PET结晶及其增强复合材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文系统地研究了三种分子量的聚乙二醇(PEG),分别为PEG4000、PEG6000和PEG8000对PET的结晶行为、结晶形态、结晶结构的影响,并同时研究玻璃纤维(GF)对PET的力学性能和结晶行为的影响。采用差式扫描量热仪(DSC)研究了PET/PEG复合体系和PET/GF复合体系的结晶行为,并用Jeziorny理论对复合体系的结晶过程进行了动力学分析;通过偏光显微镜(POM)研究了PET/PEG复合体系的结晶形态,通过X衍射(XRD)对PET/PEG复合体系和PET/GF复合体系的结晶结构进行了研究。
     对于PET/PEG复合体系,三种分子量的PEG加入到PET熔体中,均使得PET的玻璃化温度和冷结晶温度降低,而热结晶温度和熔融温度升高;同时PET/PEG复合体系的表观诱导期、半结晶时间、表观总结晶时间都比纯PET的短;通过Jeziorny理论对PET/PEG复合体系进行非等温动力学研究,结果显示随着PEG的加入,Avrami常数n减小,结晶速率常数Z c增大。可见PEG的加入提高了PET分子链段运动能力,同时由于其与PET相容性的局限性,起到了成核的作用,缩短了PET的结晶周期,加快了PET的结晶速率,其中效果最好的是PEG8000添加量为10wt%时的PET/PEG复合体系。通过POM对PET/PEG复合体系结晶形态进行研究,结果表明PEG的加入,均使得PET的成核密度增大,晶体尺寸变小,晶体分布更加均匀;通过XRD对PEG加入后的复合体系的结晶结构进行分析,发现晶胞并无变化,但是垂直于晶面[110]、[100]的平均晶粒尺寸减小了,[010]晶面的平均晶粒尺寸变化不大,总结晶度变大了,这也表明PEG的加入细化了抑制了[110]、[100]晶面的晶体生长,促进了PET的结晶。
     同时对PET/GF复合体系的力学性能和结晶行为进行了研究,结果表明将经硅烷偶联剂KH550处理后的玻璃纤维(GF)添加到PET中,提高了PET的拉伸强度和冲击强度,其中玻纤添加量为30wt%时,复合体系的力学性能提高最大。DSC结果表明玻纤在PET中起到了成核作用,提高了PET的热结晶能力,但由于其阻碍了PET分子链段运动,故使得PET的冷结晶能力减弱。XRD结果表明玻纤对PET的晶胞无影响,但能提高PET的结晶度,同时使得垂直于[010]、[110]和[100]晶面的平均晶粒尺寸明显减小,细化了晶体尺寸。
In this paper,the effects of three kinds of molecular weight Polyethylene glycol(PEG) such as:PEG4000, PEG6000 and PEG8000 on the crystallization behaviors, crystallization morphology and crystallization structure of PET were systematically studied, and the effects of glass fiber on the mechanical properties and crystallization behavior of PET were studied too. The crystallization behaviors of PET/PEG composites and PET/GF composites were studied by Differential Scanning Calorimetry (DSC), and the kinetics of PET crystallization were analysed by Jeziorny theory; the crystallization morphology were investigated by Polarizing Optical Microscope (POM), and the crystallization structure were investigated by X Ray Diffraction (XRD).
     For PET/PEG composites, PEG with three kinds of molecular weight joining in PET melt, all made the glass transition temperature and cold crystallization temperature of PET reduced, the crystallization temperature and melting temperature of PET increased, at the same time, the apparent induction period, the half time of crystallization, the apparent total time of crystallization of PET/PEG blends were shorter than pure PET. Non-isothermal crystallization kinetics of PET/PEG blends were studied by Jeziorny theory, the results showed that Avrami constant n decreased and the crystallization Zc increased with PEG adding. That was to say the adding of PEG improved the moving of the link segments of PET molecule, because of the limitations of the compatibility of PET and PEG, PEG played the role of nucleation and shorten the crystallization cycle, speeding up the crystallization rate of PET. When PEG8000 were added for 10wt%, the effect was the best. The results of the study on crystallization morphology of PET/PEG composites by POM indicated that PEG increased the density of nucleating, lessened the size of crystals, and the crystals were distributed more evenly. Crystallization structure of PET/PEG composites were analysed by XRD, the results showed that crystal cells were not changed, but the average size of crystals which were perpendicular to the crystal surface [110] and [100] were lessened, and the average size of crystals which were perpendicular to the crystal surface [010] were not changed, while the total degree of crystallization was increased, which also indicated that it could lessened the size of crystal and promote the crystallization of PET by adding PEG.
     The mechanical properties and crystallization behaviors of PET/GF composites were studied at the same time, and the results show that the adding of GF which the surface was treated with KH550 improve the tensile strength and impact strength of PET, and when the additive quantity is 30wt%, the effect is the best. The results of DSC show that GF plays a role as nucleation, improved the heat crystallization ability, but it make the cold crystallization ability decreased because it hold up the moving of link segments of PET molecule. The XRD results show that when added GF in PET, the crystal cells of PET were not changed, but the average size of crystals which were perpendicular to the crystal surface [010], [110] and [100] were lessened, and the total degree of crystallization was increased.
引文
[1] Kurauchi T., Rudin A., et al. Energy absorption in blends of polycarbonate with ABS and SAN [J]. J. Mater Sci.,1984,19(5):1699-1709
    [2] Winfield. J. R, Dickson. J. T, (1) British Pat. 1949, 578079; (2) US. Pat. 1949, 246531[p].
    [3]金国珍,工程塑料[M].北京:化学工业出版社, 2001.
    [4]焦剑,雷渭媛,高聚物结构性能与测试[M].北京:化学工业出版社, 2003.
    [5]汤先文,郭卫红等.国内外PET合金研究动态[J].国外塑料,2005,23(3):36-40
    [6] Bharat D. Impact modification of filled recycled bottle grade PET [D]. University of Massachusetts Lowell,2001
    [7]周理水.PET塑料的改性及应用[J].塑料加工,2000,29(3):32-36
    [8]肖鹤祥.国外PET工程塑料工业进展[J].塑料工业,1992,3:19-21
    [9] Thomas E. L.主编,施良和、沈静姝等译,聚合物结构与性能,北京:科学出版社,1999, 170.
    [10] Mercier J. P.,“Nucleation in polymer crystallization: a physical or a chemical mechanism”, Polym. Eng. Sci., 1990, 30, 270-278.
    [11] Wang S., Yang D. C.,“Isothermal crystallization kinetics of iPP during self-nucleation process”, Chem. J. Chinese U., 2004, 25 (1): 191-193.
    [12]殷敬华莫志深主编现代高分子物理学(上册)北京:科学出版社2001.
    [13] Peterlin A., Fischer E. W., Reinhold C., Thermodynamic stability of polymer crystals.ПTorsional vibration of chain molecules [J]. Journal. Chemtry. Physics, 1962, 37(6): 1403-1408.
    [14] Huggins M. L., Effect of intrachain and interchain interactions on the structures of crystalline regions in linear polymers [J]. Journal of Polymer Science Part B: Polymer Physics, 1961, 50(153): 65-69.
    [15] Hoffman J. D., Miller R. L., Kinetics of crystallization from the melt and chain folding in polyethylene fractions revisited: theory and experiment [J]. Polymer, 1997, 38(13): 3151-3212.
    [16] Hoffmann J. D., Regime-Шcrystallization in melt-crystallization polymers- the variable cluster model of chain folding [J]. Polymer, 1983(1): 24, 3-26.
    [17] Lauritzen J. I., Effect of a finite substrate length upon polymer crystal lamellar growth rate [J]. Journal of Applied Physics, 1973, 44(10): 4353-4359.
    [18] Imai, M.; Kaji, K.; Kanaya, T. Orientation fluctuations of poly (ethylene terephthalate) during the induction period of crystallization [J]. Physical Review Letters, 1993, 71(25): 4162-4165.
    [19] Hugel T., Strobl G., Thomann R., Building lamellae from blocks: the pathway followed in the formation of crystallites of syndiotactic polypropylene [J]. Acta Polymerica, 1999, 50(5-6): 214-217.
    [20] [20] Strobl G., From the melt via mesomorphic and granular crystalline layers to lamellar crystallites: A major route followed in polymer crystallization [J]. Eur. Phys. J., 2000, 3(2): 165-183.
    [21] Wunderlich B., Macromolecular Physics, Vol. 1, Crystal structure, Morphology, Defects [M]. New York and London: Academic Press, 1973.
    [22] Point J. J., A new theoretical approach of the secondary nucleation at high supercooling [J]. Macromolecules, 1979, 12[4]: 770-775.
    [23] Bassett D. C., Principles of Polymer Morphology, London: Cambridge University Press, 1981.
    [24] Strobl G., The physics of Polymers, Concepts for Understanding Their Structures and Behavior, Berlin: Springer, 1996.
    [25] Schultz, J. M., Polymer Crystallization, the Development of Crystalline Order in Thermoplastic Polymers, Oxford University Press, 2001.
    [26]殷敬华莫志深主编现代高分子物理学(上册)北京:科学出版社2001.
    [27] Schick C., Merzlyakov M., Wunderlich B.,“Analysis of the reorganization of poly (ethylene terephthalate) in the melting range by temperature-modulated calorimetry”, Polym. Bull., 1998, 40, 297-303.
    [28] Avrami M. Kinetics of phase change: I, General theory [J]. Journal of Physical Chemistry, 1939, 7 (12):1103-1112.
    [29] Avrami M. Kinetics of phase change: II, Transformation-time relations for random distribution of nuclei [J]. Journal of Physical Chemistry, 1940, 8(2): 212-224.
    [30] Ozawa T. Kinetics of non-isothermal crystallization [J]. Polymer, 1971, 12(3):150-156.
    [31] Jeziorny A. Isothermal crystallization kinetics study on the base theory [J]. Polymer, 1978, 19(10): 1142-1144.
    [32]莫志深.聚合物等温结晶动力学理论[J].高分子学报,2008, (7): 656-661.
    [33] Ziabicki A.crystallization of polymer in variable external condition.part 1[J]. Colloid and Polymer Science, 1996, 274(3):209-217.
    [34]张志英.表征高聚物非等温结晶动力学的参数:动力学结晶能力[J].合成纤维工业,1990,13(6):33-36.
    [35] Garcia D. Heterogeneous nucleation of poly (ethylene terephthalate) [J]. Journal of Polymer Science: Polymer Physics Edition, 1984, 22(12): 2063-2072.
    [36] Koninuk J. Legres M.R. Nucleation of poly (ethylene terephthalate) by sodium compounds: a unique mechanism [J]. Polymer, 1989, 30 (5): 910-913.
    [37]宗立明,范奎城,刘德山等. PET与液晶高分子注射模塑原位复合材料的研究,高分子材料科学与工程, 1998,14(3):87-90.
    [38] Grasser W., Schmidt H. W., Giesa R. Fibers spun from poly (ethylene terephthalate) blended with a thermotropic liquid crystalline copolyester with non-coplanar biphenylene units [J]. Polymer, 2001, 42(21): 8517-8527.
    [39]郭仁义,危大福,卢红,郑安呐.结晶促进剂和成核剂对PET结晶性能的影响[J].高分子材料科学与工程,2003,19(4):121-124
    [40]关家玉,孙春荣,崔士俊,等.磷酸三苯酯对聚对苯二甲酸乙二酯结晶速率的影响[J].高分子学报,1981 , (6): 449-453
    [41]陈彦,徐懋,李育英,何嘉松.成核剂和促进剂对聚对苯二甲酸乙二酯结晶的影响[J].高分子学报,1999,(1):7-14
    [42]林国良,姚青青. PET/聚乙二醇共混物结晶行为的研究[J].工程塑料应用,1994,22(5): 27-29
    [43]黄家康等.复合材料成型技术,北京:化学工业出版社,1999,3-9
    [44]李顺林,复合材料工作手册,北京:航空工业出版社,1988,114-116
    [45] P G Pape, E P Plueddemann. Improvements in Saline Coupling Agents for more Durable Bonding at the Polymer Reinforcement Interface [J] .ANTEC, 1991:1870-1875
    [46]李姚瑶,余木火,袁象恺,李书同.新型偶联剂改性玻纤增强聚丙烯复合材料的研究[J].中国材料科技与设备,2009,(1):34-37
    [47]王国全,王秀芬.聚合物改性[M],北京:中国轻工业出版社,2000,133-136
    [48]沈玺,高雅男,徐政.硅烷偶联剂的研究与应用[J].上海生物医学工程,2006,26(1):14-17
    [49]廖俊,陈圣云,康宇峰,硅烷偶联剂及其在复合材料中的应用[J].化工新型材料,2001,29(9):26-29
    [50] A. Arkles. Chem. Tech., 1977:765
    [51]欧玉春,于中振,冯宇鹏.增强增韧PET工程塑料用玻璃纤维的表面处理[J].工程塑料应用,1997,25(4):14-17
    [52] Frenzel H., Bunzel U., Pompe G., Influence of different glass fiber sizings on selected mechanical properties of PET/glass composites [J]. J Adhesion Sci Techonl, 2000, 14(5): 651-660
    [53]翁永华,马满珍.玻纤表面处理对玻纤增强PET复合采矿断裂韧性的影响[J].玻璃钢/复合材料,1998,(6):9-11
    [54]郭少华,张永伟,吴智华.成膜剂和剪切场对GF/PET结构与性能影响[J].现代塑料加工应用,2007,19(1):37-41
    [55]宁彩珍,徐廷献,雅菁,侯峰.短切玻璃纤维(GF)增强PET复合材料的研究[J].塑料工业,2005,(9):33-35
    [56]程勇锋,庄辉,戴干策.热处理对玻璃纤维增强PET力学性能的影响[J].工程塑料应用,2005,33(10):20-23
    [57]安军,刘佑习.玻璃纤维增强PET工程塑料性能及界面研究[J].高分子材料科学与工程,1996,12(5):83-87
    [58]赵均.高性能PET的研究[M].北京化工大学:2003
    [59]卜海山,庞嬿婉,胡文兵.聚对苯二甲酸乙二酯结晶的成核促进剂[J].复旦学报,1991,30(1):1-7
    [60] Supaphol P., Lin J. Crystalline memory effect in isothermal crystallization of syndiotactic polypropylenes: effect of fusion temperature on crystallization and melting behavior [J]. Polymer, 2001,42 (23): 9617-9626.
    [61] Supaphol P., Thanomkiat P., Phillips R. A. Influence of molecular characteristics on non-isothermal melt-crystallization kinetics of syndiotactic polypropylene [J]. Polymer Test,2004, 23 (8): 881-895.
    [62] Bicerano J, Crystallization of polypropylene and poly (ethylene terephthalate) [J]. Macromol. Sci, Rev. Macromol. Chem. Phys. 1998, 38(3): 391
    [63] Jun Xiao, Hailiang Zhang, Xinhua Wan, et al. Crystallization kinetics of newcopoly (ethylene terephthalate-imide) s, J. Polymer. 2002, 43(13): 3683

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700