Zhao J, Yu J C. Photooxidation of azo dye in aqueous dispersions of H2O2/-FeOOH. Appl Catal B,2002,39:211-220
    67. He J, Ma W, Song W, Zhao J, Qian X, Zhang S, Yu J C. Photoreaction of aromatic compounds at a-FeOOH/H2O interface in the presence of H2O2:evidence for organic-goethite surface complex formation. Water Res.2005,39:119-128
    68. Hidaka H, Suzuki Y, Nohara K, Horikoshi S, Hisamatsu Y, Pelizzetti E, Serpone N. Photocatalyzed degradation of polymers in aqueous semiconductor suspensions. I. Photooxidation of solid particles of polyvinylchloride. J. Poly Sci A,1996,34: 1311-1316
    69. Hitzfeld B C, Hoger S J, Dietrich D R. Cyanobacterial toxins:removal during water treatment, and human risk assessment. Environ Health Perspect,2000,108:113-122
    70. Horikoshi S, Serpone N, Hisamatsu Y, Hidaka H. Photocatalyzed degradation of polymers in aqueous semiconductor suspensions.3. photooxidation of a solid polymer:(?) TiO2-blended poly(vinyl chloride) film. Environ Sci Tech.1998,32: 4010-4016
    71. Hoste S, Vweponck L, Van der Kelen C P. IR study on the solid state reaction between iron hydroxide and KCN. Bul Soc Chim Belg,1982,91:597-604
    72. Huang Y, Ho W, Lee S, Zhang L, Li G, Yu J C. Effect of Carbon Doping on the Mesoporous Structure of Nanocrystalline Titanium Dioxide and Its Solar-Light-Driven Photocatalytic Degradation of NOx. Langmuir,2008,24: 3510-3516
    73. Hu R, Yan C, Xie L, Cheng Y, Wang D. Selective oxidation of CO in rich hydrogen stream over Ag/OMS-2 catalyst. Inter J Hydro Energy,2011,36:64-71
    74. Huang Y, Ho W, Lee S, Zhang L, Li G, Yu J C. Effect of Carbon Doping on the Mesoporous Structure of Nanocrystalline Titanium Dioxide and Its Solar-Light-Driven Photocatalytic Degradation of NOX. Langmuir,2008,24: 3510-3516
    75. Hurum D C, Gray K A, Rajh T, Thurnauer M C. Recombination Pathways in the Degussa P25 Formulation of TiO2:Surface versus Lattice Mechanisms. J Phys Chem B,2005,109:977-980
    76. Irene X, GregOry W H, Kimberl Y Z. Inactivation kinetics of the cyanobacterial toxin microcystin-LR by free chlorine. J Environ Eng,2006,132:818-823
    77. Irie H, Watanabe Y, Hashimoto K. Carbon-doped Anatase TiO2 Powders as a Visible-light Sensitive Photocatalyst. Chem Lett,2003,32:772-780
    78. Irie H, Watanabe Y, Hashimoto K. Nitrogen-Concentration Dependence on Photocatalytic Activity of TiO2-xNx Powders. J Phys Chem,2003,107:5483-5486
    79. Iyer A, Galindo H, Sithambaram S, Kingondu C, Chen C C, Suib S L. Nanoscale manganese oxide octahedral molecular sieves (OMS-2) as efficient photocatalysts in 2-propanol oxidation. Appl Catal A,2010,275:295-302
    80. Jothiramalingam R, Viswanathan B, Varadarajan T K. Synthesis, characterization and catalytic oxidation activity of zirconium doped K-OMS-2 type manganese oxide materials. J Mole Catal A,2006,252:49-55
    81. Justicia I, Ordejon P, Canto G, Mozos J L, Fraxedas J, Battiston GA, Gerbasi R, Figueras A. Designed self-doped titanium oxide thin films for efficient visible-light Photocatalysis. Adv. Mater.2002,14:1399-1402
    82. Kang I, Zhang Q, Yin S, Sato T, Saito F. Preparation of a visible sensitive carbon doped TiO2 photo-catalyst by grinding TiO2 with ethanol and heating treatment. Appl Catal B,2008,80:81-87
    83. Kemp T J, McIntyre R A. Influence of transition metal-doped titanium(IV) dioxide on the photodegradation of polyethylene. Poly Degrad Stab,2006,91:3020-3025
    84. Khan S U M, Shahry M, Ingler W B. Efficient photochemical water split ting by a chemically modified TiO2. Science,2002,297:2243-2245
    85. Kudo A, Miseki Y. Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev 2009,38:253-278
    86. Laberty C, Navrotsky A. Energetics of stable and metastable low-temperature iron oxides and oxyhydroxides. Geochim Cosmochim AC,1998,62:2905-2913
    87. Leland J K, Bard A J, Photochemistry of colloidal semiconducting iron oxide polymorphs. J Phys Chem,1987,91:5076-5083
    88. Lemus A M., Lopez T., Recillas S., Frias D.M., Montes M., Delgado J.J., Centeno M.A., Odriozola J.A. Photocatalytic degradation of 2,4-dichlorophenoxyacetic acid using nanocrystalline cryptomelane composite catalysts. J Mol Catal A,2008,281: 107-112
    89. Li Y, Hwang D S, Lee N H, Kim S J. Synthesis and characterization of carbon-doped titania as an artificial solar light sensitive photocatalyst. Chem Phys Lett,2005,404: 25-29
    90. Liao S, Wang J, Zhu D, Ren L, Lu J, Geng M, Langdon A. Structure and Mn2+ adsorption properties of boron-doped goethite. Applied Clay Science,2007,38: 43-50
    91. Likodimos V, Stergiopoulos T, Falaras P. Phase Composition, Size, Orientation, and Antenna Effects of Self-Assembled Anodized Titania Nanotube Arrays:A Polarized Micro-Raman Investigation. J Phys Chem C,2008,112:12687-12696
    92. Liou M J, Lu M C. Catalytic degradation of explosives with goethite and hydrogen peroxide. J Hazard Mater,2008,151:540-546
    93. Liu I, Lawton LA, Bahnemann D W, Liu L, Proft B, Robertson P K J. The photocatalytic decomposition of microcystin-LR using selected titanium dioxide materials. Chemosphere.2009,76:549-553
    94. Liu Z, Xing Y, Chen C H, Zhao L, Suib S L. Framework Doping of Indium in Manganese Oxide Materials:Synthesis, Characterization, and Electrocatalytic Reduction of Oxygen. Chem Mater,2008,20:2069-2071
    95. Lu M C. Oxidation of chlorophenols with hydrogen peroxide in the presence of goethite. Chemosphere.2000,40:125-130
    96. Lu M C, Chen J N, Huang H H. Role of goethite dissolution in the oxidation of 2-chlorophenol with hydrogen peroxide. Chemosphere,2002,46:131-136
    97. Luo J, Zhang Q, Suib S L. Mechanistic and kinetic studies of crystallization of birnessite. Inorg Chem,2000,39:741-747
    98. Luo J, Zhang Q, Garcia-Martinez J, Suib S L. Adsorptive and acidic properties, reversible lattice oxygen evolution, and catalytic mechanism of cryptomelane-type manganese oxides as oxidation catalysts. J Am Chem Soc.2008,130:3198-3207
    99. Malinger K A, Ding Y S, Sithambaram S, Espinal L, Gomez S, Suib S L. Microwave frequency effects on synthesis of cryptomelane-type manganese oxide and catalytic activity of cryptomelane precursor. J Catal,2006,239:290-298
    100. Mcelhiney J, Lawton L A. Detection of the cyanobacterical hepatotoxins microcystins. Toxicology and Applied Pharmacology,2005,203:219-230
    101. Mills A, Hunte S L. An overview of semiconductor photocatalysis. J Potoch Photobio A,1997,108:1-35
    102. Minabe T, Tryk D A, Sawunyama P, Kikuchi Y, Hashimoto K, Fujishima A. TiO2-mediated photodegradation of liquid and solid organic compounds. J Potoch Photobio C,2000,137:53-62
    103. Mitsuhashi T, Kleppa O J. Transformation Enthalpies of the TiO2 Polymorphs. J Am Geram Soc.1979,62:356-357
    104. Nakamura I, Negishi N, Kutsuna S, Ihara T, Sugihara S, Takeuchi E. Role of oxygen vacancy in the plasma-treated TiO2 photocatalyst with visible light activity for NO removal. J Mol Catal A,2000,161:205-212
    105. Nicolas-Tolentino E, Tian Z, Zhou H, Xia G, Suib S L. Effects of Cu2+ Ions on the Structure and Reactivity of Todorokite- and Cryptomelane-Type Manganese Oxide Octahedral Molecular Sieves. Chem Mater,1999,11,1733-1741
    106. Ogata A, Komaba S, Baddour-Hadjean R, Pereira-Ramos J P, Kumagai N. Doping effects on structure and electrode performance of K-birnessite type manganese dioxides for rechargeable lithium battery. Electro Acta,2008,53: 3084-3089
    107. Ollis D F, Pelizzetti E, Serpone N. Degradation in water. Envrion Sci Technol,1985, 19:480-484
    108. Ortiz de la Plata G B, Alfano O M, Cassano A E. Optical properties of goethite catalyst for heterogeneous photo-Fenton reactions. Comparison with a titanium dioxide catalyst. Chem Eng J,2008,137:396-410
    109. Park Y, Kim W, Park H, Tachikawa T, Majima T, Choi W. Carbon-doped TiO2 photocatalyst synthesized without using an external carbon precursor and the visible light activity. Appl Catal B,2009,91:355-361
    110. Peak D, Luther G W, Sparks D L. ATR-FTIR spectroscopic studies of boric acid adsorption on hydrous ferric oxide. Geochimica et Cosmochimica Acta,2003,67: 2551-2560
    111. Pelaez M, Cruz A A de la, Stathatos E, Falaras P, Dionysiou D D, Visible light-activated N-F-codoped TiO2 nanoparticles for the photocatalytic degradation of microcystin-LR in water. Catal Today,2009,144:19-25
    112. Ren W, Ai Z, Jia F, Zhang L, Fan X, Zou Z. Low temperature preparation and visible light photocatalytic activity of mesoporous carbon-doped crystalline TiO2. Appl Catal B,2007,69:138-144
    113. Reyes-Garcia E A, Sun Y, Reyes-Gil K R, Raftery D. Solid-state NMR and EPR analysis of carbon-doped titanium dioxide photocatalysts (TiO2-xCx). Solid State Nucl Mag Reson,2009,35:74-81
    114. Rockafellow E M, Fang X, Trewyn B G, Schmidt-Rohr K, Jenks W S. Solid-State 13C NMR Characterization of Carbon-Modified TiO2. Chem Mater,2009,21: 1187-1197
    115. Ross S D. Borates. In Farmer V C ed. The Infrared Spectra of Minerals. Mineral Soc Monoger 4 Mineral Soc,1974, London,205-226
    116. Rumaiz A K, Woicik J C, Cockayne E, Lin H Y, Jaffari G H, Shah S I. Oxygen vacancies in N doped anatase TiO2:Experiment and first-principles calculations. Appl Phys Lett,2009,95:262111-262113
    117. Sakthivel S, Kisch H. Daylight Photocatalysis by Carbon-Modified Titanium Dioxide. Angew Chem Int Ed., (2003,42:4908-4911
    118. Sato S. Photocatalytic activity of Nox-doped TiO2 in th visible light region. Chem Phys Lett.1986,123:126-128
    119. Schurz F, Bauchert J M, Merket T, Schleid T, Hasse H, Glaser R. Octahedral molecular sieves of the type K-OMS-2 with different particle sizes and morphologies:Impact on the catalytic properties in the aerobic partial oxidation of benzyl alcohol. Appl Catal A,2009,355:42-49
    120. Shen H, Mi L, Xu P, Shen W, Wang P N. Visible-light photocatalysis of nitrogen-doped TiO2 nanoparticulate films prepared by low-energy ion implantation. Appl Surf Sci,2007,253:7024-7028
    121. Song L, Qiu R L, Mo Y Q, Zhang D D, Wei H, Xiong Y. Photodegradation of phenol in a polymer-modified TiO2 semiconductor particulate system under the irradiation of visible light. Catal Commun,2007,8:429-433
    122. Song W, Xu T, Cooper W J, Dionysiou D D, DE LA Cruz A A, O'Shea K E. Radiolysis Studies on the destruction of microcystin-LR in aqueous solution by hydroxyl radicals. Environ Sci Technol,2009,43:1487-1492
    123. Stark N M, Matuana L M. Ultraviolet weathering of photostabilized wood-flour-filled high density polyethylene. J Appl Poly Sci,2003,90:2609-2617
    124. Suda Y, Kawasaki H, Ueda T, Ohshima T. Preparation of high quality nitrogen doped TiO2 thin film as a photocatalyst using a pulsed laser deposition method. Thin Solid Films,2004,453-454:162-166
    125. Sue C M, Suarez D L. Boron Sorption and Release by Allophane. Soil Sci Soc Am J, 1997,61:69-77
    126. Suib S L. Porous manganese oxide octahedral molecular sieves and octahedral layered materials. Acc Chem Res,2008,41:479-487
    127. Sun Z, Zhu C, Huang J. Study of chromium adsorption on natural goethite biomineralized with iron bacteria. Acta Goelogica Sinica,2006,80:597-603
    128. Tachikawa T, Takai Y, Tojo S, Fujitsuka M, Irie H, Hashimoto K, Majima T. Visble light-induced degradation of ethylene glycol on nitrogen-doped TiO2 powders. J Phys Chem B,2006,110:13158-13165
    129. Tian F H, Liu C B, Zhang D, Fu A, Duan Y, Yuan S, Yu J C. On the Origin of the Visible-Light Activity of Titanium Dioxide Doped with Carbonate Species. ChemPhysChem,2010,11:3269-3272
    130. Tompsett G A, Bowmaker G A, Gooney R P, Metson J B, Rodgers K A, Seakins J M. The Raman spectrum of brookite, TiO2 (Pbca, Z=8). J Raman Spectrosc,1995,26: 57-62
    131. Tonga S, Liu W, Leng W, Zhang Q. Characteristics of MnO2 catalytic ozonation of sulfosalicylic acid and propionic acid in water. Chemosphere,2003,50:1359-1364
    132. Torres-Torres D, Trejo-Valdez M, Castaneda L, Torres-Torres C, Tamayo-Rivera L, Fernandez-Hernandez R C, Reyes-Esqueda J A, Munoz-Saldana J, Rangel-Rojo R, 133. Oliver A. Inhibition of the two-photon absorption response exhibited by a bilayer TiO2 film with embedded Au nanoparticles. Opt Express,2010,18: 16406-16417
    134. Waite T D, Morel F M M. Photoreductive dissolution of colloidal iron oxides in natural waters. Environ Sci Technol,1984,18:860-868
    135. Wang G Y, Lian H L, Zhang W X, Jiang D Z, Wu T H. Stability and Deactivation of Au/Fe2O3 Catalysts for CO Oxidation at Ambient Temperature and Moisture. Kin Catal,2002,43:468-478
    136. Wang X, Meng S, Zhang X, Wang H, Zhong W, Du Q. Multi-type carbon doping of TiO2 photocatalyst. Chem Phys Lett,2007,444:292-296
    137. Wang X, Lim T T. Solvothermal synthesis of C-N codoped TiO2 and photocatalytic evaluation for bisphenol A degradation using a visible-light irradiated LED photoreactor. Appl Catal B,2010,100:355-364
    138. Wang X, Lim T T. Effect of hexamethylenetetramine on the visible-light photocatalytic activity of C-N codoped TiO2 for bisphenol A degradation: evaluation of photocatalytic mechanism and solution toxicity. Appl Catal A,2011, 399:233-241
    139. Wang Y, Liu C S, Li F B, Liu C P, Liang J B. Photodegradation of polycyclic aromatic hydrocarbon pyrene by iron oxide in solid phase. J Hazard Mater.2009, 162:716-723
    140. WHO,1998. Guidelines for Drinking-water Quality. Addendum to Volume 2, Health Criteria and Other Supporting Information, seconded. World Health Organization, Geneva
    141. Wu G, Nishikawa T, Ohtani B, Chen A. Synthesis and Characterization of Carbon-Doped TiO2 Nanostructures with Enhanced Visible Light Response. Chem Mater,2007,19:4530-4537
    142. Wu Y, Xing M, Zhang J, Chen F. Effective visible light-active boron and carbon modified TiO2 photocatalyst for degradation of organic pollutant. Appl Catal B, 2010,97:182-189
    143. Xu J, Li J, Dai W, Cao Y, Li H, Fan K. Simple fabrication of twist-like helix N,S-codoped titania photocatalyst with visible-light response. Appl Catal B,2008, 79:72-80
    144. Xu Q C, Wellia D V, Sk M A, Lim K H, Loo J S C, Liao D W, Amal R, Tan T T Y Transparent visible light activated C-N-F-codoped TiO2 films for self-cleaning applications. J Photochem Photobio A,2010,210:181-187
    145. Xu Q C, Wellia D V, Yan S, Liao D W, Lim T M, Tan T T Y. Enhanced photocatalytic activity of C-N-codoped TiO2 films prepared via an organic-free approach. J Hazard Mater,2011,188:172-180
    146. Yang J, Chen C, Ji H, Ma W, Zhao J. Mechanism of TiO2-Assisted Photocatalytic Degradation of Dyes under Visible Irradiation:Photoelectrocatalytic Study by TiO2-Film Electrodes. J Phys Chem,2005,109:21900-21907
    147. Yang T S, Yang M C, Shiu C B, Chang W K, Wong M S. Effect of N2 ion flux on the photocatalysis of nitrogen-doped titanium oxide films by electron-beam evaporation. Appl Surf Sci,2006,252:3728-3736
    148. Yang X, Cao C, Erickson L, Hohn K, Maghirang R, Klabunde K. Photo-catalytic degradation of Rhodamine B on C-, S-, N-, and Fe-doped TiO2 under visible-light irradiation. Appl Catal B,2009,91:657-662
    149. Yu J, Dai G, Xiang Q, Jaroniec M. Fabrication and enhanced visible-light photocatalytic activity of carbon self-doped TiO2 sheets with exposed {001} facets. J Mater Chem,2011,21:1049-1057
    150. Zaleska A, Grabowska E, Sobczak J W, Gazda M, Hupka J. Photocatalytic activity of boron-modified TiO2 under visible light:The effect of boron content, calcination temperature and TiO2 matrix. Appl Catal B,2009,89:469-475
    151. Zhao X, Li Z, Chen Y, Shi L, Zhu Y. Enhancement of photocatalyticdegradation of polyethylene plastic with CuPc modified TiO2 photocatalyst under solar light irradiation. Appl Surf Sci,2008,254:1825-1829
    152. Zan L, Fa W, Wang S. Novel photodegradable low-density polyethylene-TiO2 nanocomposite film. Environ Sci Technol,2006,40:1681-1685

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700