矿井尺度下采场流动与传热的数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
矿井火灾和热害问题一直是煤矿生产的主要威胁,尽管国内外许多学者在防治自燃的发生方面进行了大量的研究,但是遗煤氧化散热造成的火灾事故仍时有发生。在采动影响下,冒落岩体和遗煤在地下形成的多孔松散采空区是自燃发生的重灾区。采空区与工作面之间不可避免地存在着漏风联系,采空区漏风是引起遗煤氧化,形成采空区煤炭自燃的重要原因。因此研究采动影响下采空区内漏风流场及温度场的分布规律,以此研究相应的通风策略,对于预防采空区自然发火,促进安全生产具有重要意义。
     基于多孔介质流体动力学研究的最新进展,本文采用数值模拟方法研究了采场内的风流流动和温度场分布规律。首先,采用容积平均理论详细推导了采场流动、传热和氧气浓度的数学模型。其中在流函数-涡量表示的动量方程中引入Brinkman-Forchheimer的扩展Darcy模型,来描述采空区内层流、过渡流和紊流共存的复杂流态;引入纯流体与多孔介质交界面保持属性连续的单区域处理方法,将工作面与采空区作为统一求解区域进行求解;在温度场方程中考虑了围岩和风流的热交换、采煤设备的放热及采空区内遗煤氧化反应产热等因素。此外,为了更准确地模拟采场流动换热状况,本文基于上覆岩层的沉降理论,建立了孔隙率和渗透率在采空区倾向和走向二维空间内连续不均匀分布的计算模型。最终采用控制容积法对控制方程组进行了离散,利用FORTRAN语言编制程序进行了求解;其次,利用实验室数据和典型采场工作面内实测数据对流动传热模型进行了二级验证,两者较好的吻合结果证明了模型的准确性;最后,针对所研究的采场计算了不同供风量下的采场温度场分布;同时针对不同孔隙率模型对采空区流场与温度场进行了数值模拟和实测对比。
     对典型U形采场流场温度场的模拟结果表明,采场漏风风流在采空区深度方向上,沿垂直于工作面煤壁的中心线呈现出非对称的分布规律,这个结果修正了以往模拟研究中得出的风流对称分布规律。这也造成了采空区进风巷附近的风流速度明显高于回风巷附近区域,但离工作面越远,漏风速度的差异越小,采空区深处已几乎没有区别;采空区前半段的等温线大致以进风巷为中心呈现环状分布,离工作面越远风流速度越微弱,氧化反应趋于停滞进入窒息区。工作面后半部附近的采空区内温度变化幅度非常大,将是遗煤自燃多发地带;工作面供风量越大,采空区内部氧化反应越强烈,整体温度状况越高,最高温度点随供风量的增大逐渐向回风巷方向移动;结果表明,与恒定孔隙率模型和分块模型相比,本文提出的冒落带孔隙率的二维连续非均匀分布模型更符合实际。
Spontaneous combustion and thermal hazard in mining regions have long been risks for coal mine safety, although extensive investigations have been conducted by lots of researchers. Most spontaneous fires occur in gobs, which are in fact porous media composed by uncollected coal and collapsed rock fragments after underground excavation. Inevitable air leakage from working faces towards gob regions is a vital reason for coal oxidation and resulted spontaneous combustion. Therefore, investigation on airflow and temperature distribution amid underground mining, and corresponding ventilation strategies, can greatly aid preventing coal fires and promoting safe production.
     With new advances of thermo-fluid theories in porous media, this paper numerically investigates the airflow patterns and temperature distributions in both working-faces and gobs. Firstly, based on the volumetric average theory in porous media, this paper develops detailed numerical models for flow, heat transfer and oxygen concentration, by applying a vorticity-stream function approach. The Brinkman-Forchheimer-extended Darcy model is employed to describe the airflow patterns inside gobs, which are characterized by layer, transitional and turbulent flow patterns. A single-domain approach is employed to make properties continuously across the fluid/porous interface, thus working faces and gobs are incorporated into a set of unified models. The heat transfer model can take into account heat generation by equipments, heat exchange between rock stratum and airflow and heat generation by coal oxidation, etc. In addition, expressions for porosity and permeability as continuous and non-uniform distribution inside gobs are deducted according to the subsidence theory of overlying stratum. Infinite volume approach is applied for dispersion of governing equations, which are compiled and solved with FORTRAN language. Secondly, two-stage model validations with both experimental data from test rigs and in-situ measurement are accomplished. Satisfying results prove the accuracy of foregoing set of models. Finally, temperature distributions inside the gob are visualized and compared under different air flowrates. Different porosity distribution models are used as input to a simulator for thermo-fluid dynamics in a gob that models mine airflow, temperature and oxygen content distributions.
     Numerical predictions show an asymmetric airflow distribution in along with asymmetric temperature distribution in the gob. This results in larger airflow velocity in areas near the intake comparing with those near the return airway, but less obvious differences are observed deeper into the gob. In the gob, temperature distribution contour lines look like arcs centered by the intake airway. If the oxygen content in the air is not enough to sustain coal oxidation, temperature increase stops, therefore a region with constant temperature distribution is formed. Significant temperature changing magnitudes are revealed in the back part of gob along the airflow direction, which is prone to spontaneous combustion. Greater air flowrate brings much more intense oxidation inside gobs and higher temperature conditions. What's more, the highest temperature throughout the gob moves towards the return airway with increasing air flowrate. Results show that two dimensional variable porosity models possess obvious advantages comparing with field data.
引文
[1]DeRosa M.Analysis of mine fires for all US underground and surface coal mining categories,1990-1999,PB 2004-167[R].Pittsburgh:National Institute for Occupational Safety and Health,2004.
    [2]余恒昌.矿山地热与热害处理[M].北京:煤炭工业出版社,1991.
    [3]Yuan L,Smith A C,and Brune J F.Computational fluid dynamics study on the ventilation flow paths in longwall gobs.In:Proceedings of the 11th U.S./North American Mine Ventilation Symposium[C].University Park,PA,2007:591-597.
    [4]张彦华,许刘晓.浅谈高瓦斯综放面采空区自然发火的综合防治[J].陕西煤炭,2007,(11):44-45.
    [5]董立华.综放开放采空区煤炭自燃防治技术[J].煤矿安全,2007,(3):26-28
    [6]黄颖华,沈斐敏.高温矿井降温技术研究动态[J].安全技术,2006,(11):36-37
    [7]胡玉坤,丁静.多孔介质内部传热传质规律的研究进展[J].广东化工,2006,33(11):44-47.
    [8]Bear J.多孔介质流体动力学[M].李竞生,陈崇希译.北京:中国建筑工业出版社,1983.
    [9]Sozer E,Shyy W.Modeling of fluid dynamics and heat transfer through porous media for liquid rocket propulsion[C].In:Proceedings of 43ndAIAA/ASME/SAE/ASEE Joint Propulsion Conference &Exhibit,Cincinnati,OH,2007:1-11.
    [10]Vafai K.Handbook of porous media[M].New York:Marcel Dekker,2000.
    [11]Pascal J P,Pascal H.Pressure diffusion in unsteady non-Darcian flows through porous media[J].Eur J Mech,B/Fluids,1995,14(1):75-90.
    [12]Huang P C,Vafai K.Analysis of forced convection enhancement in a channel using porous blocks[J].Journal of Thermophysic and Heat Transfer,1994,8(3):563-573.
    [13]Somerton C,Catton W.On the thermal instability of superpose fluid and porous layers[J].J.Heat Transfer,1982,104(5):160-165.
    [14]Abdalla M,Amiri A L.Analysis of momentum and energy transfer in a lid-driven cavity filled with a porous medium[J].International Journal of Heat and Mass Transfer,2000,43(19):3513-3519.
    [15]Vafai K.Handbook of Porous Media[M].Marcel Dekker,New York,2000.
    [16]Alazmi B,Vafai.K.Analysis of variants within the porous media transport models[J].Journal of heat transfer,2000,122(5):303-326.
    [17]Vafai K,Thiyagaraja R.Analysis of Flow and Heat Transfer at the Interface Region of a Porous Medium[J].Int.J.Heat Mass Transfer,1987,30(7):1391-1405.
    [18]Kim S J,Choi C Y.Convection Heat Transfer in Porous and Overlying Layers Heated from Below[J].Int.J.Heat Mass Transfer,1996,39(5):319-329.
    [19]Ochoa T,Whitaker S.Momentum Jump Condition at the Boundary between a Porous Medium and a Homogeneous Fluid:Inertial Effects[J].J.Porous Media,1998,1(3):201-217.
    [20]Ochoa T,Whitaker S,Momentum Transfer at the Boundary between a Porous Medium and a Homogeneous Fluid I:Theoretical Development[J].Int.J.Heat Mass Transfer,1995,38(14):2635-2646.
    [21]Goyeau B,Lhuillier D,Gobin D,et al.Momentum transport at a fluid-porous interface[J].Int.J.Heat and Mass Transfer,2003,46(21):4071-4081.
    [22]Huang P C,Vafai K.Analysis of forced convection enhancement in a channel using porous blocks[J].Journal of Thermophysic and Heat Transfer,1994,8(3):563-573.
    [23]Beckermann C,Ramadhyani S and Viskanta R.Natural convection flow and heat transfer between a fluid layer and a porous layer inside a rectangular enclosure[J].Journal of Heat Transfer,1986;109(5):363-370.
    [24]Jeng T M.A porous model for the square pin-fin heat ink situated in a rectangular channel with laminar side-bypass flow[J].International Journal of Heat and Mass Transfer,2007;11(18):1-12.
    [25]Chan H,Huang W C,Leu J M,et al.Macroscopic modeling of turbulent flow over a porous medium [J].Heat and Fluid Flow,2007;28(5):1157-1166.
    [26]Prasad V,Kladias N.Non-Darcy Convection in Saturated Porous Media[M]//Proc.NATO Advanced Study Institute.Convective Heat and Mass Transfer in Porous Media.Netherlands:Kluwer Academic Publ.,1991:173-226.
    [27]章梦涛,王景琰.采场空气流动状况的数学模型和数值方法[J].煤炭学报.1983,8(3):46-54.
    [28]平庄煤业(集团)有限责任公司煤炭科学研究总院抚顺分院.平庄煤业(集团)有限责任公司六家煤矿采空区自燃“三带”划分[R].2002.
    [29]刘忠全.矿井通风系统中管流场流一体化研究:(硕士学位论文).阜新:辽宁工程技术大学,2006.
    [30]邓军,徐精彩,文虎.采空区自然发火动态数学模型研究[J].湘潭矿业学院学报,1998,13(1):11-16.
    [31]李宗翔.采空区遗煤自燃过程及其规律的数值模拟[J].中国安全科学学报,2005,15(6):36-37.
    [32]李宗翔.任意形冒落非均质采空区流场流态数值模拟[J].力学与实践,2005,27(6):26-28.
    [33]邸志乾,丁广骧,左树勋等.放顶煤综采面采空区“三带”的理论计算与观测分析[J].中国矿业大学学报.1993,22(1):8-16
    [34]李宗翔,孟宪臣,纪传仁.冒落非均质平面流场非达西渗流新迭代算法[J].力学与实践,2005,29(2):28-30.
    [35]王凯,吴伟阳.J型通风综放采空区流场与瓦斯运移数值模拟[J].中国矿业学报,2007,36(3):277-282.
    [36]Balusu R,Deguchi G,Holland R,et al.Goal gas flow mechanics and development of gas and Sponcom control strategies at a highly gassy mine[J].Coal and Safety,2002;20:35-45.
    [37]Wendt M,Balusu R.CFD modeling of longwall goal gas flow dynamics[J].Coal and Safety,2002,20:17-34.
    [38]Yuan L,Smith A C,and Brune J F.Computational fluid dynamics modeling of spontaneous heating in longwall gob areas[C].2007 SME Annual Meeting and Exhibit.University Park,PA,2007:101-113.
    [39]Yuan L,Smith A C,and Brune J F.Computational fluid dynamics study on the ventilation flow paths in longwall gobs[C].Proceedings of the 11th U.S./North American Mine Ventilation Symposium,University Park,PA,2007:591-597.
    [40]Smith A C,Yuan L.Simulation of spontaneous heating in longwall gob area with a bleederless ventilation system[C].2008 SME Annual Meeting and Exhibit,Salt Lake City,2008.
    [41]Yuan L,Smith A C.Numerical study on effects of coal properties on spontaneous heating in longwall gob areas[J].Fuel,2008,87(15-16):3409-3419.
    [42]梁森森.可燃性多孔介质热量迁移研究:(硕士学位论文).南京:东南大学,2006.
    [43]Schmal D.A model for the spontaneous heating of stored coal[D]:.Delft:University of Delft,1987.
    [44]文虎,徐精彩,李莉等,煤自燃的热量积聚过程及影响因素分析[J],煤炭学报,2003,28(4):370-374.
    [45]文虎,徐精彩.煤自燃过程的动态数学模型及数值分析[J],北京科技大学学报,2003,25(5):387-390.
    [46]郭兴明,徐精彩,惠世恩.煤自燃过程中极限参数的研究[J].西安交通大学学报,2001,35(7):682-696.
    [47]秦波涛,王德明,李增化等.以活化能的观点研究煤炭自燃机理[J],中国安全科学学报,2005,15(1):11-14.
    [48]邓军.综放面采空区温度场动态数学模化及应用[J].中国矿业大学学报,1999,28(2):179-181.
    [49]钱鸣高,李鸿昌.采场上覆岩层活动规律及其对矿山压力的影响[J].煤炭学报,1982,(2):1-12.
    [50]邓军,徐精彩,文虎.采空区自然发火动态数学模型研究[J].湘潭矿业学院学报,1998,13(1):11-16.
    [51]宋振骐.实用矿山压力控制[M].徐州:中国矿业大学出版社,1988.
    [52]Szlazak J.The determination of a co-efficient of longwall gob permeability[J].Archives of mining sciences,2001,46(4):451-468.
    [53]Sevcik D.Permeability of a longwall gob[J].Archives of mining sciences,2004,49(2):109-114.(in Polish)
    [54]Kelsey A,Lea C J,Lowndes I S,et al.CFD modelling of methane movement in mines[C].30th International Conference of Safety in Mines Research Institutes,South African Institute of Mining and Metallurgy,2003.
    [55]Durucan S.An investigation into the stress permeability relationship of coals and flow patterns around working longwall faces[D].Nottingham:University of Nottingham,1981.
    [56]Tang C A,Tham L G.,Lee P K K,et al.Coupled analysis of flow,stress and damage(FSD) in rock failure[J].International Journal of Rock Mechanics and Mining Sciences,2002,39(4):477-489.
    [57]Brunner D J.Ventilation Models for Longwall Gob Leakage Simulation[J].Proceedings of 2nd US Mine Ventilation Symposium,Reno,Nevada,September 23-25,1985:655-663.
    [58]Van ZYL FJ.Evaluation of methods for dynamic gob ventilation and methane drainage to reduce the explosion and fire risk of methane layering[R],Project No:COL 204.CSIR Mining Technology,1997.
    [59]周西华.双高矿井采场自燃与爆炸特性及防治技术研究:[D].辽宁:辽宁工程技术大学,2006.
    [60]Slattery J C.Turbulent flow through packed column[J].Chem Eng Prog 1969,48(1):89-94.
    [61]Waclawik J.The effect of heat insulation of rock surface on mine air temperature from point of view of heat exchange theory[C].Proceedings of the First School of Mine Ventilation.Zakopane,1999.157-167.
    [62]刘高文.煤自燃特性参数研究及应用:(硕士学位论文).西安:西安科技学院,2002.
    [63]叶振兴.煤的低温氧化实验及模拟试验数值模拟研究:(硕士学位论文).安徽:安徽理工大学,2005.
    [64]邓存宝.煤的自燃机理与自燃危险性指数研究[D].辽宁:辽宁工程技术大学,2006.
    [65]张辛亥,徐精彩,邓军等.煤的耗氧速度及其影响因素恒温实验研究[J].西安科技学院学报,22(3):243-246.
    [66]陶文铨.数值传热学[M].西安:西安交通大学,1986.
    [67]张国枢.煤炭自燃理论与防治实践[M].北京:煤炭工业出版社,2002.
    [68]Peng S S,Chiang H S.Longwall mining[M].Wiley,New York,1984.
    [69]Palchik V,2002.Influence of physical characteristics of weak rock mass on height of caved zone over abandoned subsurface coal mines[J].Environmental Geology.2006,42(1):92-101.
    [70]Bai M,Kendorski F,Van R D.Chinese and North American high-extractiun underground coal mining strata behaviour and water protection experience and guidelines[C].In proceedings of the 14th International Conference on Ground Control in Mining,Morgantown,1995:209-217.
    [71]Esterhuizen G S,Karacan CO.A methodology for determining gob permeability distributions and its application to reservoir modeling of coal mine longwalls[C].In proceedings of the 2007 SME Annual Meeting and Exhibit.Colorado:Society for Mining,Metallurgy,and Exploration,Inc.,2007:1-6.
    [72]Hock E,Bray J W.Rock Slope Engineering[M].London:Inst.Mining and Metallurgy,1981.
    [73]Fu H L,Leong K C,Huang X Y,et al.An experimental study of heat transfer of a porous channel subjected to oscillating flow[J].Journal of heat transfer,123(1):162-170.
    [74]杨宏民,张志,乔凤龙等.六家煤矿采空区“三带”分布[J].煤矿安全,2004,(35):13-15.
    [75]文虎.煤自燃过程的实验及数值模拟研究[D].西安:西安科技大学,2003.
    [76]周西华,王继仁,卢国斌等.回采工作面温度场分布规律的数值模拟[J].煤炭学报,2002,27(1):59-63.
    [77]徐精彩,王军.采面供风量与采空区遗煤自燃危险性关系分析[J].西安矿业学院学报,1994,14(3):195-199.
    [78]兰泽全.多源多汇采空区速度场、瓦斯浓度场和温度场计算机模拟:(硕士学位论文).安徽:淮南工业学院.
    [79]蒋曙光,张人伟,陈开岩.监测温度和气体确定采空区自燃“三带”的研究[J].中国矿业大学学报,1998,27(1):56-59.
    [80]潘德祥,王玉怀,马尚权等.林南仓矿11煤层采空区温度变化规律研究[J].煤炭工程,2006,(9):73-75.
    [81]罗新荣,李增华,张迎第.综采放顶煤采场漏风与采空区氧化三带研究[J].煤炭学报,1998,23(5):480-485.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700