多硝基立方烷等有机笼状高能化合物结构和性能的量子化学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多硝基立方烷是非常重要的立方烷衍生物,其具有高张力笼状结构、属于当前热切追求的高能量密度材料(HEDM)。它们在炸药、医药、液晶和高聚物等领域均有广阔的应用前景。为了阐明多硝基立方烷结构、性能及其相互关系,本文运用量子化学中从头计算(ab initio)、密度泛函理论(DFT)和半经验分子轨道(MO)等方法研究了它们的分子几何、电子结构、IR光谱、生成热和其它热力学性质、动力学酸性pK_a、热分解机理以及爆炸和爆轰性质。此外,作为比较和扩充,还计算研究了氰基、异氰基和硝酸酯基立方烷三类化合物的结构和生成热;对于特别重要并具有笼状结构的六硝基六氮杂异伍兹烷(CL-20)的结构和性质也进行了初步研究。概要如下:
     1.运用DFT-B3LYP方法,在6.31G~*基组水平下,计算研究了10种多硝基立方烷和CL-20的α(γ)、β、和ε三种构象的分子几何、电子结构、IR光谱和298~1000K温度范围的热力学性质(H°_m、C°_(p,m)和S°_m)。通过与实验模拟比较,求得B3LYP/6.31G~*水平下适合于多硝基立方烷IR频率精确计算的校正因子为0.9501;据此通过校正计算,报道了多硝基立方烷IR频率的精确理论计算结果。
     2.首次通过不破裂立方烷笼状骨架的等键反应设计,并综合运用B3LYP/6-31G~*和半经验MO方法,系统计算了四类立方烷(共21×4=84种)衍生物C_8H_(8-m)(R)_m(R=-NO_2,-ONO_2,-CN,-NC;1≤m≤8)的精确生成热,探讨了生成热与分子结构的关系。发现多硝基立方烷的生成热具有随取代基数目递变的特殊规律性,从而纠正了先前由基团加和法估算的多硝基立方烷的生成热计算结果。
     3.计算结果表明,多硝基立方烷的实验动力学酸性pK_a、分子内用于形成C-H键的环外碳轨道平均s成分(s_a)和分子内的平均C-H伸缩频率(v_a)之间,存在平行的递变关系,这对基于s_a或v_a的数值预估动力学酸性pK_a、进而指导多硝基立方烷和其它相关化合物的合成有助。
     4.在非限制性模式下,综合运用DFT、MP2和经选择的MINDO/3半经验MO方法进行计算,阐明了多硝基立方烷的热分解机理。发现热解引发和速控步骤为笼状骨架C-C单键均裂(形成双自由基);随后,第二个C-C键很快均裂形成产物。在B3LYP/6.31G~*水平下求得八硝基立方烷的热解引发反应活化能为155.30 kJ/mol,表明其具有较高热稳定性和较小感度。一系列计
    
    算结果均与实验结果良好地相符。
     5.以量子化学计算为基础,求得/又硝基立方烷晶体的升华热、密度和生
    成热分别为220.63 kJ/mol、2.159 g/cm3和505.54 kJ/mol。由此,按Kamlet--Jaeobs
    等式估算它的爆速和爆压分别为10.26拓m/s和520.86 kbar,从而表明它作为
    HEDM的很高研究开发价值。
     6.基于B3LYP/6一31G*计算结果,发现在CL一20分子中以N-N键相对较
    长、其间的电子集居数相对较小,预示N一N键可能较弱;对N一键热解均裂机
    理进行了计算研究。在CL一20的不同构象中,由前线分子轨道能量及其差值
    预示的热力学稳定性次序(。a(Y)>p)与实验结果相一致。
     总之,本文运用多种量子化学理论方法,对以多硝基立方烷为主的高能
    笼状化合物的结构和性能进行了系统而广泛的计算研究,所得结果丰富了“立
    方烷化学”的研究和应用,是该研究领域的最新成果。这对进一步深化这些
    化合物的理论和实验研究以及对于指导HEDM的寻求都是很有帮助的。
Polynitrocubanes are one of the most important derivatives of cubane and belong to the new type of high energetic density materials (HEDM) with high strain and cage structure. They have considerable potential importance in practical applications such as explosives, pharmaceuticals, liquid crystals, and specialty polymers, etc. In order to elucidate the structures and properties of polynitrocubanes, ab initio, density functional theory (DFT) and several semiempirical MO methods are employed to study their molecular geometries, electronic structures, infrared vibrational spectra, heats of formation and the other thermodynamic properties, kinetic acidities pKa, pyrolysis mechanism, and detonation properties. In addition, for comparison, the heats of formation for polycyanocubanes, polyisocyanocubanes, and cubylnitrates are calculated. The structures and properties for hexanitrohexaazaisowurtzitane (CL-20), a very important energetic material with cage structure, are also studied. Brief summary is listed as foll
    ows:
    1. The molecular geometries, electronic structures, IR frequencies, and thermodynamic properties (H m, C P, m and S m) in the temperature range 298 ~ 1000 K are calculated for 10 polynitrocubanes and ( ), p, and s-conformations of CL-20, using the DFT method at the B3LYP/6-31G* level. The accurate IR frequency scaling factor 0.9501 suitable for polynitrocubanes is obtained at the B3LYP/6-31G* level, and the calculated IR frequencies of polynitrocubanes are scaled.
    2. For the first time the accurate heats of formation for four kinds of derivatives of cubane C8H8-m(R)m (R = -NO2, -ONO2, -CM, and -NC; 1 m 8) and a total of 84 compounds (21 4) are systematically calculated, using both DFT-B3LYP/6-31G* method via designed isodesmic reactions in which the cubane cage skeleton has been kept and semiempirical MO methods. The relationships between the heats of formation and molecular structures are discussed. It is found that with increasing in the number of nitro groups, the trend of changes for the heats of formation of polynitrocubanes is.exceptional. Therefore, the previous data of heats of formation of polynitrocubanes estimated from group
    
    
    
    
    additivity method are corrected.
    3. Calculations indicate that, for polynitrocubanes, there are parallel relationships between their experimental kinetic acidities pKa, the average s characters (sa) in the exocyclic carbon orbital used for the C-H bonds within each molecule, and the average C-H stretching frequencies (va) within each molecule. These calculated results are helpful to the estimations of the kinetic acidities pKa of polynitrocubanes and the other type of compounds based on the values of sa or va , which has reference value for organic syntheses.
    4. The pyrolysis mechanism of polynitrocubanes is elucidated using various theoretical methods, i.e. MP2, DFT and selected MINDO/3 semiempirical MO, based on the unrestricted model. The calculated results show that the pyrolysis initiation reaction of polynitrocubanes, i.e. rate-controlling step, is to form a diradical by the single C-C bond breaking in the cube. The second C-C bond breaking is easily followed. The calculated activation energy for the pyrolysis initiation reaction of octanitrocubane, obtained from B3LYP/6-31G* method, is 155.30 kJ/mol, indicating that octanitrocubane has better thermal stability and less sensitivity. A series of calculated results are in good agreement with the experimental results.
    5. Based on the calculations from quantum chemistry, the sublimation enthalpy, density and heat of formation for octanitrocubane crystal are 220.63 kJ/mol, 2.189 g/cm3 and 505.84 kJ/mol, respectively. According to Kamlet-Jacobs equations, the estimated detonation velocity and detonation pressure of octanitrocubane are 10.26 km/s and 520.86 kbar, respectively, indicating that octanitrocubane has highly exploitable values as HEDM.
    6. Based on the B3LYP/6-31G* calculations, it is found that, in CL-20, t
引文
1 Eaton P E, Cole T W. Cubane. J. Am. Chem. Soc. 1964, 86: 3157-3158
    2 Kybett B D, Carroll S, Natalis P, Bonnell D W, Margrave J L, Franklin J L. Thermodynamic properties of cubane. J Am Chem Soc. 1966, 88: 626
    3 Schmitt R J, Bottaro J C. Synthesis of cubane based energetic molecules AD-A263271. 1993
    4 Martin H D, Urbanek T, Pfohler P, Walsh R J. The Pyrolysis of Cubane: an Example of a Thermally Induced Hot Molecule Reaction. Chem. Soc., Chem. Commun. 1985: 964-965
    5 Eaton P E. Cubane: Starting Materials for the Chemistry of the 1990s and the New Century. Angew. Chem. Int. Ed. Engl. 1992, 31: 1421-1436
    6 Eaton P E, Ravi Shankar B K. Synthesis of 1,4-dinitrocubane. J. Org. Chem. 1984,49: 185-186
    7 Eaton P E, Xiong Y, Gilardi R. Systematic substitution on the cubane nucleus. Synthesis and properties of 1,3,5-trinitrocubane and 1,3,5,7-tetranitrocubane. J. Am. Chem. Soc. 1993, 115: 10195-10202
    8 Lukin K A, Li J C, Eaton P E, Kanomata N, Hain J, Punzalan E, Gilardi R. Synthesis and chemistry of 1,3,5,7-tetranitrocubane including measurement of its acidity, formation of o-nitro anions, and the first preparations of pentanitrocubane and hexanitrocubane. J. Am. Chem. Soc. 1997, 119: 9591-9602
    9 Zhang M X, Eaton P E, Gilardi R. Hepta-and octanitrocubanes. Angew. Chem. Int. Ed. 2000, 39 (2) : 401-404
    10 Eaton P E, Gilardi R L, Zhang, M X. Polynitrocubanes: Advanced high-density, high-energy materials. Advanced Materials. 2000, 12 (15) , 1143-1148
    11 Hrovat D A, Borden W T, Eaton P E, Kahr B. A computational study of the interactions among the nitro groups in octanitrocubane. J. Am. Chem. Soc. 2001,123: 1289-1293
    12 Schmitt R J, Bottaro J C. Synthesis of cubane based energetic molecules AD-A201416. 1988
    13张骥,肖鹤鸣,肖继军,贡雪东.多氰基立方烷生成热的DFT-B3LYP和半
    
    经验MO研究.化学学报.2001,59(8),1230-1235
    14 Xiao Heming, Zhang Ji. Theoretical Predictions on Heats of Formation for Polyisocyanocubanes — Looking for Typical High Energetic Density Material (HEDM), Science in China (Series B). 2002, 45: 21-29.
    15 Ji Zhang, Heming Xiao, Xuedong Gong. Theoretical Studies on Heats of Formation for Polynitrocubanes Using Density Functional Theory B3LYP Method and Semiempirical MO Methods. J. Phys. Org. Chem. 2001, 14: 583-588
    16 Owens F J. Molecular orbital calculation of decomposition pathways of nitrocubanes and nitroazacubanes. J. Mol. Struct. (Theochem). 1999, 460: 137-140
    17 Ji Zhang, Heming Xiao. Computational Studies on the Infrared Vibrational Spectra, Thermodynamic Properties, Detonation Properties, and Pyrolysis Mechanism of Octanitrocubane. J. Chem. Phys. 2002, 116: 10674-10683
    18 Nielsen A T. NWC-TP-8020, 1989
    19 肖鹤鸣.硝基化合物的分子轨道理论.北京:国防工业出版社,1993
    20 肖鹤鸣,王遵尧,姚剑敏.芳香族硝基炸药感度和安定性的量子化学研究,化学学报,1985,43:14
    21 李永富,肖鹤鸣,王文宁,范康年.硝胺及其甲基衍生物的从头计算研究 (Ⅰ-Ⅲ),化学学报,1992,50(11):1063-1071
    22 贡雪东,俞柏恒,肖鹤鸣.硝酸酯化合物生成热的分子轨道研究.化学学报.1994,52:750-754
    23 Xiao Heming, Li Yumin. AM1 study on the mechanism of hydrolysis of nitrourea and solvation effect upon hydrolysis, J. Mol. Struct. (Theochem). 1995, 333:171-178
    24 Li Yumin, Xiao Heming. Studies on the Mechanism of Mannich Reaction Involving Iminium Salt as Potential Mannich Reagent—Furan as Pseudo Acid Component. Inter. J. Quantum Chem. 1995, 54:293-297
    25 Chen Zhaoxu, Xiao Heming. Ab initio Study of Thermodynamic and Kinetic Properties of Tetrazole and its Tautomerization. J. Mol. Struct. (Theochem). 1998, 453:65-70
    26 Chen Zhaoxu, Fan Jianfen, Xiao Heming. Theoretical.study on tetrazole and its derivatives. Part 7 ab initio MO and thermodynamic calculations on azido
    
    derivatives of tetrazole, J. Mol. Struct. (Theochem). 1999, 458: 249-256
    27 Xiao Heming, Yu Hengtai. Theoretical Studies on Geometry, Stability and Electronic Spectra of DATB and TATB. Chem. J. Chinese Univ. 1990, 6(3): 218~224
    28 Xiao Heming, Fan Jianfen, Gu Ziming, Dong Hai-Shan. Theoretical study on pyrolysis and sensitivity of energetic compounds (3) Nitro derivatives of aminobenzenes. Chemical Physics. 1998,226(1,2): 15-24
    29 Xiao Heming, Fan Jianfen, Gu Ziming, Dong Hai-Shan. Theoretical study on pyrolysis and sensitivity of energetic compounds (4)- Nitro derivatives of phenols. J. Phys. Org. Chem. 1998, 11: 177-184
    30 肖鹤鸣,李永富.金属叠氮化合物的能带和电子结构.感度和导电性.北京:科学出版社,1996
    31 李永富,肖鹤鸣.叠氮根电负性的量子化学研究.化学学报.1993,51(4):313-318
    32 肖鹤鸣,李永富.金属叠氮化合物的能带和电子结构.感度和导电性.中国科学(B).1995,38(5):538-545
    33 Xuedong Gong, Ji Zhang, Heming Xiao. Density Functional Theory Studies on the Structure, ThermodynamicFunctions and Heat of Formation of N8 Cubane. Twenty Sixth International Pyrotechnics Seminar. Nanjing, Jiangsu, P.R. China. October 1-4, 1999:136-143
    34 Chen Z X, Xiao J M, Xiao H M, Chiu Y N. Studies on heat of formation for tetarzole derivatives with density functional theory B3LYP method. J. Phys. Chem. A 1999, 103: 8062-8066
    35 肖鹤鸣,陈兆旭.四唑化学的现代理论.北京:科学出版社,2000
    36 Li Jin-Shan, Xiao He-Ming, Dong Hai-Shan. Theoretical study on intermolecular interaction of epoxyethane dimmer. Intl J. Quantum Chem. 2000, 78:94-98
    37 He-Ming Xiao, Jin-Shan Li, Hai-Shan Dong. A quantum-chemical study of PBX: intermolecular interactions of TATB with CH2F2 and with linear fluorine-containing polymers. J. Phys. Org. Chem. 2001, 14:644-649
    38 姬广富,肖鹤鸣,董海山.Beta-HMX晶体结构及其性质的高水平计算研究.化学学报.2002,60(2):194-199
    39 居学海,肖鹤鸣,贡雪东.N-甲硝胺二聚体分子间相互作用的理论研究.
    
    高等学校化学学报.2002,23(3):440-443
    40 肖继军,张骥,杨栋,肖鹤鸣.环四甲撑四硝胺(HMX)结构和性质的DFT研究.化学物理学报.2002.15:41-45
    41 Hariharan P C, Kaufman J J, Lowrey A H, Miller R S. Ab initio Modpot/Vrddo/Merge Calculations on energetic compounds. Ⅳ Nitrocubanes: Mononitro to octanitro quantum chemical calculations and electrostatic molecular potential contour maps. Int. J. Quantum Chem. 1985, 28:39-59
    42 Kortus J, Pederson M R, Richardson $ L. Density functional-based prediction of the electronic, structures, and vibrational properties of the energetic molecule: octanitrocubane. Chem. Phys. Lett. 2000, 322, 224-230
    43 Ritchie J P, Bachrach S M. Some methods and applications of electron density distribution analysis. Journal of Computational Chemistry. 1987, 8(4): 499-509
    44 Parr R G, Yang W. Density Functional Theory of Atoms and Molecules. Oxford: Oxford University Press, 1989
    45 Seminario J M, Politzer P. Modern Density Functional Theory: A Tool for Chemistry. Elsevier, Amsterdam, 1995
    46 Ziegler T. Approximation density functional theory as a practical tool in molecular energetic and dynamics. Chem. Rev. 1991, 91:651-667
    47 Becke A D. Density-functional thermochemistry. Ⅱ. The effect of the Perdew-Wang generalized-gradient correlation correction. J. Chem. Phys. 1992, 97:9173-9177
    48 Lee C, Yang W, Parr R G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B. 1988, 37:785-789
    49 张骥,肖鹤鸣,姬广富.六硝基六氮杂异伍兹烷结构和性质的理论研究.化学学报.2001,59(8):1265-1271
    50 Ji Zhang; Jijun Xiao; Heming Xiao. Theoretical Studies on Heats of Formation for Cubylnitrates Using Density Ftmctional Theory B3LYP Method and Semiempirical MO Methods, Int. J. Quantum Chem. 2002, 86, 305-312.
    51 Hyperchem, Release 4.5 for Windows, Molecular modeling system. Hypercube, Inc.: Gainesville, 1995
    52 Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J
    
    R, Zakrzewski V G, Montgomery J A, Stratmann R E, Burant J C, Dapprich S, Millam J M, Daniels A D, Kudin K N, Strain M C, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson G A, Ayala P Y, Cui Q, Morokuma K, Malick D K, Rabuck A D, Raghavachari K, Foresman J B, Cioslowski J, Ortiz J V, Baboul A G, Stefanov B B, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin R L, Fox D J, Keith T, Al-Laham M A, Peng C Y, Nanayakkara A, Gonzalez C, Challacombe M, Gill P M W, Johnson B, Chen W, Wong M W, Andres J L, Gonzalez C, Head-Gordon M, Replogle E S, Pople J A. Gaussian 98, Revision A.7, Gaussian, Inc., Pittsburgh PA, 1998
    53 Schlegel H B. Optimization of equilibrium, geometries and transition structures. J. Comput. Chem. 1982, 3(2) : 214
    54 Miaskiewicz K, Smith D A. Computational density functional theory vibrational spectra of cubane. Chem. Phys. Lett. 1997, 270: 376-381
    55 The Cambridge Crystallographic Data Centre, CCDC-127763
    56 Dixon D A, Smart B E. Numerical simulation of molecular system. The determination of thermochemical properties. Chem. Eng. Commun. 1990, 98: 173-184
    57 Pople J A, Luke B T, Frisch M J, Binkley J S. Theoretical thermochemistry. 1. Heats of formation of neutral AHn molecules (A=Li to Cl). J. Phys. Chem. 1985, 89: 2198-2203
    58 Ju G Z, Bian W S. Theoretical thermochemistry: entropy and heat capacities for a series of organosilicon compounds. Part I. Thermochim. Acta. 1990, 167: 37
    59 Ju G Z, Bian W S. Theoretical thermochemistry: entropy and heat capacities for a series of organosilicon compounds. Part II. Thermochim. Acta. 1991, 176: 259-265
    60 Eaton P E, Wicks G E. Conversion of isocyanates to nitro compounds with dimethyldioxirane in wet acetone. J. Org. Chem. 1988, 53: 5353-5355
    61 Piermarini G J, Block S. 1 ,4-dinitrocubane and cubane under high pressure. Propellants, Explosives, Pyrotechnics. 1991, 16: 188-193
    62 Scott A P, Radom L. Harmonic vibrational frequencies: An evaluation of Hartree-Fock, Mφller-Plesset, quadratic configuration interaction, density
    
    functional theory, and semiempirical scale factors. J. Phys. Chem. 1996, 100: 16502-16513
    63 Hill T L. "Introduction to Statistical Thermodynamics", Addision-Wesley Publishing Company, INC, New York, 1960
    64 Silverstein R M, Bassler G C, Morrill T C. Spectrometric Identification of Organic Compounds. 4th Ed.: John Wiley, 1981
    65 Delia, E. W.; McCoy, E. R; Patney, H. K.; Jones, G. S.; Miller, F. A. Vibrational spectra of cubane and four of its deuterated derivatives. J. Am. Chem. Soc. 1979, 101,7441.
    66 Wang H, Law C K. Thermochemistry of benzvalene, dihydrobenzvalene, and cubane: A high-level computational study. J. Phys. Chem. B 1997, 101: 3400-3403
    67 Chen Z X, Xiao H M, Song W Y. Theoretical investigation of nitro derivatives of tetrazole with density functional theory (DFT). J. Mol. Struct. (Theochem), 1999,460:167-173
    68 Curtises L A, Raghavachari K, Redfern P C et al. Assessment of Gaussian-2 and density functional theories for the computation of enthalpies of formation. J Chem Phys, 1997, 106(3) : 1063-1079
    69 Nicolaides A, Rauk A, Glukhovtsev M N, Radom L. Heats of Formation from G2, G2(MP2) , and G2(MP2, SVP) total energies. J. Phys. Chem. 1996, 100: 17460-17464
    70 Disch R L, Schulman J M. Ab initio heats of formation of medium-sized hydrocarbons. 7. The [n] Prismanes. J. Am. Chem. Soc. 1988,110: 2102-2105
    71 Dailey W P. The structures and energies of pentaprismane and hexaprismane-An ab initio study. Tetrahedron Letters. 1987, 28(47) : 5787-5790
    72 Wiberg K B. Structures and energies of the tricyclo[4. 1. 0. 01,3] heptanes and the tetracyclo[4. 2. 1. 02,905,9] nonanes. Extended group equivalents for converting ab initio energies to heats of formation. J. Org. Chem. 1985, 50: 5285-5291
    73 Stewart J J P. Optimization of parameters for semiempirical methods I. J. Comp. Chem. 1989,10: 209
    74 Dewar M J S, Zoebisch E G, Healy E F, Stewart J J P. AMI: A new general purpose quantum mechanical molecular model. J. Am. Chem. Soc. 1985, 107: 3902-3909
    
    
    75 Dewar, M. J .S.; Thiel, W. Ground states of molecules. 38. The MNDO method. Approximations and parameters. J. Am. Chem. Soc. 1977, 99, 4899.
    76 Bingham, R. C.; Dewar, M. J. S.; Lo, D. H. Ground states of molecules. XXV. MINDO/3. An improved version of the MINDO semiempirical SCF-MO method. J. Am. Chem. Soc. 1975, 97, 1285.
    77 Hahre W J, Radom L, Schleyer P V R. Ab Initio Molecular Orbital Theory, John Wiley & Sons: New York, 1986
    78 Stewart J J P. Mopac: A semiempirical molecular orbital program, J. Comput-Aided Mol. Des. 1990, 4:1
    79 Pedley J B, Naylor R D, Kirby S P. Thermochemical Data of Organic Compounds, 2nd ed. Chapman and Hall: London, New York, 1986
    80 Paz J G D, Ciller J. On the use of AM1 and PM3 methods on energetic compounds. Propellants, Explosives, Pyrotechnics. 1993, 18, 33-40
    81 Stewart J J P. Optimization of Parameters for Semiempirical methods II. Applications. J. Comp. Chem. 1989, 10, 221-264
    82 Dean J A, LANGE'S Handbook of Chemistry, 15th ed. McGraw-Hill Book Co., 1999
    83 Boerth D W, Streitwieser A. Carbon acidity. 58. Hydrogen isotope exchange kinetics of propylene with lithium cyclohexylamide. J. Am. Chem. Soc. 1981, 103: 6443
    84 Streitwieser A, Scannon P, Niemeyer H M. Acidity of hydrocarbons. XLIX. Equilibrium ion pair acidities of fluorinated benzenes for cesium salts in cyclohexylamine. Extrapolation to PK of benzene. J. Am. Chem. Soc. 1972, 94: 7936
    85 Dixon R E, Streitwieser A, Williams P G, Eaton P E. Kinetic acidity of cubane. J. Am. Chem. Soc. 1991, 113: 357-358
    86 Burlingham B T, Widlanski T S. Synthesis and biological activity of N-sulfonylphosphoramidates: probing the electrostatic preferences of alkaline phosphatase. J. Org. Chem. 2001, 66: 7561-7567
    87 Cevasco G, Vigo D, Thea S. The alkaline hydrolysis of aryl (2E)-3-(4'-hydroxyphenylazo) propenoates: A kinetic study. J. Org. Chem. 2001,66,7685-7690
    88 Andres G O, Granados A M, Rossi R H. Kinetic study of the hydrolysis of
    
    phthalic anhydride and aryl hydrogen phthalates. J. Org. Chem. 2001, 66, 7653-7657
    89 Streitwieser A, Young W R, Caldwell R A. Acidity of hydrocarbons.XXX. Kinetic isotope effects of the cesium cyclohexylamide catalyzed proton exchange of cyclohexane with cyclohexylamine. J. Am. Chem. Soc. 1969, 91: 527
    90 Streitwieser A, Caldwell R A, Young W R. Acidity of hydrocarbons. XXXII. Kinetic acidities of medium-sized cycloalkanes. Pyramidal alkyl anions. J. Am. Chem. Soc. 1969,91:529
    91 Luh T Y, Stock L M. Kinetic acidity of cubane. J. Am. Chem. Soc. 1974, 96: 3712
    92 Eaton P E, Castaldi G. Systematic substitution on the cubane nucleus. Amide activation for metalation of "Saturated" systems. J. Am. Chem. Soc. 1985, 107: 724
    93 Ritchie J P, Bachrach S M. Comparison of the calculated acidity of cubane with that of other strained and unstrained hydrocarbons. J. Am. Chem. Soc. 1990, 112:6514-6517
    94 Fan J F, Xiao H M. Theoretical study on pyrolysis and sensitivity of energetic compounds. (2) Nitro derivatives of benzene. J. Mol. Struct. (Theochem). 1996, 365: 225-229
    95 Xiao H M, Fan J F, Gong X D. Theoretical study on pyrolysis and sensitivity of energetic compounds. Part 1: Simple model molecules containing NO2 group. Propellants, Explosives, Pyrotechnics. 1997, 22: 360-364
    96 Sharma J, Owens F J. Chem. Phys. Lett. 1979, 61: 280
    97 Gonzalez A C, Larson C W, McMillen D F, Golden D M. Mechanism of decomposition of nitroaromatics. Laser-Powered homogeneous pyrolysis of substituted nitrobenzenes. J. Phys. Chem. 1985, 89: 4809
    98 Owens F J. Calculation of energy barriers for bond rupture in some energetic molecules. J. Mol. Struct. (Theochem). 1996, 370: 11-16
    99 Woodward R B, Hoffmann R. The Conservation of Orbital Symmetry, Academic: New York, 1970
    100 Chen Z X, Xiao H M. Impact sensitivity and activation energy of pyrolysis for tetrazole compounds. Int. J. Quantum Chem. 2000, 79: 350-357
    
    
    101 Chen Z X, Xiao H M, Yang S L. Theoretical investigation on the impact sensitivity of tetrazole derivatives and their metal salts. Chem. Phys. 1999, 250:243-248
    102 See for example: The New York Times, Jan. 25, 2000, CXLIX, p D3; Science News, Jan. 22, 2000, 154, p 54
    103 Kamlet M J, Jacobs S J. Chemistry of detonations. Ⅰ. A simple method for calculating detonation properties of C-H-N-O explosives. J. Chem. Phys. 1968, 48, 23-35
    104 Sorescu D C, Rice B M, Thompson D L. Molecular packing and molecular dynamics study of the transferability of a generalized nitramine intermolecular potential to non-nitramine crystals. J. Phys. Chem. A 1999, 103:989-998
    105 Giacovazzo C. Fundamentals of Crystallography. Oxford University Press, New York, 1992
    106 Foltz M F, Coon C L, Garcia F, Nichols A L. The thermal stability of the polymorphs of HNIW. Part 1. Propellants, Explosives, Pyrotechnics. 1994, 19: 19-25
    107 Foltz M F, Coon C L, Garcia F, Nichols A L. The thermal stability of the polymorphs of HNIW. Part 2. Propellants, Explosives, Pyrotechnics. 1994, 19:133-144
    108 欧育湘,贾会平,陈博仁,徐永江,潘则林,陈江涛,郑福平.六硝基六氮杂异伍兹烷四种晶型的晶体结构.火炸药学报.1998,4:41-43
    109 欧育湘,王才,潘则林,陈博仁.六硝基六氮杂异伍兹烷的感度.含能材料.1999,7(3):100-102
    110 李来才,杨春.ε-HNIW结构的理论计算.四川师范大学学报,自然科学版.1997,20(3):71-73
    111 文中,田双河,赵鹏骥,徐志磊,田安民.六硝基六氮杂异伍兹烷分子构型的理论研究.含能材料.1999,7(3):110-114
    112 欧育湘,贾会平,陈博仁,徐永江,王才,潘则林.γ-六硝基六氮杂异伍兹烷的晶体结构.化学学报,1999,57,431-436
    113 赵信岐,六硝基六氮杂异伍兹烷四种晶型的Fourier变换红外光谱.兵工学报.1995,4:21-23
    114 Foltz M F. Thermal stability of ε-hexanitrohexaazaisowurtzitane in an estane
    
    formulation. Propellants, Explosives, Pyrotechnics, 1994, 19:63-69
    115 Holtz E V, Ornellas D O. Foltz M F. The solubility of ε-CL-20 in selected material. Propellants Explosives, Pyrotechnics. 1994, 19:206-212
    116 张骥,肖鹤鸣,贡雪东,李金山.六硝基六氮杂异伍兹烷气相热解引发反应的理论研究.含能材料,2000,8(4):149-154
    117 北京理工大学CL-20合成课题组.高能量密度材料CL-20合成成功.八六三计划高技术新材料快报,1994,167(8)
    118 Wardle B R, Hinshaw C J, Braithwaite P, Rose M. Synthesis of the caged nitramine HNIW (CL-20). Proceedings of the 27th ICT Conference on Propellants, Explosives and Pyrotechnics. Karlsruhe, 1996
    119 Bottaro C J. Recent advance in explosives and solid propellants. Chemistry and Industry, 1996, 4:219-222
    120 Wang Y M. Theoretical study of the geometry and heat of formation of the N-nitro derivatives ofhexaazaisowurtzitane. Huoyao Jishu. 1993, 9(2): 35-43
    121 Wang Y M. Theoretical study of the molecular structure of energetic material HNIW. Huoyao Jishu. 1992, 8(4): 41-49
    122 Pivina T C, Tatyana S. Computer-assisted prediction of novel target hig-energy compound. Propellants, Explosives, Pyrotechnics. 1995, 20(3): 144-146
    123 欧育湘,贾会平,陈博仁,徐永江,陈江涛,郑福平.六硝基六氮杂异伍兹烷的研究进展(3).含能材料.1999,7(2):49-52
    124 Sorescu D C, Rice B M, Thompson, D L. Molecular packing and NPT-molecular dynamics investigation of the transferability of the RDX intermolecular potential to 2,4,6,8,10,12-hexanitrohexaazaisowurtzitane. J. Phys. Chem. B 1998, 102:948-952
    125 肖继军,张骥,杨栋,肖鹤鸣.环杂硝胺结构和性能的DFT比较研究.化学学报.2002,60:2110-2114
    126 樊建芬.含能材料热解和感度的QM研究及乙烯在沸石中扩散行为的MD模拟.博士学位论文,南京理工大学,1997
    127 Kamlet M J, Adolph H G. The relationship of impact sensitivity with structure of organic high explosives.II, polynitroaromatic explosives. Propellants, Explosives, Pyrotechnics. 1979, 4:30-34

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700