金属离子—氦原子团簇的量化计算与气体在金属有机骨架材料中的吸附性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在气相单分子或原子与凝聚态物质之间,团簇起着桥梁的作用,它能解释诸如成核现象、相变、溶剂化以及簇的特殊反应。团簇中原子—原子或者离子—原子间的相互作用机理成为许多实验和理论研究的主题。金属有机骨架材料是一种类似于沸石的软材料,但是它具有所有含碳化合物的化学多样性。并具有较大的表面积和孔隙率,以及特定尺寸的可裁剪性,高渗透性等特性,正好满足催化、分离、能量储存与释放的需要。开发其在吸附剂和膜分离材料的应用,对环境和能源工程具有非常重要的实际意义。计算化学(包括分子模拟与量子化学)不仅可以突破传统方法中的局限性,而且还可为最佳吸附材料的设计和最优操作工况的确定提供理论依据,通过对材料与客体分子间相互作用的研究,能够对材料微相结构与性能进行控制,材料的制备将实现从以经验为主向定量、定向制备的转变,从而节省大量繁杂的实验研究。
     本论文对于金属离子—氦原子团簇主要采用量子化学从头计算的方法,研究了分子结构和成簇机理。对于金属有机骨架材料储能和吸附性能采用基于量子化学和分子模拟两种方法,构建了多个计算模型,并进行了系统的研究。基于上述研究方法,主要内容和创新点如下:
     对Be~+He_n(n=1-12),Mg~+He_n(n=1-10)和Mg~(2+)He_n(n=1-10)离子团簇采用GAUSSIAN03软件进行了量子化学从头计算,得到其最稳定结构,以及相应的经ZPE(零点振动能校正)和BSSE(基组重叠误差)校正后的结合能,以及离子团簇的振动频率,分析了多体作用和基组重叠误差对结合能的影响。BeHe_n~+(n=1-10)和MgHe_n~+(n=1-10)离子团簇可用溶解态模型描述,从一侧逐渐包围带电离子到最后排满第一壳层。而Mg~(2+)He_n(n=1-10)离子团簇具有更高的对称性,二价镁离子总被氦原子包围于中心。Be~+He_n,Mg~+He_n,Mg~(2+)He_n离子团簇第一壳层充满氦原子数目分别为12,20,9,后两者结果与实验观测值吻合。
Complexes act as the linker between the molecule or atom and the condensed material. It helps to understand the nucleation phenomena, phase transitions, solvation and cluster specific reactions. The investigations of the interactions of atom-atom and ion-atom are the subjects of many experimental and theoretical researches. Metal-organic framework materials are analogues of zeolites, but with all of the chemical diversity. The researches of this new class of materials are trying to develop adsorbents and membranes that will revolutionize small-molecule sperations, as well as new kinds of catalysts with good permeability, high void volumes, and well defined tailorable cavities of uniform for gas separations and storage/release applications. It is very important to environmental and energy engineering. Computational chemistry, including molecular simulation and quantum chemistry, can not only overcome the limitations of traditional methods, but also provide theoretical guidance for the design of optimal adsorbents and the determinations of optimal industrial operations. The control over the structure and design of new material with specific characteristic can be completed by the studies of interaction between sorbent and adsorbent. It saves a lot of time for complicated experimental works.
    In this work, quantum chemistry calculations of the structure and the forming mechanism of metal ion-helium complexes are carried out, Research of energy storage and adsorption by use of metal-organic framework-5 have been done with quantum chemistry calculation and molecular simulations. The main contents and findings are summarized as follow.
    Firstly, Ab initio quantum chemistry calculations of Be~+He_n (n=1-12), Mg~+He_n (n=l-10) and Mg~(2+)He_n (n=1-10) complexes are performed using GAUSSIAN03 software package. The most stable structures and the binding energy corrected by ZPE
引文
[1] 徐南平,时均,我国材料化学工程的研究进展,化工学报,2003,54,423-426.
    [2] 李以圭,刘金晨,分子模拟与化学工程,现代化工,2001,21,10-13.
    [3] 刘志平,黄世萍,汪文川,分子计算科学一化学工程新的生长点,化工学报,2003,54,464-475.
    [4] Frenkel D, Smit B., Understanding molecular physics: from algorithm to Application, San Diego, Academic Press, 1996.
    [5] 杨小震,高分子的计算机模拟,北京,化学工业出版社,1994,182-193
    [6] 罗伯,计算材料学,北京,化学工业出版社,2002,9-16.
    [7] 廖木真,吴国是,刘洪霖,量子化学从头计算方法,北京,清华大学出版社,1984.
    [8] Hehre W.J., Radom L., Schleyer P.R., Pople J.A., Ab initio molecular orbital theory, John wiley & Sons, Inc., 1985.
    [9] Young D.C. Computational Chemistry: A Practical Guide for Applying Techniques to Real-world Problem, John Wiley & Sons, Inc., 2001.
    [10] Nagy A., Density functional theory and application to atoms and molecules, Physics Reports, 1998, 298, 1-79.
    [11] Kohn W. and Sham L.J., Self-Consistent Equations including exchange and correlation effects, Phys. Rev., 1965, 140, A1133-1138.
    [12] Koch W., Holthausen M.C., A chemist's guide to density functional theory, John Wiley & Sons, Inc., 2001.
    [13] 赫尔曼,理论物理学中的计算机模拟方法(秦克诚,译),北京,北京大学出版社,1996.
    [14] [荷]FrenkelSmit著,分子模拟—从算法到应用(汪文川,译),北京,化学工业出版社,2002.18-86.
    [15] Rappe A., Casewit C.J., Colwell K.S., Goddard Ⅲ W.A. and Skid W.M., UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations, J. Am. Chem. Soc., 1992, 114, 10024-10035.
    [16] Sun H., Compass: An ab initio force-field optimized for condensed-phaseapplications-overview with details on alkane and benzene compounds, J. Phys. Chem. B., 1998, 102, 7338-7364.
    [17] 任译,杨捷,吴德印,李泽荣,田安民,分子力场进展,化学研究与应用,1998,10,1-14
    [18] Woodcock L.V., Isothermal molecular dynamics calculations for liquid salts, Chem. Phys. Lett., 1971, 10, 257-261.
    [19] Anderson H.C., Molecular dynamics simulation at constant ressure and/or temperature, J. Chem. Phys., 1980, 72, 2384-2393.
    [20] Nose S.A., Unified formation of the constant temperature molecular dynamics methods, J. Chem. Phys., 1984, 81, 511-519.
    [21] Nose S.A., Molecular dynamics method for simulations in the canonical ensemble, Mol. Phys., 1984, 52, 255-268.
    [22] Evans D.J., Computer "Experiment" for nonlinear thermodynamics of couette flow, J. Chem. Phys., 1983, 78, 3297-3302.
    [23] Heffelfinger G.S. and Van Vanswol F., Diffusion in Lennard-Jones Fluids using dual control volume grand canonical molecular dynamics simulation (DCV-GCMD), J. Chem. Phys., 1994, 100, 7548-7552.
    [24] Palmer B.J. and Lo C.M., Molecular dynamics implementation of the Gibbs ensemble calculation, J. Chem. Phys., 1994, 101, 10899-10907.
    [25] 林梦海,量子化学—计算方法与应用,北京,科学出版社,2004,236-241.
    [26] Bellert D. and Breckenridge W. H., Bonding in ground-state and excited-state A~+Rg van der Waals ions(A=atom, Rg=rare-gas atom): a model-potential analysis, Chem. Rev., 2002, 102, 1595-1622.
    [27] Bauschlicher Ch.W., Partridge Jr.H. and Langhoff S.R., Theoretical study of metal noble-gas positive ions, J. Chem. Phys., 1989, 91, 4733-4737.
    [28] Magnasco V., A model for the van der Waals bond, Chem. Phys. Lett., 2004, 387, 332-338.
    [29] Patil S.H., Adiabatic potentials for alkali-inert gas systems in the ground state, J. Chem. Phys., 1991, 94, 8089-8095.
    [30] Bums K.L., Bellert, D., Leung A. W. K.and Breckenridge W. H., The effects of dispersive Cn/R~n-attraction on M+/Rg bonding (M~+=atomic metal ion, Rg=rare gasatom), J. Chem. Phys., 2001, 114, 2996-3002.
    [31] Burns K.L., Bellert, D., Leung A. W. K.and Breckenridge W. H., M~+/Rg bonding: the effects of M~+ permanent quadrupole moments (M~+=atomic metal ion; Rg=rare gas atom), J. Chem. Phys., 2001,114, 7877-7885.
    [32] Duncan, M.A. Advances in Metal and Semiconductor Clusters 1, Spectroscopy and Dynamics, Amsterdam, Elsevier Science, 1993.
    [33] Duncan, M.A. Advances in Metal and Semiconductor Clusters 2, Cluster Reactions, Amsterdam, Elsevier Science, 1994.
    [34] Duncan, M.A. Advances in Metal and Semiconductor Clusters 3, Spectroscopy and Structure, Amsterdam, Elsevier Science, 1994.
    [35] Breckenridge, W. H.; Jouvet, C, Soep, B. in: Dunca, M.A.(Ed.), Advances in Metal and Semiconductor Clusters, vol. Ⅲ, JAI, Greenwich, CT, 1995.
    [36] Haberland, H. Clusters of Atoms and Molecules Ⅰ, Ⅱ, Springer-Verlag: Berlin Heidelberg, 1995.
    [37] Leung A. W. K. and Breckenridge W. H., An ab initio study of the ground states and some excited states of BeRG, Be~+RG, Be~(+2)RG wan der Waals complexes (RG=He, Ne), J. Chem. Phys., 1999, 111, 9197-9202.
    [38] Chiles R.A., Dykstra C.E., The potential energy curves of HeBe, HeMg and BeMg, Chem. Phys. Lett., 1982, 85, 447-450.
    [39] Coxon J.A., Jones W.E. and Subbaram K.V., Electronic spectra of metal ion-rare gas pairs: High resolution analysis of the A~2Π_r-X~2Σ~+ system of BeKr~+, Can. J. Phys., 1977,55,254-260.
    [40] Subbaram K.V., Coxon J.A., and Jones W.E., Investigations of metal ion -rare gas pairs by optical spectroscopy: high resolution analysis of the A~2Π_r-X~2Σ~+ system of BeAr~+, Can. J. Phys., 1976,54,1535-1544.
    [41] Coxon J.A., Jones W.E. and Subbaram K.V., First observation of the BeXe~+ molecule: the A~2Π_r-X~2Σ~+ band system in emission, Can. J. Phys., 1975, 53, 2321-2325.
    [42] Leroy R.J. and Lam W., Near-dissociation expansions in the spectroscopic determination of diatom dissociation energies: method, and application to BeAr~+, Chem. Phys. Lett., 1980, 71, 544-548.
    [43] Reddic J.E. and Duncan M.A., Photodissociation spectroscopy of the Mg~+-Ne complex, J. Chem. Phys., 1999,110,9948-9955.
    [44] Scurlock C.T., Pilgrim J.S. and Duncan M.A., Rotationally resolved photodissociation spectroscopy of Mg~+-Ar, J. Chem. Phys., 1995, 103, 3293-3298.
    [45] Pilgrim J.S., Yeh C.S., Berry K.R. and Duncan M.A., Photodissociation spectroscopy of Mg~+-rare gas complexes, J. Chem. Phys., 1994, 100, 7945-7956.
    [46] Kaup J.G. and Breckenridge W. H., Bond energies of MgKr~+ and MgXe~+ from resonant two-color photoionization thresholds, J. Chem. Phys., 1997, 107, 2180-2186.
    [47] Kaup J.G., Leung A.W.K. and Breckenridge W.H., Spectroscopic characterization of the metastable 3pπ~3Π_(0~+~-) valence states and the 4s3Σ~+ rydberg states of the MgKr and MgXe van der Waals molecules, J. Chem. Phys., 1997, 107, 10492-10505.
    [48] Leung A.W.K., Julian R.R. and Breckenridge W.H., Potential curves for several electronic states of the MgHe, Mg+He and Mg2+He van der Waals complexes, J. Chem. Phys., 1999, 111, 4999-5003.
    [49] Massick S. and Breckenridge W.H., a determination of the ionization thereshold for the Mg(3s3p ~3p_0)Ar(~3Π_0) metastal state: the bond energy of MgAr~+, Chem. Phys. Lett., 1996, 257, 465-470.
    [50] Partrige H., Bauschlicher Jr.C.W. and Langhoff S.R., Theoretical study of metal ions bound to He, Ne, and Ar, J. Phys. Chem., 1992, 96, 5350-5355.
    [51] Bauschlicher Jr. C.W. and Partrige H., A study of the X~2Σ~+ and A~2Π states of MgAr+ and MgKr~+, Chem. Phys. Lett., 1995, 239, 241-245.
    [52] Frenking G., Koch W., Cremer D, Gauss J. and Liebman J.F., Neon and argon bonding in ftrst-row cations NeX~+ and ArX~+(X=Li-Ne), J. Chem. Phys., 1989, 93, 3410-3418.
    [53] Funk D.J., Breckenridge W.H. and Simons J., M φ ller-plesset perturbation theory calculation of alkaline earth-rare gas complexes: ground states of Mg-He and Mg-Ar, J. Chem. Phys., 1989, 91,1114-1120.
    [54] Eriksson L.A., Accurate density functional theory study of cationic magnesium clusters and Mg~+-rare gas interactions, J. Chem. Phys., 1995, 103, 1050-1056.
    [55] Kirschner K.N., Theoretical investigation of CaR.G, Ca~+RG, and Ca~(2+)RG (RG=Ar and Ne) complexes, J. Chem. Phys., 2000, 112, 10228-10235.
    [56] Reddic J.E., Pullins S.H. and Duncan M.A., Photodissociation spectroscopy of the Ca~+-Ne complex, J. Chem. Phys., 2000, 112, 4974-4980.
    [57] Kaup J.G. and Brechenridge W.H., Bond energy of CaAr~+, CaKr~+, and CaXe~+ from resonant two-color photoionization thresholds, J. Chem. Phys., 1997, 107, 4451-4459.
    [58] Giusti-Suzor A. and Roueff E., Depolarization, broadening and shift of Sr Ⅱ and Ca Ⅱ line by helium atoms, J. Phys. B: atom. Molec. Phys., 1975, 8, 2708-2717.
    [59] Kaup J.G., Leung W.K. and Breckenridge W.H., Spectroscopic characterization of the metastable 4pπ~2Π_(0~-) valence states and the 5s~3Σ~+ rydberg states of the CaAr, CaKr and CaXe van der Waals molecules, J. Chem. Phys., 1997, 107, 5283-5289.
    [60] Kaup J.G., Leung W.K. and Breckenridge W.H., Spectroscopic characterization of the singly exicted CaAr(4dπ~3Π_0), CaAr(4dδ~3△1) states and the doubly excited CaAr(4pπ4pπ~3Σ~-) state, J. Chem. Phys., 1997, 107, 5676-5683.
    [61] Panda A.N. and Sathyamurthy N., Bound and quasibound states of He_2H~+ and He_2D~+, J. Phys. Chem. A, 2003, 107, 7125-7131.
    [62] Lundell J., Density functional approach on ground state RgH~+ and RgHRg~+ (Rg=Ar, Kr, Xe) ions, J. Mol. Stru., 1995, 355, 291-297.
    [63] Frencking G.,Koch W., Cremer D., Gauss J.and Liebman J.F., Helium bonding in singly and doubly charged first-row diatomic cations HeXn~+ (X=Li-Ne; n=l,2), J. Phys. Chem., 1989, 93, 3397-3410.
    [64] Patridge H. and Bauschlicher Jr.Ch.W., Theoretical study of the low-lying states of TiHe~+, TiNe~+, VAr~+, CrHe~+, CrAr~+, FeHe~+, FeAr~+, CoHe~+, and CoAr~+, J. Phys. Chem., 1994, 98, 2301-2306.
    [65] Walker N.R., Wright R.R., Barran P.E., Cox H.and Stace A.J., Unexpected stability of [CuAr]~(2+), [AgAr]~(2+), [AuAr]~(2+), J. Chem. Phys., 2001, 114, 5562-5567.
    [66] Hougen J.T., An interesting example of Hund's coupling case(c) in HgAr~+, 1972, 42, 381-384.
    [67] Wright T.G. and Lee E.P.F., Al~(3+)He: stability and spectroscopy, Chem. Phys. Lett., 2004, 383, 1-5.
    [68] Famulari A., Moroni F., Raimoundi M. and Thorsteinsson T., The structure of lithium and potassium cations coordinated by ammonia molecules in the gas phase as revealed by ab initio SCF-MI calculations, J. Mol. Stru.:Theochem, 2001, 549, 85-93.
    [69] Wang B., Chang J., Jiang J. and Lin S., Ab initio study of the ammoniated ammonium ions NH_4~+(NH3)0.6, Chem. Phys., 2002, 276, 93-106.
    [70] Koller L., Schumacher M., KoHn J., Teuber S., Tiggesbaumker J. and Meiwes-Broer K.H., Plasmon-enhanced multi-ionization of small metal clusters in strong femtosecond laser fields, Phys. Rev. Lett., 1999, 82,3783-3786.
    [71] Inokuchi Y., Ohshimo K., Misaizu F. and Nishi N., Structures of [Mg(H_2O)_(1,2)]~+ ions studied by infrared photodissociation spectroscopy: evidence of [Ho-Al-H]~+ ion core structure in [AI(H_2O)_2]~+, Chem. Phys. Lett., 2004, 390, 140-144.
    [72] Liu H., Guo W. and Yang S., Photodissociation studies of microsolvated metal cation complexes Mg~+(NCCH_3)_n (n=1-4), J. Chem. Phys. 2001, 115, 4612-4619.
    [73] Milbum R.K., baranov V.I., Hopkinson A.C. and Bohme D.K., Sequential ligation of Mg+, Fe+, (c-C_5H_5)Mg~+, and (c-C_5H_5)Fe~+ with ammonia in the gas phase:Transition from coordination to solvation in the sequential ligation of Mg~+, J. Phys. Chem. A, 1998, 102, 9803-9810.
    [74] Lakin N.M. Olkhov R.V. and Dopfer O., Internal rotation in NH_4~+-Rg dimmers ( Rg=He, Ne, Ar): potential energy surfaces and IR spectra of the 3 band, Faraday. Disuss., 2001, 118, 455-476.
    [75] Dong F. and Miller R.E., Laser spectroscopy of cyanoacetylene-Mgn complexes in helium nanodroplets: multiple isomers, J. Phys. Chem. A, 2004, 108, 2181-2191.
    [76] Jalbout A.F. and Solimannejad M., Density functional theory analysis of CaRgn~+ complexes: (Rg=He, Ne, Ar; n=1-4), J. Mol. Stru.: THEOCHEM, 2003, 640, 21-23.
    [77] Tongraar A., sagarik K. and Rode B.M., Effects of many-body interactions on the preferential solvation of Mg~(2+) in aqueous ammonia solution: a Born-Oppenheimer ab initio QM/MM dynamics study, J. Phys. Chem. B, 2001, 105, 10559-10564.
    [78] Peterka D.S, Lindinger A., Poisson L., Ahmed M. and Neumark D.M., Photoelectron imaging of helium droplets, Phys. Rev. Lett., 2003, 91, 43401-43404.
    [79] Montalenti F., Trioni M.I., Brivio G.P. and Crampin S., Ab initio result for the adiabatic atom-surface interaction for helium and neon on a simple metal, Surf. Sci. 1996, 364, L595—L599.
    [80] Antoniotti P., Bronzolino N. and Grandinetti F., Beryllium-helium cations: computational evidence for a large class of thermodynamically stable species, Int. J. Mass Spectro., 2003, 228, 415-427.
    [81] Ikegami T., Kondow T. and Iwata S., The geometric and electronic structures of Ar_n~+ (n=3-27), J. Chem. Phys., 1993, 98, 3038-3048.
    [82] Sapse A.M., Dumitra, A. and Jain D.C., A theoretical study of LiHe_n~+, NaHe_n~+, and MgHe_n~+ complexes, with n=1,2,3,4, J. Clus. Sci., 2003,14,21-30.
    [83] Sapse A.M., Ab Initio studies of MgNe_n~+ complexes with n= 1-4, J. Phys. Chem. A., 2002,106, 783-784.
    [84] Doppner T., Diederich T., Tiggesbaumker J. and Meiwes-Broer, K. -H., Femtosecond ionization of magnesium clusters grown in untracold helium droplets, Eur. Phys. J. D., 2001,16,13-16
    [85] Velegrakis M.and Luder Ch., Formation and stability of singly and doubly charged of MgAr_n clusters, Chem. Phys. Lett., 1994,223,139-145.
    [86] Fanourgakis G. S. and Farantos S.C., Potential functions and static and dynamic properties of Mg~(m+)Ar_n (m=1,2; n=1-18) clusters, J. Phys. Chem., 1996, 100, 3900-3909.
    [87] Reho J., Merker U., Radcliff M.R., Lehmann K.K. and Scoles G., Spectroscopy of Mg atoms solvated in helium nanodroplots, J. Chem. Phys. 2000,112, 8409-8416.
    [88] Nagata T., Aoyagi M., Iwata, S., Noble gas clusters doped with a metal ion I: Ab initio studies of Na~+Ar_n, J. Phys. Chem. A., 2004,108,683-690.
    [89] Szymczak J.J., Giju K.T., Roszak S.and Leszczynski J, The Li~+ cation-the descendant of H~+ or an ancestor of Na~+? The properties of Li~+Ar_n (n=1-6) clusters, J. Phys. Chem. A., 2004,108,6570-6574.
    [90] Giju, K. T.; Roszak, S.; Gora, R. W.; Leszczynski, J., The micro-solvation of Na~+: theoretical study of bonding characteristics in weakly bonded Ar_nNa~+ (n=1-18) clusters, Chem. Phys. Lett. 2004, 391,112-119.
    [91] Velegrakis M., Froudakis G.E. and Farantos S.C., Coordination of Ti cation embedded in argon clusters, Chem. Phys. Lett., 1999, 302, 595-601.
    [92] Walker N.R., Grieves G.A., Jaeger J.B., Walters R.S. and Duncan M.A., Generation of "unstable" doubly charged metal ion complexes in a laser vaporization cluster source, Int. J. Mass Spectro, 2003,228,285-295.
    [93] Prekas D., Luder C.and Velegrakis M., Structural transitions in metal ion-doped noble gas clusters: experiments and molecular dynamics simulations, J. Chem. Phys., 1998,108,4450-449.
    [94] Ancilotto F. Lerner P.B. and Cole M.W., Physics of solvation, J. Low Temp. Phys., 1995,101,1123-1147.
    [95] Ancilotto F., Barranco M. and Pi M., Probing vortices in ~4He nanodroplets, Phys. Rev. Lett., 2003, 91,105302-105305.
    [96] Stienkemeier F., Ernst W.E., Higgins J. and Scoles G., On the use of liquid helium cluster beans for the preparation and spectroscopy of the triplet states of alkali dimmers and other weakly bound complexes, J. Chem. Phys., 1995,102,615-617.
    [97] Stienkermeire F., Meier F. and Lutz H.O., Alkaline earth metals (Ca, Sr) attached to liquid helium droplets: inside or out, J. Chem. Phys., 1997, 707,10816-10818.
    [98] Rossi M., Verona M., Galli D.E. and Reatto L, Alkali and alkali-earth ions in ~4He systems, Phys. Rev., 2004, 69,212510-212514.
    
    [99] Patil S.H., Interaction of inert-gas atoms with some closed-shell cations and formation of cluster molecules, J. Chem. Phys., 1991,94, 3586-3593.
    [100]Gianturco F.A. and Filippone F., Structure and dynamics of small protonated rare-gas clusters using quantum and classical methods, Comput. Phys. Comm., 2002,145,78-96.
    [101]Chen B., Eddaoudi M., Hyde S. T., O'Keeffe M. and Yaghi O. M., Interwoven metal-organic framework on a periodic minimal surface with extra-large pores, Science, 2001,291,1021-1024
    [102] Stein A., Advances in Microporous and Mesoporous Solids-Highlights of Recent Progress, Adv. Mater, 2003,15, 763-768
    [103]Vodak D.T., Braun M.E., Kim J., Eddaoudi M. and Yaghi O.M., Metal-organic frameworks constructed from pentagonal antiprismatic and cuboctahedral secondary building units, Chem. Commun., 2001,20,2534-2535.
    [104]Eddaoudi M., Kim J., Rosi N., Vodak D., Wachter J., O'Keeffe M., Yaghi O.M., Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage, Science, 2002, 295,469-472.
    [105]Snurr R.Q., Hupp J.T., Nguyen S.T., Prospects for Nanoporous Metal-Organic Materials in Advanced Separations Processes, AIChE J., 2004, 50,1090-1095.
    [106]Pan L., sander M.B., Huang X., Li J., Smith M., Bittner E., bockrath B. and Johnson J.K., Microporous metal organic materials: promising candidates as sorbents for hydrogen storage, J. Am. Chem. Soc, 2004,126,1308-1309.
    [107]Rosi N.L., Eckert J., Eddaoudi M., Vodak D., Kim J., O'Keeffe M., Yaghi O.M., Hydrogen storage in microporous metal-organic frameworks, Science, 2003, 300, 1127-1129.
    [108]Dybtsev D.N., Chun H., Yoon S.H., Kim D. and Kim K., Microporous Manganese Formate: A simple metal-organic porous material with high framework stability and highly selective gas sorption properties, J. Am. Chem. Soc, 2004,126, 32-33.
    [109]Li H., Eddaoudi M., Richardson D.A. and Yaghi O.M., Porous germanates: synthesis, structure, and inclusion properties of Ge_7O_(14.5)F_2·[(CH_3) _2NH_2]_3(H_2O)0.86, J. Am. Chem. Soc, 1998,120, 8567-8568.
    [110]Li H., Davis C.E., Groy T.L., Kelley D.G. and Yaghi O.M., Coordinatively unsaturated metal centers in the extended porous framework of Zn_3(BDC)_3·6CH_3OH (BDC=1,4-Ben- zenedicarboxylate), J. Am. Chem. Soc, 1998,120,2186-2187.
    [111]Li H., Eddaoudi M., O'Keeffe M. and Yaghi O.M., Design and synthesis of an exceptionally stable and highly porous metal-organic framework, Nature, 1999, 402, 276-279.
    [112]Rowsell L.C. and Yaghi O.M., Metal-organic frameworks: a new class of porous materials, Microporous Mesoporous Mater., 2004, 73,3-14.
    [113]Diiren T., Sarkisov L., Yaghi O.M. and Snur R.Q., Design of new materials for methane storage, Langmuir, 2004, 20, 2683-2688.
    [114]Rosi N.L., Eddaoudi M., Kim J., O'Keeffe M. and Yaghi O.M., Adwances in the chemistry of metal-organic frameworks, Cryst. Eng. Comm., 2002,4,401-404.
    [115]Sudik, A.C., Millward A.R., Ockwig N.W., Cote A.P., Kim J. and Yaghi O.M., Design, synthesis, structure, and gas (N_2, Ar, CO_2, CH_4, and H_2) sorption properties of porous metal-organic tetrahedral and heterocuboidal polyhedra, J. Am. Chem. Soc, 2005,127, 7110-7118.
    [116]Eddaoudi M., Li H. and Yaghi O.M., Highly porous and stable metal-organic frameworks: structure design and sorption properties, J. Am. Chem. Soc, 2000 122, 1391-1397.
    [117]Braun M.E., Steffek c.d., Kim J., Rasmussen P.G. and Yaghi O.M., 1,4-benzendicarboxylate derivatives as links in the design of paddle-wheel units and metal-organic frameworks, Chem. Commun., 2001,20,2532-2533.
    [118]Huang L.M., Wang H.T., Chen J.X., Wang Z.B., Sun J.Y., Zhao D.Y., Yan Y.S., Synthesis, morphology control, and properties of porous metal - organic coordination polymers, Micropor. Mesopor. Mat., 2003,58, 105-114.
    [119]Cui C., Dai J., Du W., Fu Z., Hu S., Wu L. and Wu X., Synthesis, structure and fluorescence of a 3-D polymer {(Mo_4O_(12)(4,4'-bipy)_2}_n, Polyhedron, 2001, 21 175-179.
    [120]Ferey G., Latroche M., Serre C, Millange F., Loiseau T. and Percheron-Guegan A., Hydrogen adsorption in the nanoporous metal-benzenedicarboxylate M(OH){O_2C-C_6H_4- CO_2} (M=Al~(3+), Cr~(3+)), MIL-53, Chem. Commun., 2003, 24, 2976-2977.
    [121]Fujita M., Kwon Y.J., Washizu S. and Ogura K., Preparation, clathration ability, and catalysis of a two-dimensional square network material composed of cadmium (II) and 4,4'-bipyridine, J. Am. Chem. Soc. 1994,116,1151-1152.
    [122]Noro S.I., Kitagawa S., Kondo M. and Seki K., A new, methane adsorbent, porous coordination polymer [{CuSiF6 (4,4'-bipyridine)2}n], Angew. Chem. Int. Ed., 2000,39,2082-2084.
    [123]Eddaoudi M., Moler D.B., Li H., Chen B., Reineke T.M., O'Keeffe M., Yaghi O.M., Modular chemistry: secondary building units as a basis for the design of highly porous and robust metal-organic carboxylate frameworks, Acc. Chem. Res., 2001,34,319-330.
    [124]Kaye S.S. and Long J.R., Hydrogen storage in the dehydrated Prussian blue analogues M_3[Co(CN)_6]_2 (M=Mn, Fe, Co, Ni, Cu, Zn), J. Am. Chem. Soc, 2005, 127,6506-6507.
    [125]Kitaura R., Kitagawa S., Kubota Y., Kobayashi T.C., Kindo K., Mita Y., Matsuo A., Kobayashi M., Chang H.C., Ozawa T.C., Suzuki M., Sakata M., Takata M., Formation of a one-dimensional array of oxygen in a microporous metal-organic solid, 2002,298,2358-2361.
    [126]Kitaura R., Seki K., Akiyama G. and Kitagawa S., porous coordination-polymer crystals with gated channels specific for supercritical gases, Angew. Chem. Int. Ed., 2003,42,428-431.
    [127]Hee K. Chae H.K., Siberio-Pe'rez D.Y., Kim J., Go Y., Eddaoudi M., Matzger A.J., O'Keeffe M., Yaghi O.M., A route to high surface area, porosity and inclusion of large molecules in crystals, Nature, 2004, 427, 523-527.
    [128]Wang Q.M., Shen D., Bulow M., Lau M.L., Deng S., Fitch F.R., Lemcoff N.O. and Semanscin J., Metallo-organic molecular sieve for gas separation and purification, Microporous Mesoporous Mater. 2002, 55,217-230.
    [129] Janiak C., Engineering coordination polymers towards applications, Dalton Trans., 2003, 2781-2804.
    [130] Rosseinsky M.J., Recent developments in metal-organic framework chemistry: design, discovery, permanent porosity and flexibility, Microporous Mesoporous Mater., 2004, 73, 15-30.
    [131] Hoffart D.J. and Loeb S.J., Metal-organic rotaxane frameworks: three-dimensional poly- rotaxanes from lanthanide-ion nodes, pyridinium n-oxide axles, and crown-ether wheels, Angew. Chem. Int. Ed., 2005, 44, 901-904.
    [132] Garberoglio G., Skoulidas A.I. and Sholl D.S., Adsorption of gases in metal organic materials: comparison of simulations and experiments, J. Phys. Chem. B, 2005, 109, 13094-13103.
    [133] Lei S., Yin S., Wan, L. and Bai C., Selective adsorption of copper phthaloeyanine atop functionalized organic monolayers, J. Phys. Chem. B, 2004, 108, 224-227.
    [134] Forster P.M., Eckert J., Chang J., Park S., Ferey G. and Cheeetham A.K., Hydrogen adsorption in nanoporous nickel(Ⅱ) phosphates, J. Am. Chem. Soc., 2003, 125, 1309-1312.
    [135] Seo J.S., Wang D., Lee H., Jun S.I., Oh J., Jeon Y.J. and Kim K., A homoehiral metal-organic porous material for enantioselective separation and catalysis, Nature, 2000, 404, 982-986.
    [136] 徐如人,庞文琴,于吉红,霍启升,陈接胜,分子筛与多孔材料化学,北京,科学出版社,2004,108-192.
    [137] Kesanli B., Cui Y., Smith M.R., Bittner E.W., Bockrath B.C. and Lin W., Highly Interpenetrated Metal- Organic Frameworks for Hydrogen Storage, Angew. Chem. Int. Ed., 2005, 44, 72-75.
    [138] Kubota Y., Takata M., Matsuda R., Kitaura R., Kitagawa S., Kato K., Sakata M., Kobayashi T.C., Direct observation of hydrogen molecules adsorbed onto a microporous coordination polymer, Angew. Chem. Int. Ed., 2005, 44, 920-923.
    [139] Rowsell J.L., Millward A.R., Park K.S. and Yaghi O.M., Hydrogen sorption in functionalized metal-organic frameworks, J. Am. Chem. Sot., 2004, 126, 5666-5667.
    [140] Yang Q.Y. and Zhong C.L., Molecular simulation of adsorption and diffusion of hydrogen in metal-organic frameworks, J. Phys. Chem. B, 2005, 109, 11862-11864.
    [141] Kawakami T., Takamizawa S,, Kitagawa Y., Maruta T., Mori, W. and Yamaguehi K., Theoretical studies of spin arrangement of adsorbed organic radicals in metal-organic nanoporous cavity, Polyhedron, 2001, 20, 1197-1206.
    [142] Vishnyakov A., Ravikovitch P.I.; Neimark A.V., Bulow M. and Wang Q.M., Nanopore structure and sorption properties of Cu-BTC metal-organic framework, Nano Lett., 2003, 3, 713-718.
    [143] Skoulidas A.I., Molecular dynamics simulations of gas diffusion in metal-organic frameworks: argon in Cu-BTC, J. Am. Chem. Sot., 2004, 126, 1356-1357.
    [144] Skoulidas A.I. and Sholl D.S., Self diffusion and transport diffusion of light gases in metal organic framework materials assessed using molecular dynamics simulations, J. Phys. Chem. B, 2005, in press.
    [145] Devi R.N. edgar M., Gonzalez J., Slawin A.M.Z., Tunstall D.P., Grewal P., Cox P.A. and Wright P.A., J. Phys. Chem. B, 2004, 108, 535-543.
    [146] Sagara T., Klassen J. and Ganz E., Computional study of hydrogen binding by metal-organic framework-5, J. Chem. Phys., 2004, 121, 12543-12547.
    [147] Sagara T., Klassen J., Ortony J. and Ganz E., Binding energies of hydrogen molecules to isoreticular metal-organic framework materials, J. Chem. Phys., 2005, 123, 14701-14704.
    [148] Rowsell J.L., Spencer E.C., Eckert J., Howard J.A. and Yaghi O.M., Gas adsorption sites in a large-pore metal-organic framework, Science, 2005, 309, 1350-1354.
    [149] Mueller T. and Ceder G., A density functional theory study of hydrogen adsorption in MOF-5, J. Phys. Chem. B, 2005, in press.
    [150] Bordiga S., Vitillo J.G., Riccchiardi G.,Regli L., Cocina D., Zecchina A., Arstad B., Bojrgen M., Hafizovic J. and Lillerud K.P., Interaction of hydrogen with MOF-5, J. Phys. Chem. B, 2005, in press.
    [151] Frisch M.J., Trucks G.W.; Schlegel H.B.; Scuseria G.E., Robb M.A., Cheeseman J.R., Montgomery, Jr. J.A., Vreven T.; Kudin K.N., Burant J.C., Millam J.M., Iyengar S.S., Tomasi J., Barone V., Mennucci B., Cossi M., Scalmani G., Rega N., Petersson G.A., Nakatsuji H., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Klene M., Li X., Knox J.E., Hratchian H.P., Cross J.B., Adamo C., Jaramillo J., Gomperts R., Stratmann R.E., Yazyev O., Austin A.J., Cammi R., Pomelli C., Ochterski J.W., Ayala P.Y., Morokuma K., Voth G.A., Salvador P., Dannenberg J.J.,Zakrzewski V.G., Dapprich S., Daniels A.D., Strain M.C., Farkas O., Malick D.K., Rabuck A.D., Raghavachari K., Foresman J.B., Ortiz J.V., Cui Q., Baboul A.G., Clifford S., Cioslowski J., Stefanov B.B., Liu, G.; Liashenko, A., Piskorz, P., Komaromi I., Martin R.L., Fox, D.J., Keith T., A1-Laham M.A., Peng C.Y., Nanayakkara A., Challacombe M., Gill P.M.W., Johnson B., Chen W., Wong M.W., Gonzalez C., Pople J.A., Gaussian 03, Revision B.01, Gaussian, Inc., Pittsburgh PA, 2003.
    [152] Foresman J.B., Frisch AE., Exploring Chemistry with Electronic Structure Methods, second ed., Gaussian, Inc., Pittsburgh, PA, 1996.
    [153] 徐光宪,黎乐明,王德民,量子化学基本原理和从头计算法,北京,科学出版社,1999.
    [154] Boys S.F.; Bemardi F., The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors, Mol. Phys. 1970, 19, 553.-560.
    [155] Bacelo D. and Ishikawa Y., Comparison of density functional and MP2 geometry optimizations of Na(H20)n (n=1-3) clusters, J. Mol. Stru.:Theochem, 1998, 425, 87-94.
    [156] Dopfer O., Nizkorodov S.A., Meuwly M., Bieske E.J. and Maier J.P., Microsolvation of the ammonium ion in argon: infrared spectra of NH_4~+-Ar_n complexes (n=1-7), Int. J. Mass Spectro. Ion Proc., 1997, 167, 637-647.
    [157] Abkowicz A.J., Latajka Z., Scheiner S. and Chalasifiski G., Site-site function and successive reaction counterpoise calculation of basis set superposition error for proton transfer, J. Mol. Stru.:Theochem, 1995, 342, 153-159.
    [158] Fuentealba P. and Simon-Manso Y., Basis set superposition error in atomic cluster calculations, Chem. Phys. Lett., 1999, 314, 108-113.
    [159] Li R., Li Z., Wu D., Hao X., Li Y., Wang B., Tao F. and Sun C., Density functional study of structures and interaction hyperpolarizabilities of NH3-HCI-(H_2O)_n (n=0-4) clusters, 2003, 372, 893-898.
    [160] Mierzwicki K. and Latajka Z., Basis set superposition error in N-body clusters, Chem. Phys. Lett., 2003, 380, 654-664.
    [161] Turki N., Milet A., Ouamerali O., Moszynski R. and Kochanski E., The OH-(H_2O)_2 system: efficiency of ab initio and DFT calculations for two- and three-body interactions, J. Mol. Stru.:Theochem, 2002, 577, 239-253.
    [162] Mohan V. and Anderson J.B., Quantum monte carlo calculations of three-body corrections in the interaction of three helium atoms, J. Chem. Phys., 1990, 92, 6971-6973.
    [163] Bu X., Zhong C. and Jalbout A.F., Ab initio studies of MHe_n~+(M=Be, Mg; n=1-4) complexes, Chem. Phys. Lett., 2004, 387, 410-414.
    [164] Bu X. and Zhong C., Ab initio analysis of geometric structures of BeHe_n~+(n=1-12) clusters, Chem. Phys. Lett., 2004, 392, 181-186.
    [165] Bu X. and Zhong L., Geometric Structures and Properties of Mg~~(m+)He_n (m=1, 2; n=1-10) Clusters: Ab Initio Studies, J. Mol. Stru.:Theochem, 2005, 726, 99-105.
    [166] Seayad A.M. and Antonelli D.M., Recent advances in hydrogen storage in metal-containing inorganic nanostructures and related materials, Adv. Mater., 2004, 16, 765-777.
    [167] Noh J.S., Agarwal R.K. and Schwarz J.A., Hydrogen storage systems using activated carbon, Int J. Hydrogen Energy, 1987, 12, 693-700.
    [168] Amankwah K.A.G., Noh J.S. and Schwarz J.A., Hydrogen storage on superactivated carbon at refrigeration temperatures, Int. J. Hydrogen Energy, 1989, 14, 437-447.
    [169] Chahine R. and Bose T.K., Low-pressure adsorption storage of hydrogen, Int. J. Hydrogen Energy, 1994, 19, 161-164.
    [170] Zhou L. and Zhou Y., A comprehensive model for the adsorption of supercritical hydrogen on activated carbon, Ind. Eng. Chem. Res., 1996, 35, 4166-4168.
    [171] Rzepka M., Lamp P. and Casa-Lillo M.A. de la, Physisorption of hydrogen on microporous carbon and carbon nanotubes, J. Phys. Chem. B., 1998, 102, 10894-10898.
    [172] Benard P. and Chahine R., Determination of the adsorption isotherms of hydrogen on activated carbons above the critical temperature of the adsorbate over wide temperature and pressure ranges, Langmuir, 2001, 17, 1950-1955.
    [173] Choi B.U., Choi D.K., Lee Y.W. and Lee B.K., Adsorption equilibria of methane, ethane, ethylene, nitrogen, and hydrogen onto activated carbon, J. Chem. Eng. Data, 2003, 48, 603-607.
    [174] Kayiran S.B., Lamari F.D. and Levesque D., Adsorption properties and structural and characterization of activated carbons and nanocarbons, J. Phys. Chem. B., 2004, 108, 15211-15215.
    [175]Dillon A.C., Jones K.M., Bekkedahl T.A., Klang C.H., Bethune D.S. and Heben M.J., Storage of hydrogen in single-wall carbon nanotubes, Nature, 1997, 386, 377-379.
    [176]Chen P., Wu X., Lin J. and Tan K.L., High H_2 uptake by alkali-doped carbon nanotubes under ambient pressure and moderate temperatures, Science, 1999, 285, 91-93.
    [177]Liu C, Fan Y.Y., Liu M., Cong H.T., Cheng H.M. and Dresselhaus M.S., Hydrogen storage in single-walled carbon nanotubes at room temperature, Science, 1999,286,1127-1129.
    [178]Simonyan V.V., Diep P. and Johnson J.K., Molecular simulation of hydrogen adsorption in charged single-walled carbon nanotubes, J. Chem. Phys., 1999, 111, 9778-9783.
    [179] Gordon P.A. and Saeger R.B., Molecular Modeling of Adsorptive Energy Storage: Hydrogen Storage in Single-Walled Carbon Nanotubes, Ind. Eng. Chem. Res., 1999,38, 4647-4655.
    [180]Wang Q.Y. and Johnson J.K., Optimization of Carbon Nanotube Arrays for Hydrogen Adsorption, J. Phys. Chem. B, 1999,103, 4809-4813.
    [181]Darkrim F. and Levesque D., High adsorptive property of open carbon nanotubes at 77 K, J. Phys. Chem. B., 2000,104, 6773-6776.
    [182]Yin Y.F., Mays T. and McEnaney B., Molecular simulations of hydrogen storage in carbon nanotube arrays, Langmuir, 2000,16,10521-10527.
    [183]Cheng H.S., Pez G.P. and Copper A.C., Mechanism of hydrogen sorption in single-walled carbon nanotubes, J. Am. Chem. Soc., 2001,123, 5845-5846.
    [184]Lee S.M., An K.H., Lee Y.H., Seifert G. and Frauenheim T., A hydrogen storage mechanism in single-walled carbon nanotubes, J. Am. Chem. Soc, 2001, 123, 5059-5063.
    [185]Hou P.X., Yang Q.H., Bai S., Xu S.T., Liu M. and Cheng H.M., Bulk storage capacity of hydrogen in purified multiwalled carbon nanotubes, J. Phys. Chem. B, 2002,106, 963-966.
    [186]Murata K., Kaneko K., Kanoh H., Kasuya D., Takahashi K., Kokai F., Yudasaka M. and Iijima S., Adsorption Mechanism of Supercritical Hydrogen in Internal and Interstitial Nanospaces of Single-Wall Carbon Nanohorn Assembly, J. Phys. Chem. B, 2002,106, 11132-11138.
    [187]Lueking A. and Yang R.T., Hydrogen storage in carbon nanotubes: residual metal content and pretreatment temperature, AIChE J., 2003,49,1556-1568.
    [188]Shiraishi M., Takenobu T., Ata M., Gas-solid interactions in the hydrogen/single-walled carbon nanotube system, Chem. Phys. Lett., 2003, 367, 633-636.
    [189]Civalleri B., Zicovich-Wilson C.M., Ugliengo P., Saunders V.R. and Dovesi R., A periodic ab initio study of the structure and relative stability of silica polymorphs, Chem. Phys. Lett., 1998, 292,394-402.
    [190]Lo C. and Trout B.L., Density-functional theory characterization of acid sites in chabazite, J. Catal., 2004,227, 77-89.
    [191]Ghorai P.Kr., Sluiter M., Yashonath S. and Kawazoe Y., Adsorption isotherm and other properties of methane in zeolite A from an intermolecular potential derived from ab initio calculations, J. Am. Chem. Soc, 2003,125,16192-16193.
    [192]Bussai C, Vasenkov S., Liu H., Bohlmann W., Fritzsche S., Hannongbua S., Haberlandt R. and Karger J., On the diffusion of water in silicalite-1: MD simulations using ab initio fitted potential and PFG NMR measurements, Appl. Catal. A: General, 2002,232, 59-66.
    [193]Bussai C, Fritzsche S., Haberlandt R. and Hannongbua S., A novel mφller-plesset perturbation based potential for determining the structural and dynamical properties of methane in silicalite-1: a molecular dynamics study, J. Phys. Chem. B,2004,108,13347-13352.
    [194]Tielens F., Denayer J.F.M., Daems I., Baron G.V., Mortier W.J. and Geerlings P., Adsorption of the Butene isomers in faujasite: a combined ab-initio theoretical and experimental study, J. Phys. Chem. B., 2003,107,11065-11071.
    [195]BonelliB., Civalleri B., Fubini B., Ugliengo P., Arean C.O. and Garrone E., Experimental and quantum chemical studies on the adsorption of carbon dioxide on alkali-metal-exchanged ZSM-5 zeolites, J. Phys. Chem. B, 2000, 104, 10978 -10988.
    [196]Pickett S.D., Nowak A.K., Thomas J.M. and Cheetham A.K., Computer simulation of the adsorption and diffusion of benzene in silicalite, theta-1, and a new zeolite, EU-1. Zeolite, 1989,9, 123-128.
    [197] June R.L., Bell A.T. and Theodorou D.N., Molecular dynamics study of methane and xenon in silicalite, J. Phys. Chem., 1990, 94,8232-8240.
    [198]Maginn E.J., Bell A.T. and Theodorou D.N., Transport diffusivity of methane in silicalite from equilibrium and nonequilibrium simulation, J. Phys. Chem., 1993, 97,4173-4181.
    [199]Corma A., Catlow R.A. and Sastre G., Diffusion of linear and branched C7 paraffins in ITQ-1 zeolite. A molecular dynamics study, J. Phys. Chem. B, 1998, 102, 7085-7090.
    [200]Macedonia M.D., Moore D.D., Maginn E.J. and Olken M.M., Adsorption Studies of Methane, Ethane, and Argon in the Zeolite Mordenite: Molecular Simulations and Experiments, Langmuir, 2000,16, 3823-383
    [201]Skoulidas A.I. and Sholl D.S., Direct tests of the Darken approximation for molecular diffusion in zeolites using equilibrium molecular dynamics, J. Phys. Chem. B,2001,105, 3151-3154.
    [202] Skoulidas A.I. and Sholl D.S, Molecular dynamics simulation of self-diffusivities, corrected diffusivities, and transport diffusivities of light gases in four silica zeolites to assess influences of pore shape and connectivity, J. Phys. Chem. B, 2003,107,10132-10141.
    [203]Perdew J.P. and Wang Y., Accurate and simple analytic representation of the electron-gas correlation energy, Phys. Rev. B, 1992,45,13244-13249.
    [204]Hamel S. and Cote M., First-principles study of the rotational transitions of H_2 physisorbed over benzene, J. Chem. Phys., 2004,121,12618-12625.
    [205]Perdew J.P. Burke K. and Wang Y., Generalized gradient approximation for the exchange-correlation hole of a manyelectron system, Phys. Rev. B, 1996, 54, 16533-16539.
    [206]Perdew J.P., Chevary K.A., Vosko S.H., Jackson K.A., Pederson M.R., Singh D.J., Folhais C, Atoms, molecules, solids, and surfaces: applications of the generalized approximation for exchange and correlation, Phys. Rev. B, 1992, 46, 6671-6687.
    [207]Perdew J.P. Burke K. and Ernzerhof M., Generalized gradient approximation mad simple, Phys. Rev. Lett., 1996, 77, 3865-3868.
    [208]Hammer B. Hansen L.B. and Norskov J.K., Improved assroption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals, Phys. Rev. B, 1999, 59, 7413-7421.
    [209]Levy M. and Perdew J.P., Tight bound and convexity constraint on the exchange-correlation-energy functional in the low-density limit, and other formaltests of generalized-gradient approximations, Phys. Rev. B, 1993, 48,11638-11645.
    [210]Couronne O. and Ellinger Y., An ab initio and DFT study of (N_2)_2 dimers, Chem.Phys. Lett., 1999,306, 71-77.
    [211]Liu Y., Lund A., Persson P. and Lunell S., Density functional theory study of NO adsorbed in A-Zeolite, J. Phys. Chem. B, 2005,109, 7948-7951.
    [212]Lo C. and Trout B.L., Density-functional theory characterization of acid sites in chabazite, J. Cata., 2004,227, 77-89.
    [213]Bandura A.V. and Kubicki J.D., Derivation of force field parameters for TiO2-H2O systems from ab initio calculations, J. Phys. Chem. B, 2003, 707,11072-11081.
    [214]Kim C., Choi Y., Lee S., Park J.T., Kim B. and Lee Y., The effect of gas adsorption on the field emission mechanism of carbon nanotubes, J. Am. Chem. Soc, 2002, 124,9906-9911.
    [215]Han S.S. and Lee H.M., Adsorption properties of hydrogen on (10, 0) single-walled carbon nanotue through density functional theory, Carbon, 2004, 42,2169-2177.
    [216]Wesolowski T.A., Parisel O., Ellingler Y. and Weber J., Comparative study of benzene-X (X=O_2, N_2, CO) complexes using density functional theory: the importance of an accurate exchange-correlation energy density at high reduced density gradients, J. Phys. Chem. A, 1997, 707, 7818-7825.
    [217]Schimmel H.G., Kearley G.J., Nijkamp M.G., Visser C.T., Jong K.P. and Mulder F.M., Hydrogen adsorption in carbon nanostructures: comparison of nanotubes, fibers, and coals, Chem. Eur. J., 2003,9,4764-4770.
    [218]Ishiwatari R. and Tachikawa M., Unrestricted density functional study on the adsorption of hydrogen molecule on nickel surface, J. Mol. Stru., 2005, 135, 3834-387.
    [219]Lee S., An K.H., Lee Y.H., Seifert G. and Frauenheim T., A hydrogen storage mechanism in single-walled carbon nanotubes, J. Am. Chem. Soc, 2001, 123,5059-5063.
    [220]Benco L., Demuth T., Hafer J., Hutschka F. and Toulhoat H., Adsorption of linear hydrocarbons in zeolites: a density -functional investigation, J. Chem. Phys., 2001,114,6327-6334.
    
    [221]DMol~3 is a registered software product of Accelrys Inc. 2003, San Diego, CA.
    [222]Mayo S.L., Olafson B.D. and Goddard III W.A., DREIDING: A generic force field for molecular simulations, J. Phys. Chem., 1990,94, 8897-8909.
    [223]Fried J.R. and Hu N., The molecular basis of CO_2 interaction with polymers containing fluorinated groups: computational chemistry of model compounds and molecular simulation of poly[bis(2,2,2-trifluroethoxy)phosphazene], Polymer, 2003, 44, 4363-4372.
    [224] Fried J.R., Sadat-Akhavi M., Mark J.E., Molecular simulation of gas permeability: poly(2,6-dimethyl-1,4-phenylene oxide), J. Mem. Sci. 1998,149, 115-126.
    [225]Skouras E.D., Burganos V.N. and Payatakes A.C., Simulation of gas diffusion and sorption in nanoceramic semiconductors, J. Chem. Phys. 1999, 110,9244-9252.
    [226]Skouras E.D., Burganos V.N. and Payatakes A.C., Improved atomistic simulation of diffusion and sorption in metal oxides, J. Chem. Phys., 2001, 114, 545-552.
    [227]Lin D., Zhou W. Guo J., He H. and Long Y., Studies on the interaction of THF with FER zeolite, J. Phys. Chem. B. 2003,107,3798-3802.
    
    [228]FORCITE is a registered software product of Accelrys Inc. 2003, San Diego, CA.
    [229]Chirlian L.E., Francl M.M., Atomic charged derived from electrostatic pptentials: a detailed study, J. Comput. Chem., 1987,8, 894-905.
    [230] Heinz H. and Suter U.W., Atomic charges for classical simulations of polar systems, J. Phys. Chem. B, 2004,108, 18341-18352.
    
    [231] 周公度,段连运,结构化学基础,北京,北京大学出版社, 2001, 131-146.
    [232] Yang J., Ren R., Tian A. and Sun, H., Compass force field for 14 inorganic molecules, He, Ne, Ar, Kr, Xe, H_2, O_2, N_2, NO, CO, CO_2, NO_2,CS_2, and SO_2, in liquid phases, J. Phys. Chem. B., 2000,104, 4951-4957.
    [233]Maseras F. and Morokuma K., IMOMM: a new integrated ab initio+molecular mechanics geometry optimization scheme of equilibrium structures and transition states, J. Comp. Chem., 1995,16,1170-1179.
    [234]Mastsubara T., Maseras F., Koga N. and Morokuma K., application of the new integrated "M0+MM"(IM0MM) method to the organometallic reaction Pt(PR3)2+H2( R=H, Me, t-Bu, and Ph), J. Phys. Chem., 1996,100,2573-2580.
    [235]Boronat M. Viruela P.M. and Corma A., Reaction intermediated in acid catalysis by zeolites: prediction of the relative tendency to form alkoxides or carbocations as a function of hydrocarbon nature and active site structure, J. Am. Chem. Soc, 2004,126, 3300-3309.
    [236]Berg A.W., Bromley S.T., Ramsahye N. and Maschmeyer T., Diffusion of molecular hydrogen theroughe porous materials: the importance of framework flexibility, J. Phys. Chem. B., 2004,108,5088-5094.
    [237]Sillar K., Burk P., Hybrid quantum chemical and density functional theory (ONIOM) study of the acid sites in zeolite ZSM-5, J. Phys. Chem. B., 2004,108, 9893-9899.
    [238]Solans-Monfort X., Bertran J., Branchadell V. and Sodupe M., Keto-enol isomerization of acetaldehyde in HZSM5. a theoretical study using the 0NI0M2 method, J. Phys. Chem. B., 2002,106,10220-10226.
    [239]Solans-Monfort X., Bertran J., Branchadell V., Sodupe M., Orlando R. and Ugliengo P., Adsorption of NH3 and H2O in acidic chabazite. Comparison of OMIOM approach with periodic calculations, J. Phys. Chem. B., 2005, 109, 3539-3545.
    [240]Soscun H., castellano O, and Hernandez J., Adsorption of CH_3SH in acidic zeolites: a theoretical stydy, J. Phys. Chem. B., 2004,108,5620-5626.
    [241]Michalkova A., Gorb L., Icheenko M., Zhiko O.A., Shishkin O.V. and Leszczynski J., Adsorption of sarin and soman on dickite: an ab initio oniom study, J. Phys. Chem. B., 2004,108,1918-1930.
    [242]Jiang N., Yuan S., Wang J., Jiao H., Qin Z. and Li Y., A theoretical study of amines adsorption in HMOR by using 0NI0M2 method. J. Mol. Cats. A: Chem., 2004,220,221-228.
    [243]Rungsirisakun R., Bavornpon J., Piboon P., Limtrakul J., The adsorption of benzene on industrially important nanostructured catalysts (H-BEA, H-ZSM-5, and H-FAU): confinement effects, Journal of Molecular Structure, 2005, 733, 239-246.
    [244]Roggero I., Civalleri B. and Ugliengo P., Modeling physisorption with the ONIOM method: the case of NH_3 at the isolated hydroxyle group of the silica surface, Chem. Phys. Lett., 2001,342, 625-632.
    [245]Ugliengo P. and Damin A., Are dispersive forces relevant for CO adsorption on the MgO(001) surface?, Chem. Phys. Lett., 2002,366, 683-690.
    [246]Bersuker I.B., Leong M.K., Boggs J.E., The self consistent method: integrated ab initio+molecular mechanics geometry optimization scheme of equilibrium structures, Int. J.Quantum Chem., 1997, 63,1051-108.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700