多晶硅锭中硬质夹杂性质与形成机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
晶体硅太阳电池是太阳电池中的主导产品,市场占有量达90%以上。由于多晶硅太阳能电池片是以太阳能级硅或电子级硅的头尾料和碎料为原料。因此,相对单晶硅而言,多晶硅锭中含有较多的杂质。多晶硅锭中硬质夹杂的出现使得在硅锭切割过程中硅片出现脊纹而报废,甚至由于硬质夹杂存在而造成包括断线停机、硅块报废等损失。为此,研究多晶硅锭中硬质夹杂性质及其形成对生产具有重大指导意义。
     本文通过对多晶硅片脊纹、断线停机的形成原因进行分析;利用KeyenceVHX-100型3D高景深显微镜、配备了特征X射线能谱仪的HITACH S-3000N型扫描电镜、X射线衍射仪(Bruker D8 Focus型)对多晶硅锭中出现的硬质夹杂进行形貌、物相观察,发现造成硅片脊纹和断线停机主要原因是由于硬质夹杂物—块体状的β-SiC和棒状β-Si_3N_4的存在。β-SiC附着在β-Si_3N_4上形成团簇状,硅锭顶部颗粒直径达100μm以上,团簇后增大至几百微米;硅锭中部夹杂物较少,但也能找到直径在100μm左右的夹杂物。
     进一步通过理论分析发现硅中碳、氮主要来源于原料、铸锭过程器件挥发、生成气体以及保护气。对SiC、Si_3N_4形成热力学、动力学分析发现它们都应该形成于凝固后,而不是凝固前。通过实验,再利用上述仪器以及SDT-Q600型DSC-TGA、Nicolet 380型傅立叶变换红外光谱仪(FTIR)验证了理论分析。并根据所得结果提出了解决措施建议。
Crystalline silicon solar cell is the dominant products in the solar cells industry, its market share amounts up to 90%. Multi-crystalline silicon solar cells produced by solar grade silicon or the craniocaudal electronic grade silicon material and debris as raw materials. Therefore, compared with monocrystalline silicon, multi-crystalline silicon ingot contains more impurities. The rigid inclusions in multi-crystalline silicon ingots affects surface quality of multi-crystalline silicon wafers, and threatens the wire cutting process of the wafer production from multi-crystalline silicon ingot. Furthermore, they may cause wire broken in the cutting processes. To sum up, studying the formation and nature of the hard inclusions in the multicrystalline silicon ingot is great significant for production.
     Through the analysis of the reason about the ridges formation on polysilicon chip and the sawing wire breaken. Scanning electron microscope associated with energy spectrometer for characteristic X-ray, 3D digital microscope and X-ray diffract meter have been used to analyze the inclusions's surface morphology and phase in a directionally solidified multi-crystalline silicon ingot. The results indicate a high density of large SiC and Si_3N_4 particles in the top layer of the ingot andβ-SiC attached to theβ-Si_3N_4 surface and become cluster-formation. The density decreases rapidly with depth. In the middle of the ingot, very few and fine SiC inclusions can be found, though large SiC particles(~100μm) do exist sometime.
     It has been further found that the carbon and nitrogen in the silicon ingot comes mainly from raw materials by theoretical analysis, the product between devices in directionally solidified process and the protection gas. Analysissing the SiC and Si_3N_4 formed thermodynamics and kinetics showed that all of them should be formed not in the solidification, but after the solidification. The equipments, such as energy spectrometer for characteristic X-ray, 3D digital microscope, X-ray diffract meter , DSC-TGA and FTIR, are used to verify the theoretical analysis.With respect to the results,possible solutions for reducing of SiC inclusions in multi-crystalline silicon ingot are suggested.
引文
[1]何允平,王金铎.工业硅科技新进展.北京:冶金工业出版社,2003
    [2]万群著.奇妙的半导体.北京:科学出版社,2002
    [3]M.A.Green,K.Emery,D.L.King,S.Igari,et.W.Warta,Solar cell efficiency tables,Pogress in Photovolaics,12(2004)55-62
    [4]Annual Report 2003 of Fraunhofer Insitirur Solar Energiesysteme,36
    [5]沈辉,曾祖勤.太阳能光伏发电技术.化学工业出版社.北京.2005.44
    [6]O.Schultz,S.W.Glunz and G.P.Willeke,Multicrystalline silicon solar cells exceeding 20%efficiency,Prog.Photovolt:Res.Appl.2004,12:553-558.
    [7]Yoshihiro Hamaleawa.Recent advances in solar photovoltaic technologies in Japan,Solar Energy Materials,1991,23:139
    [8]K.Fujimoto Y.Sogawa K,Shima K et al.High efficiency silicon solar cells by plasma-CVD method,Solar Energy Materials and Solar cells,1994,34:193
    [9]Wu X,R G Dhere,D S Albin et al.NCPV erogram Review Meeting Lakewood.Colorado,October 2001
    [10]M.V.Yakushev,A.V.Mudryi,V.F.Gremenok,E.P.Zretskaya.Influence of growth conditions on the structural quality of Cu(InGa)Se_2 and CuInSe thin films.Thin Solid Films,2004,452:133-136.
    [11]Ramanathan,K.Contreras.Properties of 19.2%efficiency ZnO/CdS/CuInGaSe_2[J].Thin film solar cells.2003,11:225-230
    [12]O'Regan B,Gratzel M.A low-cost,high-efficiency solar cell based in dye-sensitized colloidal TiO2 films.Nature.1991.353:737-739
    [13]沈辉,舒碧芬,闻立时.我国太阳能光伏产业的发展机遇与战略对策(C),中国储能电池与动力电池及其关键材料学术研讨会论文集,长沙,2005.5:292-297.
    [14]Narayanan S,Wenham S R,Green M A.A High efficiency polycrystalline silicon solar cells using phosphorus pretreatment.Appl Phys Let,1986,48(13):873-875
    [15]Jianhua Zhao,Aihua Wang,Patric Campell et al,A 19.8%efficient honeycomb multicrystalline silicon solar cells with improved light trappping,IEEE Transactions On Electon Devices,1999,46:1978-1983
    [16]Rohatgi A,Sana P,Salami J,In:Pro of the 11~(th)European Photovol Solar Energy Conf.Montrex:1992,159-163
    [17]Inomata Y,Fukui K,Shirasawa K,Surface texturing of large area multicrystalline silicon solar cells using reactive ion etching method,Solar Energy materials and Solar Cells,1997,48:237-242
    [18]2007-2008年中国多晶硅产业分析及投资咨询报告
    [19]Authier B H.German Par No 250883,1975.
    [20]Dietl J,Helmreich D,Sirtl E.In. Crystals: Growth, Properties and Applications. Berline: Springer, 1981,5:57
    
    [21]Muller J C,Martinuzzi S. J Mater Res, 1998,13:2721
    [22]Narayanan.S. Large area multicrystalline silicon solar cells in high volume production environment—history, status, new processes, technology transfer issues Solar Energy Materials and Solar Cells, 2002,74(1-4): 107-115
    [23]J M Kim, Y K Kim. Growth and characterization of 240 kg multicrystalline silicon ingot grown by directional solidification. Solar Energy Materials and Solar Cells 2004,81:217
    [24]I Perichauda, S Martinuzzia, F Durand. Multicrystalline silicon prepared by electromagnetic continuous pulling: recent results and comparison to directional solidification material. Solar Energy Materials and Solar Cells, 2002,72:101
    [25]Schonholzer U, Baarck R. Under the wire[J], Ceramic Industry, 2005,155(6), 39-40
    [26]D Kray, S Baumann, K Mayerr, et al.Wafering research at Franhofer ISE[R], 15~(th) workshop on crystalline silicon solar cells and modules: materials and processie, 2005,211-214
    [27]H J Moller, C Funke, M Rinio, S Scholz. Multicrystalline silicon for solar cells[J], Thin Solid Films, 2005,487:179-187
    [28]I K I shilawa, H Suwabe, S I Itoh, M Uneda. A basic study on the behavior of slurry action at multi-wire saw[J], Key Engineering Materials,2003,238-239:89-92
    [29]W I Clark, A J Shih, C.W Hardin et al. Fixed abrasive diamond wire machining—part I process monitoring and wire tension force[J], International Journal of Machine Tools and Manufacture,2003,43:523-532
    [30]Smith MB, Schmid F, Khattak C P. Process of forming a plated wire-pack with abrasive particles inly in the cutting surface with a controlled kerf[P]. US Patent, No 4384564(1983).
    [31]Schmid F, C.P Khattak, M.B Smith. Multi-wafer slicing with a fixed abrasive [P], US Patet No. 4727852(1988)
    
    [32] 杨德仁,闽端麟,太阳能用大晶粒铸造多晶硅,98全国半导体材料学术会议,上海:92-94
    
    [33]D. Margadoa, M.F.Ferraza, R. Peruzzi, S. Pizzni, Cacerboi, Ltarchini, X. Wei, A. Delillo, industrial development of the directional solidification method for the production of multicrystalline photovoltaic grade silicon, 11th E. C. Photovoltaic Solar Energy Conference 750-753
    
    [34]Xi Zhenqiang, Yang Deren, Chen Jun, et al. Iron precipitation in crystalline silicon, Chinese Journal of Semiconductors, 24(2003) 1166-70
    
    [35]S.Pizzini, A.Sandrinelli, M.Beghi, et.al. Influence of extended defects and native impurities on the electrical properties of directionally solidified polycrystalline silicon, J. Electrochem. Soc.l35(1988)155-165
    
    [36]S. A. Mchugo, H. Hieselmair, and E. R. Weber, Lettering of metallic impurities in photovoltaic silicon,Appl.Phys.A 64,(1997)127-137
    [37]K.Mahfoud,M.Loghmarti,J.C.Muller,P.Siffert,Classical and rapid thermal process effects on oxygen precipitation in silicon,Journal de Physique III(Applied Physics,Materials Science,Fluids,Plasma and Instrumentation)5(1995)1345-51.
    [38]V.Borjanovic,I.Kovacevic,B.Santic,B.Pivac,Oxygen-related deep levels in oxygen doped EFG poly-Si,Materials Science and Engineering B,71(2000)292-296
    [39]S.A.McHugo,Release of metal impurities from structural defects in polycrystalline silicon,Appl.Phys.Lett.71(1997)1984-1986.
    [40]D.Yang,L.Li,X.Ma,R.Fan,D.Que,H.J.Moeller,Oxygen-related centers in multicrystalline silicon,Solar Energy Materials&Solar Cells 62(2000)37-42.
    [41]俞征峰.铸造多晶硅材料中氧缺陷的研究.浙江大学[D].浙江,2004,18
    [42]C.Habler,H.U.Hofs,W.Koch,et.al.Formation and annihilation of oxygen donors in multicrystalline silicon for solar cells,Materials Science and Engeering B71(2000)39-46.
    [43]俞征峰,席珍强,杨德仁等.铸造多晶硅中热施主形成规律太阳能学报,2005.26:581
    [44]杨德仁.半导体材料.机械工业出版社.北京:2005
    [45]杨德仁.硅中氧沉淀的研究.浙江大学材料科学与工程学报,1990(2):13
    [46]J.Knobloch,A.Eyer,Crystalline silicon materials and solar cells,Materials Science Forum,173-174(1995)297-310
    [47]S.W.Glunz,C.Hebling,W.Warta.Lifetime and material characteristics of multicrystalline silicon measured with high spatial resolution,Diffusion and Defect Data PaR B(Solid State Phenomena),51-52(1996)69-74
    [48]J.Schmidt,A.G.Aberle,R.Hezel.Investigation of carrier lifetime instabilities in Cz-grown silicon,Proc.26th IEEE PVSC,(1997)13-18.
    [49]S.W.Glum,S.Rein,W.Warta,et.al.Comparison of boron- and gallium-doped p-type Czochralski silicon for photovoltaic application,Materials Science Forum,173-174(1995)29
    [50]E.Spenke,R.R.Habereckt,et.al.Semiconductor Silicoa,The Electrochemical Society,Inc.,New York,(1969).
    [51]万群,李玉珍,徐宝琨等.多晶硅中碳化物及其来源的研究.半导体学报[J].1984.(5)4:360-368
    [52]杨德仁.太阳电池材料.化学工业出版社.[B]北京,2007,108
    [53]Y.Yatsurugi,N.Akiyama,Y.Endo,T.Nozaki,Concentration,solubility,and equilibrium distribution coefficient of nitrogen and oxygen in semiconductor silicon,Journal of the Electrochemical Society,120(1974)975-979
    [54]T.Nozaki,Y.Yatsurugi,N.Akiyama,J.Electrochem.Soc.117(1970)1956.
    [55]R.C.Newman,Light impurities and their interactions in silicon,Mater.Sci.&Eng.B,36(1996)1-12.
    [56]E.Wolf,W.Schroder,H.Riemann,B.Lux,The influences of carbon,hydrogen and nitrogen on the floating zone growth of four inch silicon crystals,Mater.Sci.&Eng.B,36(1996)209-212.
    [57]U.Gosele,"Current understanding of diffusion mechanisms in silicon",Mat.Rec.Soc.Symp.Proc,5-9(1986)541-545.1
    [58]S.M.Hu,Infrared absorption spectra of SiOlsub 21 precipitates of various shapes in silicon:Calculated and experimental,Journal of Applied Physics,51(1980),5945-5948.
    [59]F.Shimura,H.Tsuya,and T.Kawamura,Precipitation and redistribution of oxygen in Czochralski-grown silicon,Appl.Phys.Lett.,37(1980)483-486.
    [60]T.Y.Tan,C.Y.Kung,Effects of nitrogen on dislocation behavior and mechanical strength in silicon crystals,J.Appl.Phys,54(1983)5016-5020.
    [61]F.Shimura,Carbon enhancement effect on oxygen precipitation in Czochralski silicon,J.Appl.Phys.59(1986)3251-3254.
    [62]F.Shimura,J.P.Baiardo,P.Fraundorf,Infrared absorption study on carbon and oxygen behavior in Czochralski silicon crystals,Appl.Phys.Lett.,46(1985)941-943.
    [63]F.Shimura,R.S.Hockett,D.A.Read,C.H.Wayne,Direct evidence for co-aggregation of carbon and oxygen in Czochralski silicon,Appl.Phys.Lett,47(1985)794-796
    [64]王莉蓉,杨德仁,应啸.太阳电池用直拉硅单晶中碳对氧沉淀的作用,太阳能学报[J],23(2002)129-133
    [65]L.Murin,Y.P.Markevch,Effect of carbon on thermal double donor formation in silicon.Mater,Sci,Forum,196-200(1995)1315
    [66]阙端麟,陈修治。硅材料科学与技术。杭州:浙江大学出版社,2001
    [67]杨德仁,半导体材料。北京:机械工业出版社,2005
    [68]采用氮保护气氛生长的功率晶体管用硅单晶研制报告.浙江大学半导体材料研究所.1989
    [69]刘培东.硅中碳、氮、氧及其相互作用[D].浙江大学.2003
    [70]许振嘉,江德生,宋春英等.差示光谱法测定硅中的氧和碳,半导体学报,1981,2(2),117
    [71]R.C.Newman,Proc.Phys.Soc.76(1960)993
    [72]C.V.Hari Rao,H.E.Bates,K.V.Ravi,et,al.Appl.Phys.47(1976)2614
    [73]S(?)iland A K,(?)vrelid E J,Engh T A,Lohne O,et al.SiC and Si3N4 inclusions in multicrystalline silicon ingots[J].Materials Science in Semiconductor Processing,2004,7(1-2):39-43
    [74]J.Bauer,O.Breitenstein,J.P.Rakotoniaina,Proceedings 21st European photovoltaic solar energy conference,in:J.Poortmans,H.Ossenbrink,E.Dunlop,P.Helm(Eds.),WIP,Munich,Germany,2006,p.1115
    [75]霍秀敏,氧碳含量对太阳电池光电转换效率影响的研究[D].河北工业大学,2004年
    [76]林磊.快速热处理RTP对大直径直拉单晶硅中氧沉淀的影响:硕士学位论文[D].浙江大学材化学院,2004年
    [77]Favre A,Fuzellier H,Suptil J.An original way to investigate the siliconizing of carbon materials[J].Ceramics International,2003,29(3):235-243
    [78]Du Guoping,Zhou Lang,Rossetto Pietro,et al.Hard inclusions and their detrimental effects on the wire sawing process of multicrystalline silicon[J].Solar Energy Materials and Solar Cells,2007,91(18):1743-1748
    [79]Chase Jr.MW,Davis CA,Downey Jr.JR,Frurip DJ,McDonald RA,Syverud AN.JANAF[J],Thermochemical Tables,3rd ed.1985;14(1):634.
    [80]李世普.特种陶瓷工艺学[M]武汉:武汉工业大学出版杜,1990.121
    [81]马春,“世界半导体硅材料的发展现状”,上海有色金属,2005,3(26)
    [82](?)aHOBCK(?)(?),AH CCCP,Heopeahuueckue Marepua,1973,9:1631
    [83]R.R.Habereckt et al.Semiconductor Silicon,The Electrochemical Society,Inc.,New York.1969
    [84]吴经昌等,硅外延片异常现象的考查,全国半导体集成电路、材料学术会议论文文摘要集,南京,1982(94-96)
    [85]叶大伦.实用无机物热力学数据手册.[M]北京:冶金工业出版社.2002
    [86]朱黎辉,再谈太阳能电池用高纯多晶硅质量标准的几点浅见,多晶硅材料产业发展及标准化研讨会文集15-15

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700