无线通信系统中的几个典型参数估计问题
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
最近二十年,无线通信发展迅速,不仅用户数量急剧增加,而且单个用户的业务需求和数据传输量也迅速增长。为此,增加通信系统的系统容量是无线通信的关键问题。众所周知,在无线通信系统中阵列天线可以提供比单天线更大的信道容量而不需要增加信号带宽和发射功率。另外它们还能提供对移动终端的定位、跟踪等服务。这些优点使阵列天线成为第三和第四代移动通信系统中的关键技术之一。为实现阵列天线的这些优点,需要在接收端进行空时信号处理,而这通常要求空时无线信道状态信息和阵列流型已知。本文着重研究基站装有阵列天线时上行空时无线信道估计问题和阵列天线参数校准问题。具体来说,本文的主要贡献概括如下:
     1.在上行空时无线信道估计问题中,针对传统子空间投影信道估计方法不能充分利用用户数据的缺陷,提出了一种基于空时信号子空间投影的信道估计算法。该算法用空时信号模型来描述信道估计问题,然后根据最大似然(ML)准则,推导出基于空时信号子空间投影的信道估计方法。在此基础上,利用信道缓变特性,我们将算法推广得到多时隙的空时信号子空间投影算法。另外,还推导了信道估计的克拉美-罗界。仿真结果表明,算法的信道估计性能优于现有的子空间投影方法。
     2.在上行空时无线信道估计问题中,通过利用译码器反馈的软比特信息,提出了基于软信息的信道估计算法。该算法将未知的数据比特与其软信息间的误差描述为附加噪声,改进了接收信号模型,并将模型中的附加噪声近似为高斯分布,由此得到最大似然准则下的信道估计问题。然后,对最大似然估计问题进行近似,分别得到最小二乘问题和半正定规划问题,其中前者求解复杂度较低而后者估计性能较好。另外,将基于软信息的信道估计方法和空时信号子空间投影方法相结合可以进一步提高信道估计性能,最后推导了基于软信息的信道估计的克拉美-罗界。仿真结果表明所提算法信道估计性能较好,其相应turbo系统的误码率(BER)性能逼近信道已知时的BER性能。
     3.在阵列幅相误差的有源校准问题中,针对均匀线阵(ULA)中不存在和存在未知互耦的情况,分别提出了基于最大似然准则的凸优化校准方法和块坐标轮换下降校准方法。算法考虑到幅相误差有上界且边界信息已知,并在最大似然准则中加入这一边界约束,由此改进大噪声环境中的校准性能,使校准误差低于无约束条件下的克拉美-罗界。
     4.提出了均匀线阵中存在未知互耦时的ML波达方向(DOA)估计算法。该算法通过迭代求解以下两个子问题来获得DOA的估计值:互耦系数已知时的DOA估计问题和DOA已知时的互耦系数估计问题。针对这两个问题,分别提出了基于平方和以及半正定规划的ML DOA估计算法和基于ML准则的半正定松弛方法。因为所提方法基于ML准则,所以能够估计相关信号源的DOA,且其性能逼近克拉美-罗界。
Over the last two decades, the field of wireless communications has been devel-oping at an explosive rate. The number of users has not only increased dramatically,but the business type and the amount of data transmission of each user are also growingfast. Therefore, increasing the capacity of the current communication systems is a keyproblem in wireless communications. It is well known that antenna arrays can providemore channel capacity for wireless communication systems than single antenna withoutany extra signal bandwidth or transmission power. They can also supply locating andtracking services to mobile terminals. These merits make the antenna array one of thekey technologies in the third and fourth generation of mobile communication systems.To reveal the potential of the antenna arrays, space-time signal processing is necessaryat the receiver which usually needs not only the information of the space-time wirelesschannel but also the accurate array manifold. This dissertation focuses on the uplinkspace-time wireless channel estimation problems and antenna array parameter calibra-tion problems in systems where the base stations are equipped with antenna arrays. Themain contributions of this thesis are shown as follows:
     1. In the uplink space-time wireless channel estimation problem, a space-time signalsubspace projection based channel estimation algorithm is proposed. Comparedwith the traditional signal subspace methods, the proposed method can better uti-lize the received signals corresponding to the user data. We formulate the channelestimation problem using a space-time signal model, then derive the space-timesignal subspace projection method in the context of maximum likelihood (ML)criterion. Furthermore, using the slowly-varying features in channels, we ex-tend the algorithm to obtain a multi-slot space-time signal subspace projectionalgorithm. In addition, the Cramer-Rao bound for channel estimation is derived.Simulation results show that the space-time signal subspace projection methodoutperforms the existing subspace projection methods.
     2. In the uplink space-time wireless channel estimation problem, a soft-based chan-nel estimation method is proposed by utilizing the soft bit information fed backfrom the decoder. The signal model is modified by formulating the differencesbetween the unknown user data and their soft information as additional Gaussiannoise. By using this modified model, an estimation problem based on the ML criterion is formulated. This ML estimation problem can be approximated eitherby a low complexity least square problem or by a semidefinite programming (S-DP) problem. In another method, we proposed to use the soft-based method andthe space-time signal subspace projection method in combination. At last, theCramer-Rao bound is derived for soft-based channel estimation methods. Sim-ulation results show that the proposed soft-based methods perform well and thecombination method works better such that the bit error rate (BER) of the turbosystem approaches the BER of the system using perfect channel state informa-tion.
     3. In the active array gain/phase calibration problem, an SDP method for uniformlinear arrays (ULAs) with known mutual coupling matrix (MCM) and a blockcoordinate descent (BCD) method for ULAs with unkown MCM are proposedbased on the ML criterion. We add the constraint that array gain/phase errorscan be upper bounded by a known value in practice. This bound constraint canimprove the calibration performance and make the calibration error smaller thanthe CRB without bound constraint at high noise levels.
     4. An ML direction of arrival (DOA) estimation algorithm is proposed for ULAswith unknown MCM. This algorithm obtains the DOA estimations by iterativelysolving the following two subproblems: DOA estimation problem with givenMCM and mutual coupling coefficients estimation problem with given DOA. Wesolve the first problem by a ML DOA estimation algorithm based on sum ofsquares (SOS) combined with SDP and the second problem by a semidefiniterelaxation (SDR) method. Based on the ML criterion, the proposed method canestimate the DOAs of coherent sources and approach the CRB.
引文
[1] Godara Lal C. Applications of antenna arrays to mobile communications. i. per-formance improvement, feasibility, and system considerations. Proceedings of theIEEE, July1997,85(7):1031–1060.
    [2] Paulraj Arogyaswami, Rohit Nabar, and Dhananjay Gore. Introduction to space-time wireless communications. Cambridge university press, Cambridge, UK,2003.
    [3] Arslan Huseyin et al. Channel estimation for wireless ofdm systems. IEEE Sur-veys and Tutorials, Feb.2007,9(2):18–48.
    [4] Schmidt R. O. Multiple emitter location and signal parameter estimation. IEEETrans. Antenna Propag., Mar.1986,34(3):276–280.
    [5] H. L. Van Trees. Optimum Array Processing:Part IV of Detection, Estimation,and Modulation Theory. A John Wiley and Sons, Inc., New York,2002.
    [6] Ziskind I. and Wax M. Maximum likelihood localization of multiple sources byalternating projection. IEEE Trans. Acoust., Speech, Signal Process., Oct.1988,36(10):1553–1560.
    [7] Stoica P. and Sharman K. C. Maximum likelihood methods for direction-of-arrivalestimation. IEEE Trans. Acoust., Speech, Signal Process., July1990,38(7):1132–1143.
    [8] Kaveh M. and Barabell A. J. The statistical performance of the music and theminimum-norm algorithm in resolving plane waves in noise. IEEE Trans. Acoust.,Speech, Signal Process., Apr.1986,34(4):331–341.
    [9] Stoica P. and Nehorai A. Music, maximum likelihood, and cramer-rao bound.IEEE Trans. Acoust., Speech, Signal Process., May1989,37(5):720–741.
    [10] Zhang Q.T. and Barabell A. J. Probability of resolution of the music algorithm.IEEE Trans. Signal Process., Apr.1995,43(4):978–987.
    [11] Ferreol A., Larzabal P., and Viberg M. On the resolution probability of musicin presence of modeling errors. IEEE Trans. Signal Process., May.2008,56(5):1945–1953.
    [12] Friedlander B. A sensitivity analysis of the music algorithm. IEEE Trans. Acoust.,Speech, Signal Process., Oct.1990,38(10):1740–1751.
    [13] Friedlander B. Sensitivity analysis of the maximum likelihood direction findingalgorithm. IEEE Trans. Aerosp. Electron. System, Nov.1990,26(6):953–968.
    [14] Swindlehurst A. L. and Kailath T. A performance analysis of subspace-basedmethods in the presence of model errors: Part i the music algorithm. IEEE Trans.Signal Process., Jul.1992,40(7):1758–1774.
    [15] Swindlehurst A. L. and Kailath T. Performance analysis of subspace-based meth-ods in the presence of model errors: Part ii multidimensional algorithms. IEEETrans. Signal Process., Sept.1993,41(9):2882–2890.
    [16] Wax Mati and Leshem Amir. Joint estimation of time delays and directions ofarrival of multiple reflections of a known signal. IEEE Trans. Signal Process.,Oct.1997,45(10):2477–2484.
    [17] Vanderveen Michaela C, Van der Veen A-J, and Paulraj Arogyaswami. Estima-tion of multipath parameters in wireless communications. IEEE Trans. SignalProcess., Mar.1998,46(3):682–690.
    [18] Swindlehurst A Lee. Time delay and spatial signature estimation using knownasynchronous signals. IEEE Trans. Signal Process., Feb.1998,46(2):449–462.
    [19] Fredrik Gustafsson and Fredrik Gunnarsson. Mobile positioning using wirelessnetworks: possibilities and fundamental limitations based on available wirelessnetwork measurements. IEEE Signal Process. Mag., Feb.2005,22(2):41–53.
    [20] Arogyaswami J Paulraj and Constantinos B Papadias. Space-time processing forwireless communications. IEEE Signal Process. Mag., June1997,14(6):49–83.
    [21] Stoica P. and Viberg M. Maximum likelihood parameter and rank estimation inreduced-rank multivariate linear regressions. IEEE Trans. Signal Process., Dec.1996,44(12):3069–3078.
    [22] Lindskog E. and Tidestav C. Reduced rank channel estimation. In Proc. IEEEVeh. Technol. Conf., volume2, pages1126–1130, May1999.
    [23] Nicoli M. and Spagnolini U. Reduced-rank channel estimation for time-slottedmobile communication systems. IEEE Trans. Signal Process., Mar.2005,53(3):926–944.
    [24] Giancola D., Sanguanini A., and Spagnolini U. Variable rank receiver structuresfor low-rank space-time channels. In Proc. IEEE Veh. Technol. Conf., volume1,pages65–69, May1999.
    [25] Nicoli M., Simeone O., and Spagnolini U. Multislot estimation of frequency-selective fast-varying channels. IEEE Trans. Commun., Aug.2003,51(8):1337–1347.
    [26] Nicoli M., Simeone O., and Spagnolini U. Multislot estimation of fast-varyingspace-time communication channels. IEEE Trans. Signal Process., May2003,51(5):1184–1195.
    [27] Hagenauer J. The turbo principle: Tutorial introduction and state of the art. InProc. Int. Symp. on Turbo Codes, pages1–11, Sept.1997.
    [28] Nicoli M. and Spagnolini U. A subspace method for channel estimation in soft-iterative receivers. In Proc.13th Eur. Signal Process. Conf., Sep.2005.
    [29] Ferrara S., Matsumoto T., Nicoli M., and Spagnolini U. Soft iterative channelestimation with subspace and rank tracking. IEEE Signal Process. Lett., Jan.2007,14(1):5–8.
    [30] Nicoli M., Ferrara S., and Spagnolini U. Soft-iterative channel estimation: Meth-ods and performance analysis. IEEE Trans. Signal Process., June2007,55(6):2993–3006.
    [31] Loncar M., Muller R., Wehinger J., Mecklenbrauker C., and Abe T. Iterativechannel estimation and data detection in frequency-selective fading mimo chan-nels. Eur. Trans. Telecommun., Sep.2004,15(4):459–470.
    [32] Nicoli M. and Spagnolini U. Subspace-methods for space-time processing. Hin-dawi Publ. Corp., New York,2005.
    [33] Friedlander B. Direction finding in the presence of mutual coupling. IEEE Trans.Antennas Propag., Mar.1991,39(3):273–284.
    [34] Weiss Anthony J and Friedlander Benjamin. Effects of modeling errors on theresolution threshold of the music algorithm. IEEE Trans. Signal Process., June1994,42(6):1519–1526.
    [35] Li Fu and Vaccaro Richard J. Sensitivity analysis of doa estimation algorithmsto sensor errors. IEEE Transactions on Aerosp. Electron. Syst., Mar.1992,28(3):708–717.
    [36] Li Y. and Er M. H. Theoretical analyses of gain and phase error calibration withoptimal implementation for linear equispaced array. IEEE Trans. Signal Propag.,Feb.2006,54(2):712–723.
    [37] Friedlander Benjamin and Weiss Anthony J. Eigenstructure methods for directionfinding with sensor gain and phase uncertainties. In Proc. International Confer-ence on Acoustics, Speech, and Signal’88(ICASSP’88), pages2681–2684, Apr.1988.
    [38] Paulraj A and Kailath T. Direction of arrival estimation by eigenstructure meth-ods with unknown sensor gain and phase. In Proc. International Conference onAcoustics, Speech, and Signal’85(ICASSP’85), volume10, pages640–643, Apr.1985.
    [39] Weiss Anthony J and Friedlander Benjamin. Eigenstructure methods for directionfinding with sensor gain and phase uncertainties. Circuits, Systems and SignalProcessing,1990,9(3):271–300.
    [40] Sellone F. and Serra A. A novel online mutual coupling compensation algorithmfor uniform and linear arrays. IEEE Trans. Signal Propag., Feb.2007,55(2):560–573.
    [41] Xu X., Ye Z., and Zhang Y. Doa estimation for mixed signals in the presence ofmutual coupling. IEEE Trans. Signal Process., Sept.2009,57(9):3523–3532.
    [42] Bao Q., Ko C. C., and Zhi W. Doa estimation under unknown mutual couplingand multipath. IEEE Trans. Aerosp. Electron. Syst., Apr.2005,41(2):565–573.
    [43] Ye Z. and Liu C. On the resiliency of music direction finding against antennasensor coupling. IEEE Trans. Antennas Propag., Feb.2008,56(2):371–380.
    [44] Ye Z., Dai J., Xu X., and Wu X. Doa estimation for uniform linear array withmutual coupling. IEEE Trans. Aerospace and Electronic Systems, Jan.2009,45(1):280–287.
    [45] Liao B., Zhang Z. G., and Chan S. C. A subspace-based method for doa estimationof uniform linear array in the presence of mutual coupling. Proc. InternationalSymposium on Circuits and Systems’10, May2010,45(1):1879–1882.
    [46] Liao B. and Chan S.C. Adaptive beamforming for uniform linear arrays withunknown mutual coupling. IEEE Antennas and Wireless Propag. Lett., Jan.2012,11:464–467.
    [47] Fistas N. and Manikas A. A new general global array calibration method. InProc. International Conference on Acoustics, Speech, and Signal’09(ICASSP’09), volume4, pages73–76,1994.
    [48] Jaffer A. G. Constrained mutual coupling estimation for array calibration. InConference Record of the Thirty-Fifth Asilomar Conference on Signals, Systemsand Computers, volume2, pages1273–1277, Nov.2001.
    [49] Pierre J and Kaveh M. Experimental performance of calibration and direction-finding algorithms. In Proc. International Conference on Acoustics, Speech, andSignal’91(ICASSP’91), pages1365–1368, Apr.1991.
    [50] See C. M. S. Method for array calibration in high-resolution sensor array pro-cessing. In IEE Proc. Radar, Sonar and Navigation, volume142(3), pages90–96,1995.
    [51] Ng B. C. and See C. M. S. Sensor-array calibration using a maximum-likelihoodapproach. IEEE Trans. Antenna Propag., Jun.1996,44(6):827–835.
    [52] Stavropoulos K. V. and Manikas A. Array calibration in the presence of unknownsensor characteristics and mutual coupling. In EUSIPCO Proceedings, volume3,pages1417–1420,2000.
    [53] See CMS. Sensor array calibration in the presence of mutual coupling and un-known sensor gains and phases. Electronics letters,1994,30(5):373–374.
    [54] Swindlehurst A. L. and Viberg M. A bayesian approach to auto-calibration forparametric array signal processing. IEEE Trans. Signal Process., Sept.1998,42(12):3495–3507.
    [55] Swindlehurst A. L. and Ottersten B. Weighted subspace fitting for general arrayerror models. IEEE Trans. Signal Process., Sept.1998,46(9):2484–2498.
    [56] Liao B. and Chan S. C. Doa estimation of coherent signals for uniform lineararrays with mutual coupling. In International Symposium on Circuits and Systems’11(ISCAS’11), volume2, pages377–380, May2011.
    [57] Pierre JW and Kaveh M. Experimental evaluation of high-resolution direction-finding algorithms using a calibrated sensor array testbed. Digital Signal Pro-cessing, Apri.1995,5(4):243–254.
    [58] Rockah Y. and Schultheiss P. M. Array shape calibration using sources in un-known locations part i: Far-field sources. IEEE Trans. Acoust., Speech, SignalProcess., Mar.1987,35(3):286–299.
    [59] Anthony J Weiss and Benjamin Friedlander. Array shape calibration using sourcesin unknown locations-a maximum likelihood approach. IEEE Trans. Acoust.Speech. Signal Process., Dec.1989,37(12):1958–1966.
    [60] Viberg Mats and Swindlehurst A Lee. Analysis of the combined effects of finitesamples and model errors on array processing performance. IEEE Trans. SignalProcess., Nov.1994,42(11):3073–3083.
    [61] Holma H. and Toskala A. WCDMA for UMTS: Radio Access for Third GenerationMobile Communications. Wiley, New York,2000.
    [62] Reznick B. Some concrete aspects of hilbert’s17th problem. ContemporaryMathematics,2000,253:251–272.
    [63] Correia L. M. Wireless Flexible Personalized Communications–COST259: Eu-ropean Co-operation in Mobile Radio Research. John Wiley&Sons, New York,2001.
    [64]王永良,陈辉,彭应宁, and万群.空间谱估计理论与算法.清华大学出版社有限公司,北京,中国,2004.
    [65] Office for Official Publications of the European Communities. Cost207: Digitallandmobile radio communications. Final report, Luxemburg,1989.
    [66] Nicoli M. Multiuser Reduced Rank Receivers for TD/CDMA Systems. PhD thesis,Politecnico di Milano,Italy,2001.
    [67] Soderstrom and Stoica P. System Identification. Prentice-Hall, London,1989.
    [68] Viberg M., Stoica P., and Ottersten B. Maximum likelihood array processing inspatially correlated noise fields using parameterized signals. IEEE Trans. SignalProcess., Apr.1997,45(4):996–1004.
    [69] Horn R. A. and Johnson C. R. Matrix analysis. Cambridge university press, NewYork,2005.
    [70] Akaike H. Information theory and an extension of the maximum likelihood prin-ciple. In Proc.2nd Int. Symp. Inform. Theory, pages267–281,1973.
    [71] Wax M. and Kailath T. Detection of signals by information theoretic criteria.IEEE Trans. Acoust., Speech, Signal Process., Apr.1985,33(2):387–392.
    [72] Buchoux V., Cappe O., Moulines E., and Gorokhov A. On the performance ofsemi-blind subspace-based channel estimation. IEEE Trans. Signal Process., June2000,48(6):1750–1759.
    [73] E. de Carvalho and Slock D. Deterministic quadratic semi-blind fir multichannelestimation: algorithms and performance. In Proc. International Conference onAcoustics, Speech, and Signal’00(ICASSP’00), volume5, pages2553–2556,May2000.
    [74] A. van den Bos. A cramer-rao lower bound for complex parameters. IEEE Trans.Signal Process., Oct.1994,42(10):2859.
    [75] Larimores W. E. Order-recursive factorization of the pseudoinverse of a covari-ance matrix. IEEE Trans. Automat Contr., Dec.1990,35(12):1299–1303.
    [76] Steinbauer M., Asplund H., I. de Coster, Hampicke D., Heddergott R., Lohse N.,and Molisch A. Cost259swg2.1mission report: modelling unification workshop.Vienna, Apr.1999.
    [77] Tubbax J., L. Van der Perre, Donnay S., and Engels M. Single-carrier communi-cation using decision-feedback equalization for multiple antennas. In Proc. Inter-national Conference on Communications’03(ICC’03), volume4, pages65–69,May2003.
    [78] Falconer D., Ariyavisitakul S. L., Benyamin-Seeyar A., and Eidson B. Frequencydomain equalization for single-carrier broadband wireless systems. IEEE Com-mun. Mag., Apr.2002,40(4):58–66.
    [79] Koetter R., Singer A. C., and Tuchler M. Turbo equalization. IEEE Signal Pro-cess. Mag., Jan.2004,21(1):67–80.
    [80] Horn R. A. and Johnson C. R. Topics in Matrix Analysis. Cambridge universitypress, New York,1991.
    [81] Fazel M., Hindi H., and Boyd S. P. Log-det heuristic for matrix rank minimizationwith applications to hankel and euclidean distance matrices. In Proc. AmericanControl Conf., volume3, pages2156–2162, July2003.
    [82] Sturm J. F. Using sedumi1.02, a matlab toolbox for optimization over symmetriccones. IEOptim. Meth. Softw., Aug.1999,11-12:625–653.
    [83] S. ten Brink. Convergence behavior of iteratively decoded parallel concatenatedcodes. IEEE Trans. Commun., Oct.2001,49(10):1727–1737.
    [84] Schmidt R. O. A signal subspace approach to multiple emitter location and spec-tral estimation. Ph.D. dissertation, Stanford University, Stanford, Calibfornia,1981.
    [85] Bertsekas D. P. Nonlinear Programming. Athena Scientific, Massachusetts,1999.
    [86] Toh K. C. and Todd M. J. On the implementation and usage of SDPT3-a Mat-lab software package for semidefinite-quadratic-linear programming, version4.0.Springer Verlag, New York,2012.
    [87] Huang Yongwei and Palomar D.P. Rank-constrained separable semidefinite pro-gramming with applications to optimal beamforming. IEEE Trans. Signal Pro-cess., Feb.2010,58(2):664–678.
    [88] Luo Z.Q. and Lu W. An introduction to convex optimization for communicationsand signal processing. IEEE J. Select. Area. Commun., Aug.2006,24(8):1426–1438.
    [89] Vorobyov S. A., Gershman A. B., and Luo Z.Q. Robust adaptive beamformingusing worst-case performance optimization: a solution to the signal mismatchproblem. IEEE Trans. Signal Process., Feb.2003,51(2):313–324.
    [90] Nesterov Yu. Squared functional systems and optimization problems. KluwerAcademic Press, Dordrecht,1991.
    [91] Boyd S. and Vandenberghe L. Convex Optimization. U.K.: Cambridge Univ.Press,2004.
    [92] Ljung L. System Identification: Theory for the User. Prentice-Hall, EnglewoodCliffs, NJ,1987.
    [93] Asplund Henrik, Glazunov A Alayon, Molisch Andreas F, Pedersen Klaus I, andSteinbauer Martin. The cost259directional channel model-part ii: macrocells.IEEE Trans. Wireless Commun., Dec.2006,5(12):3434–3450.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700