FSO-OFDM系统关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自由空间光通信(FSO)由于具有成本低、组网灵活、无需频率许可等优点,已成为当今信息技术的一大热点。但由于光色散以及电子器件速率的限制,使系统传输速率受限,误码性能不理想。为了充分发挥FSO的潜力,支持更高的信息传输速率和改善系统误码特性,必须采用频谱效率高、抗大气效应能力强的新型传输技术。在各种能提供高速率传输的无线解决方案中,正交频分复用(OFDM)技术最能代表自由空间光通信的发展方向。因此,本文将OFDM与FSO这两项较成熟的技术进行结合,并对FSO-OFDM系统亟待解决的理论和技术问题展开研究。
     1、把OFDM技术引入到FSO系统中,给出了基于光偏振特性的基带FSO-OFDM模型和基于相干检测的频带FSO-OFDM模型,并对其信号处理过程进行了论证。
     2、提出了一种新的基于时频码的FSO-OFDM系统模型,将空时编码的思想引入到OFDM系统,通过在发射端改变信号结构,增加信号冗余和在接收端进行信号合并来完成信号检测,可达到降低系统复杂度和改善系统误码特性的效果。
     3、针对传统算法频偏估计范围小的缺点,在Schmidl&Cox和Minn算法的基础上,讨论了基于FH共轭对称序列的符号定时和频偏联合估计算法。该算法的定时尺度曲线仅在正确定时点处出现一个尖峰,大大提高了分辨率,从而可以更加准确的进行符号同步。同时通过合理设计训练序列的长度,可扩大频偏估计范围。
     4、应用Mie散射理论,数值计算了雨粒子、雾粒子和沙尘粒子对光波传输的衰减,推导了在相应信道条件下FSO-OFDM系统的误符号率公式,并通过仿真实验验证了其正确性。结果表明,在散射信道中FSO-OFDM系统的性能主要取决于散射造成的光强度起伏方差,其次为散射造成的光强度衰减系数。
     5、在对信道进行数值分析的基础上,特别研究了频率选择性衰落信道中的LMS自适应滤波的信道估计算法,该算法仅仅在学习阶段需要导频数据,而在跟踪阶段是利用反馈的判决信息进行信道估计,无需额外的导频数据信息,可以提高系统效率,并有较好的信道估计性能。
     综上所述,论文对于FSO-OFDM系统实现中的若干关键问题进行了深入的研究,理论分析和仿真实验表明本文所提出的思路具有一定的创新性并能够获得较好的效果。
Due to the Free Space Optical(FSO) communication has the advantages of low cost, flexible networking, convenient installation and dispense with frequency permission, it has become a major technology in the present information technologies. But due to light dispersion and speed restriction of electronic devices the transfer rate is often limited and the performance is not satisfactory. In order to sufficient exploit the potentials of FSO to enhance the transfer rate and the bit error rate(BER) performance of the optical communication system, we have to adopt a new transmission technology which has high spectrum efficiency and high ability to combat the atmospheric scattering effect. Hence, the two mature technologies of OFDM and FSO are combined. But the FSO-OFDM system also has many theory and technology problems remain yet to be solved. In this paper, we focus on these problems.
     Firstly, the OFDM technology is introduced into FSO. The baseband model based on polarization and the frequency model based on coherent detection are proposed in this paper. The signal processing of the two models are demonstrated.
     Secondly, because of the baseband model can not make full use of hardware resource and the frequency model requests coherent detection, a new FSO-OFDM model based on time frequency code is proposed in order to avoid the disadvantages of the two models. This coding method is proposed by applying the space-time code to OFDM system, it can reduce the system complexity and improve the system BER performance by changing the signal structure, providing redundancy for receiving signals and combining signals at receiver.
     Thirdly, because of the traditional algorithm's frequency deviation estimation range is limited, the symbol timing and frequency deviation joint estimation algorithm by adopting FH conjugate symmetrical sequence is proposed on the basic of Schmidl& Cox and Minn algorithm. The timing curve of this algorithm will present a spike pulse only at the right time, the resolution is greatly enhanced, so the symbol timing will be more accurate. The estimation of frequency deviation range will be expanded with rational training sequence length.
     Fourthly, the energy attenuation caused by raindrop, fog drop and dust are calculate by applying the Mie theory. The symbol error rate formula of the FSO-OFDM system under these channel conditions is deduced. Then its correctness is verified through simulation. The results show that the FSO-OFDM system performance in scattering channel primarily depends on the variance of light intensity attenuation caused by scattering, and also depends on light intensity attenuation coefficient caused by scattering.
     Fifthly,the LMS self-adapting filter channel estimation algorithm based on time domain training sequence is putted forward. As this algorithm utilizing the feedback signals to estimate in frequency selective fading channel, so the pilot signal is unnecessary, and present higher system efficiency and better channel estimated quality.
     This paper makes a further research on the several key problems about the FSO-OFDM system listing as forward. And bring forward some new algorithms which achieves perfect effect testified both by theory analysis and by simulation experimentation.
引文
[1]张文涛.自由空间光通信技术及国内外发展状况[J].量子电子学报,2003,20(3):23-24.
    [2]潘卫清,刘立人,刘锡民.成像光通信系统及编解码方案[J].中国激光,2006,33(2):213-220.
    [3]王惠琴,柯熙政.基于垂直分层空时码的自由空间光通信[J].中国激光,2008,35(6):874-878.
    [4]M.Alard, R.Lassalle. Principles of modulation and channel coding for digital broadcasting for mobile receivers.
    [5]R.Prasad. OFDM for wireless Communications Systems. Boston, London, Artech House,2004.
    [6]Y.Wu, B.Caron. Digital television terrestrial broadcasting[J]. IEEE Communications Magazine, 1994,32(5):46-52.
    [7]Hara,S, Prasad,R. Multicarrier techniques for 4G mobile communications.
    [8]IEEE 802.11, IEEE standard for wireless LAN medium access control and physical layer specifications[S].1997.
    [9]IEEE 802.16,IEEE Standard for Local and Metropolitan Area Networks Part 16:Air Interface for Fixed Broadband Wireless Access Systems[S].2004.
    [10]IEEE 802.11a,1999 supplement to IEEE standard for information technology and telecommunications and information exchange between systems-part Ⅱ:LAN MAC and PHY specifications:high speed physical layer in the 5GHzband[S]. Sep.1999.
    [11]杨慰民,毕光国.基于小波包变换的多址通信[J].通信学报,1999,20(3):28-35.
    [12]A. J. Lowery, L. Du, J. Armstrong. Othogonal frequency division multiplexing for adaptive dispersion compensation in long haul WDM system.
    [13]J.A.C.Bingham. Multicarrier modulation for data transmission:an idea whose time has come[J]. IEEE Communication magazine.1990,28(5):5-14.
    [14]B.C.Kim, I.T.Lu. Doppler Diversity for OFDM Wireless Mobile Communication. IEEE VTC,2003: 2677-2681.
    [15]Ivan B.Djordjevic, Bane. Vasic. 100Gb/s transmission using orthogonal frequency-division multiplexing[J]. IEEE Photonics Technology Letters,2006,18(15):1576-1578.
    [16]W.Shieh, C.Athaudage. Coherent optical orthogonal frequency division multiplexing[J]. Electronics Letters,2006,42(10):587-589.
    [17]Neda Cvijetic, Dayou Qian, Ting Wang. 10Gb/s Free-Space Optical Transmission using OFDM[J]. Conference on Optical Fiber Communication/National Fiber Optic Engineers Conference, San Diego, CA, United states, Feb.2008
    [18]Yi Sun. Bandwidth-efficient Wireless OFDM[J]. IEEE Journal on Selected in Communications, 2001,19(11):2267-2278.
    [19]Roy You, Joseph M.Kahn. Average power reduction techniques for multiple-subcarrier intensity-modulated optical signals. IEEE Transactions on communication,2001,49(12):2164-2171.
    [20]Tomoaki Ohtsuki. Multiple-Subcarrier Modulation in Optical Wireless Communications[J]. IEEE Communications Magazine,2003,41 (3):74-79.
    [21]张煦.多载波调制在通信系统的应用[J].光通信技术,2003,41(3):74-79.
    [22]Peter Horvath, Istvan Frigyes. Effects of the Nonlinearity of a Mach-Zehnder Modulator on OFDM Radio-over-Fiber Transmission[J]. IEEE Communications Letters,2005,9(10):921-923.
    [23]Ivan B.Djordjevic, Bane Vasic, Mark A. Neifeld. LDPC coded orthogonal frequency division multiplex over the atmospheric turbulence channel[J]. Optics Express,2007,15(10):6332-6346.
    [24]Ivan B.Djordjevic, Bane Vasic, Mark A. Neifeld. LDPC-Coded OFDM for Optical Communication System with Direct Detection[J]. IEEE Journal of selected topics in quantum electronics,2007, 13(5):1446-1454.
    [25]Yan Tang, William Shieh, Xingwen Yi et al. Optimum Design for RF-to-Optical Up-Converter in Coherent Optical OFDM Systems[J]. IEEE Photonics Technology Letters,2007,19(7):483-485.
    [26]Y.Tang, X.Yi, W.Shieh et al. Optimum Design for Coherent Optical OFDM Transmitter[J]. ECOC, Sept.2007,16-18 Optical Fiber Communication and the National Fiber Optic Engineers Conference, Anaheim, CA, United states, Mar.2007.
    [27]Ivan B.Djordjevic, Bane Vasic. Orthogonal frequency-division multiplexing for high-speed optical transmission[J]. Optics Express,2006,41(13):3767-3775.
    [28]Sebastian Randel, Matthias Schuster, Jeffrey Lee, and Florian Breyer. Myths and Truths about Optical OFDM.1-4244-0927-6107,2007IEEE
    [29]O.Gonzalez, R.Perez-Jimenez, S.Rodriguez, J.Rabadan, A.Ayala, OFDM over indoor wireless optical channel[J], IEE Proc-Optoelectron,2005,152(4):.
    [30]Roy You, Joseph M.Kahn. Capacity Bound of Optical IM/DD Channels Using Multiple-Subcarrier Modulation with Fixed Bias.2001,9(11):2757-2762.
    [31]G. A.Doelz, E.T.Heald, D.L.Martin. Binary data transmission techniques for linear systems. Proc. I.R.E.,May 1957,45:656-661.
    [32]S.B.Weinstein, P.M.Ebert.Data transmission by frequency division multiplexing using the discrete Fourier transform[J]. IEEE Transaction on Communicaiton,1971,19(5):628-634.
    [33]A.Peled, A.Ruiz. Frequency domain data transmission using reduced computational complexity algorithms. Proc. IEEE Int. Conf. Acoust Speech Signal Processing, Denver,Co,1980:964-967.
    [34]L. J.Cimini. Analysis and simulation of a digital mobile channel using Orthogonal Frequency Division Multiplexing[J]. IEEE Transaction on communication.1985,33(7):665-675.
    [35]Roy SB. Overview of lasercom program at Lincoln laboratory [J]. SPIE,1995,23(81):2-3.
    [36]Wayne R.Fenner. Future trends in crosslink communications[J]. SPIE,1993,1866:1-8.
    [37]Oppenhauser Gotthard. SILEX program status-a major milestone is reached[J]. SPIE,1997,2990:2-9.
    [38]Laurent B, Planche G.SILEX overview after flight terminals campaigh[J]. SPIE,1997,2990:10-22.
    [39]柯熙政,席晓莉.无线激光通信概论[M].北京:北京邮电大学出版社,2004.8-9.
    [40]赵黎,柯熙政,刘健.频带FSO-OFDM系统建模与LS信道估计研究.《激光杂志》.2009,30(3):38-39.
    [41]V.Tarokh, H.Jafarkhani, A.R.Calderbank. Space-time block coding for wireless communications: performance result. IEEE Journal on selected areas in communications,1999,17(3):451-460.
    [42]G.J.Foschini. Layered space-time architecture for wireless communication in fading environment whrn using multiple antennas[J]. Bell Labs Technical Journal,1996,Autumn:41-59.
    [43]V. Tarokh, N.Seshadri, A.R.Calderbank. Space-time codes for high data rate wireless communication: performance criterion and code construction[J]. IEEE Trans.on I.T,1998,44(2):744-765.
    [44]罗涛,乐光新.多天线无线通信原理与应用[M].北京:北京邮电出版社,2005:74-80.
    [45]Zhao Li,Ke Xizheng,Liu Jian.Study on multi-carrier modulation in Atmosphere Laser Communications. ICEMI'2007.
    [46]赵黎,柯熙政,刘健.一种改进的FSO-OFDM基带模型.《半导体光电》.2009,30(2):277-279.
    [47]尹长川,罗涛,乐光新.多载波宽带无线通信技术[M].北京:北京邮电大学出版社,2004:42-43.
    [48]Moose P H. A Technique for OFDM Frequency Offset Correction [J].IEEE Transactions on Communications,1994,42 (10):2908-2914.
    [49]李颖.OFDM同步技术研究[D],太原理工大学,2007.
    [50]H. Minn, M. Zeng, VK. Bhargava. On Timing Offset Estimation for COFDM Systems[J]. IEEE Communications letters,2000,14(7):242-244.
    [51]W.D. Warner, C. Leung. OFDM/FM frame synchronization far mobile radio data communications[J]. IEEE Trans. Veh. Technol,1993,42():302-313.
    [52]T.M. Schmidl, D.C. Cox. Robust frequency and timing synchronization for OFDM[J]. IEEE Trans. Commun,1997,45(12):1613-1621.
    [53]M. Okada, S. Hara, S. Komaki, N. Morinaga. Optimum synchronization of orthogonal multi-carrier modulatied signal. In Proc. IEEE PIMRC.Taiwan, Oct 15-18,1996, pp.863-867.
    [54]S.H. Muller. On the Optimality of Metrics far Coarse Frame Synchronization in OFDM:A Comparison, In Proceedings of Int. Symposium on personal, Indoors and Mobile radio communication (PIMRC'98), Boston USA, September 1998.
    [55]Donghoon Lee, Kyung Whoon Cheun. A New Symbol Timing Recovery Algorithm for OFDM Systems[J]. IEEE Transaction on Consumer,1997,43(3):767-775.
    [56]樊昌信.通信原理[M].北京:国防工业出版社,2002:379-390.
    [57]杜茂森,吉华芳.几种训练序列相关性能分析.信息安全与通信保密.2006.2(2):93-94.
    [58]T.M. Schmidl, D.C. Cox. Robust frequency and timing synchronization for OFDM[J]. IEEE Trans. Commun,1997,45(12):1613-1621.
    [59]P.Moose. A technique for orthogonal frequency division multiplexing frequency offset correction[J]. IEEE Transmission Communication,1994,10(42):2908-2914.
    [60]H. Minn, M. Zeng, VK. Bhargava. On Timing Offset Estimation for COFDM Systems[J]. IEEE Communications letters,2000,4(7):242-244.
    [61]F.Classen, H.Meyr. Frequency synchronization algorithms for OFDM systems suitable for communication over frequency selective fading channel. In Processing. IEEE Vehicular Veh.Technology Conference.,1994:1655-1659.
    [62]王惠琴,柯熙政,赵黎.基于正交空时块编码的自由空间光通信[J].中国科学,2009,39(8):896-902.
    [63]温涛,魏急波,马东堂.轻霾天气下大气多次散射对激光通信的影响[J].激光技术,2007,31(5):500-502.
    [64]杨臣华,梅遂生,林钧挺等. 激光和红外技术手册[M].北京:国防工业出版社,1990.44-47.
    [65]宋正方.应用大气光学基础[M].北京:气象出版社,1990.11-12.
    [66]Adarsh Deepak, Michael A. Box. Forwardscattering corrections for optical extinction measurements in aerosol media.l:Monodispersions[J].Applied Optics,1978,17(18):2900-2908.
    [67]Adarsh Deepak, Michael A. Box. Forwardscattering corrections for optical extinction measurements in aerosol media 2:Polydispersions[J]. Applied Optics,1978,17(19):3169-3176.
    [68]Adarsh Deepak, O. H. Vaughan. Extinction-sedimentation inversion technique for measuring size distribution of artificial fogs[J].Applied Optics,1978,17(3):374-378.
    [69]H.R.Prupacher, K.V.Beard. A wind tunnel investigation of the internal circulation and shape of water drops falling at terminal velocity in the air Quart [J]. Journ.Roy. Meteor.Soc,1970.96 (408): 247-256.
    [70]Prupacher,H.R., R.L.Pitter. A semi-empirical determination of the shape of clouds and rain drops[J]. Journal of Atmospheric Sciences,1971,28(1):86-94.
    [71]Oguchi,T. Eletromagnetic wave propagation and scattering in rain and other hydrometerors[J], Proc.IEEE,1983,71 (9),1029-1078.
    [72]懂群锋,毫米段脉冲波在雨雾煤质中传输效应研究[D].西安电子科技大学2006.
    [73]吴振森,王一平.多层球电磁散射的新算法[J].电子科学学刊,1993,卷期14;174-180.
    [74]杨瑞科,马春林,韩香娥等.激光在大气中传输衰减特性研究[J].红外与激光工程,2007,36(增刊):415-418.
    [75]董庆生.我国典型沙区中沙尘的物理特性[J].电波科学学报,1997,12(1):15-21.
    [76]周旺,周东方,侯德亭.微波传输中沙尘衰减的计算与仿真[J].强激光与粒子束,2005,17(8):1259-1262.
    [77]吴振森,由金光,杨科瑞.激光在沙尘暴中的衰减特性研究[J].中国激光2004,31(9):1075-1080.
    [78]赵黎,柯熙政.基于时频编码的FSO-OFDM系统模型[J].《中国激光》,2009,36(10):2757-2762..
    [79]赵黎,柯熙政.散射效应对FSO-OFDM系统的影响研究与仿真[J].《激光技术》.已录用
    [80]Rainfield Y.Yen, Hong-Yu Liu, Kuo-Feng Yang, Ming-Chih Hong, Shang-Chieh Nan. Performance of OFDM QAM over Frequency-Selective Fading Channels.
    [81]Mohamed-Slim Alouini, Andrea J. Goldsmith. A Unified Approach for Calculating Error Rates of Linearly Modulated Signals over Generalized Fading Channels[J]. IEEE Transactions on Communications,1999,47(9):1324-1334.
    [82]M.Speth, S.A.Fechtel, G.Fock, H.Meyr. Optimum receiver design for wireless broad-band systems using OFDM-part I [J]. IEEE Trans.Commun,199947(11):1668-1677.
    [83]X.Tang, M.Alouini, A.J.Goldsmith. Effect of chanel estimation error on M-QAM BER performance in Rayleigh fading[J]. IEEE Trans.Commun,1999,47(12):1856-1864.
    [84]A.Leke, J.M.Cioffi. Impact of imperfect channel knowledge on the performance of multicarrier systems. in Proc.IEEE GLOBECOM'98,Vol.2,Nov.1998,pp.951-955.
    [85]井雅.正交频分复用无线通信系统中信道估计技术研究[D].东南大学,2006.6.
    [86]R.Negi, J.Cioffi. Pilot tone selection for channel estimation in a mobile OFDM system [J]. IEEE Transactions on Consumer Electronics,1998,44(3):1122-1128.
    [87]S.Coleri, M. Ergen, A. Puri,A.Bahai. A study of channel estimation in OFDM systems. Proc. Veh.Tech.Conf,2002,vol.2,894-898.
    [88]Sinem Coleri, Mustafa Ergen, Anuj Puri, Ahmad Bahai. Channel estimation techniques based on pilot arrangement in OFDM systems[J]. IEEE Transactions on Broadcast,2002,48(3):223-229.
    [89]宋伯炜.OFDM无线宽带移动通信系统中信道估计与均衡技术研究[D].上海交通大学,2005.11.
    [90]M.H.Hsieh, C.H.Wei. Channel Estimation for OFDM systems Based on Comb-Type Pilot Arrangement in Frequency selective Fading Channels[J]. IEEE Transactions on Consumer Electronics,1998,44(1):217-225.
    [91]Y.Li. Pilot-symbol-aided chennel estimation for OFDM in wireless system[J]. IEEE Transations on Vehicular Technology,2000,49
    [92]S.Coleri, M.Ergen. A.P, A.Bahai. Channel Estimation Techniques Based on Pilot Arrangement in OFDM Systems[J]. IEEE Transactions on Broadcasting,2002,48(3):223-229.
    [93]Meng-Han Hsieh, Che-Ho Wei. Channel estimation for OFDM systems based on comb-type pilot arrangement in frequency selective fading channels[J]. IEEE Transactions on Consumer Electronics, 1998,44(1):217-225.
    [94]Chae-Hyun Lim, Dong Seog Han. Robust LS Channel Estimation with Phase Rotation for Single Frequency Network in OFDM[J]. IEEE Transaction on Consumer Electronics, 2006,52(4):1173-1178
    [95]Jia-Chin Lin. LS Channel Estimation for Mobile OFDM Communications on Time-Varying Frequency-Selective Fading Channels. IEEE Communications Socirty subject matter experts for publication in the ICC 2007 proceedings,3016-3023.
    [96]Simon Haykin. Adaptive Filter Theory,3rd Ed Prentice Hall,Englewood Cliffs,New Jersey,1996.
    [97]J.J.van de Beek, O.Edfors, M.Sandell, S.K.Wilson, P.O.Borjesson. On channel estimation in OFDM systems,"VTC95'fall,vol.2,pp.815-819,1995.
    [98]Ove Edfors, Magnus Sandell, Jan-Jaap van de Beek. OFDM Channel Estimation By Singular Value Decomposition[J].1996,:923-927
    [99]Ove Edfors, Magnus Sandell, Jan-Jaap van de Beek. OFDM Channel Estimation By Singular Value Decomposition[J]. IEEE Transactions on Communications,1998,46(7):931-939.
    [100]赵黎,柯熙政.偏振FSO-OFDM系统中的LMS信道估计算法[J].光电工程,2009,36(8):80-84.
    [101]白宾锋,蔡跃明,徐友云.OFDM系统中一种维纳LMS信道跟踪算法[J].电子与信息学报,2005,27(11):1699-1703.
    [102]Binfeng Bai, Mingyue Wang. Wiener LMS Channel Estimation and Tracking Algorithm for OFDM Systems with Transmitter Diversity[J].2006 International Conference on Communications, Circuits and Systems Proceedings, Guilin, China, June 25-28,2006:1040-1044.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700