稻蝗属遗传多样性及其生态适应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
稻蝗(Oxya)隶属于昆虫纲(Insecta),直翅目(Orthoptera),蝗总科(Acridoidea),斑腿蝗科(Oedipodidae),是重要的农业害虫之一。近年来,对稻蝗属物种的研究工作在形态、细胞、蛋白质标记和分子标记等方面均有报道,其中对中华稻蝗研究较为透彻,对于日本稻蝗和小稻蝗的研究仅局限于在中国境内的局部地区,采样点覆盖面较小,种群数量较少。
     本研究以日本稻蝗、小稻蝗和稻蝗属一待定种为研究对象,通过采用线粒体DNA等基因序列测定分析、AFLP分子标记和形态性状测定等方法,对稻蝗属物种分子遗传多样性、种群遗传结构、谱系分布进行研究,结合生物地理学信息,对该属物种分化及其生态适应规律进行探讨。本文的研究内容有如下几个方面:
     1)本研究采用AFLP分子标记对日本稻蝗进行种群遗传结构和遗传多样性研究,探讨不同生境中(栽培稻田和野生稻田)的日本稻蝗种群间是否存在遗传多样性差异和遗传分化。采用8对选择性引物组合对采自我国南方的7个日本稻蝗种群共计104个个体进行AFLP扩增,共得到564条清晰可辨的条带,其中563条为多态性条带。日本稻蝗种群间遗传多样性分化明显,基因多样性(HE)分布范围为0.1103-0.2035。野生稻田内的3个日本种群平均遗传多样性(HE=0.1635)高于栽培稻田内4个种群的平均遗传多样性(HE=0.1327)。种群分化系数FsT值(0.4172-0.7652)表明在七个种群之间存在明显的遗传分化现象。Mantel检验表明地理距离和遗传距离之间没有显著相关性(r=0.3541;p=0.0689)。生存在野生稻田的日本稻蝗种群与栽培稻田的日本稻蝗种群间出现明显的遗传分化,这可能是由于人类在栽培稻田的农业耕作行为(例如杀虫剂和农药的使用、施肥、灌溉等)对日本稻蝗种群遗传结构起到明显的影响。
     2)通过对100个日本稻蝗个体进行线粒体DNA COI基因部分序列测定分析,得到650bp的碱基序列,共计55个变异位点,并产生48个单倍型,其中27个单倍型为共享单倍型。共享单倍型仅分布于各个种群内部,种群间和组间并不存在共享单倍型。基于最大简约法构建的系统发育树表明:聚类树的拓扑结构与地理格局相吻合,单倍型首先以种群为单位相聚,大部分相邻的种群率先聚为一支并最终形成五个大的聚类簇。TCS分析形成了具有明显间隔的网络结构图,相邻的5个组间均有较多的突变步骤。分子方差分析结果表明,10个日本稻蝗种群具有很明显的地域分化,按照地域分隔形成的5个组间的遗传变异达到了总变异度的62.96%,遗传分化极其显著(P<0.001)。LAMARC结果表明,在同一地域的不同种群之间有频繁的基因交流,但是不同地域之间的种群基因交流不明显。FST值和网络结构图显示,5个组起源于共同的祖先种群,但是由于长时间的时空隔离,使不同组间的基因交流明显减少,最终形成遗传分化。Fu's Fs检验结果显示所有检验结果均为负值,中国西南部组(TC)和菲律宾南部组(ILO和DAV)中性检验结果显著(表5)。5个组经过错配分布计算转化得到的扩张曲线显示,中国西南部组腾冲(TC)种群和菲律宾北方组(BAL和IRRI种群)呈现单峰倒钟形曲线,其余各组均为多峰曲线(图3),表明这两个组在近期经历了瓶颈效应和种群扩张。TC种群的扩张时间约为92820年前,菲律宾北部组的扩张时间约为70940年前。MDIV结果表明,TC种群与其他种群间的分歧时间为2.13百万年前(2.13 Mya),菲律宾北方组与菲律宾组南方组的分歧时间为0.74百万年前(0.74 Mya),马来半岛组合中国南部组之间的分歧时间为1.13百万年前(1.13Mya),4个菲律宾种群与大陆种群的分歧时间为1.55百万年前(1.55 Mya)。
     3)采用DNA序列测定和AFLP分子标记分别对采自东南亚四个国家的小稻蝗进行检测,以探讨地质事件和气候变迁对小稻蝗种群遗传结构和谱系地理学格局的影响。175个个体用于线粒体DNA COI序列片段测定,232个个体用于AFLP分子标记研究。结果表明,在不同的地理区域间,遗传多样性并未随着海拔或者经纬度的变化而发生明显的差异,聚类树形成三个深度分歧的拓扑分支结构,这与由于高山和海峡隔离形成的三个地理结构相吻合。TCS网络结构图显示出三个不相连的网络结构,AMOVA结果表明在不同区域间的种群遗传分化极显著,说明不同区域间存在长期的时空隔离。所有单倍型首先以种群为单位相聚,在同一区域的不同种群之间有频繁的基因交流,但是不同区域之间的种群基因交流不明显。过去的地质事件和冰期过程中的气候反复是形成小稻蝗现有种群遗传结构和谱系格局的最重要因素。同时,栖息地、植被以及人为因素的影响也对该物种的基因流和基因渗入产生一定影响。此外,适宜的温度、充足的雨水和大量禾本科植物是小稻蝗扩散的有利条件。较高的遗传多样性、明显的种群分化、负的Fu's Fs检验值和单峰及多峰分布模型,均表明12个小稻蝗种群经历了复杂的扩张过程,这可能是由于第四季冰川时期环境的不断变化所造成的。
     4)本研究以我国和菲律宾的小稻蝗12个种群和日本稻蝗10个种群为研究对象,选取体长(LB)、前翅长(LEL)、前胸背板长(LP)、后足股节长(LF)、后足股节宽(WF)5个性状,使用电子游标卡尺进行长度测量并统计数据。采用SPSS 11.5统计软件进行虫体测量值比较、性状的单因素方差分析和各性状间及其与海拔的相关性分析。结果表明:小稻蝗和日本稻蝗标本所有雌虫体长均明显大于雄虫。小稻蝗形态测量结果表明,中国腾冲(TC)、西藏(XZ)和万宁(WN)种群与菲律宾种群相比较在各个性状均具有显著性差异,其余种群间差异不显著。日本稻蝗形态测量结果表明,中国种群在各个性状特征测量值上均大于菲律宾种群,且彼此差异显著。各稻蝗种群由于生活在不同的气候中,环境因素导致不同种群的稻蝗外部形态特征出现较明显的差异;地理屏障导致的种群隔离也是形成形态差异的主要原因。日本稻蝗和小稻蝗TC种群在大部分性状上均与其他种群差异明显,相关性分析结果也表明5个性状均与海拔高度呈现显著的正相关,说明体型较大、运动能力较强的稻蝗更有利于在高海拔环境中生存。
     5)对采自云南腾冲的一稻蝗属待定种进行形态学鉴定和系统发育分析。形态学结果显示,该物种具有稻蝗属物种的一般形态特征。主要差异在于,体长比日本稻蝗和中华稻蝗等物种为小,与小稻蝗长度相似,但体宽大于小稻蝗。前翅长与稻蝗属其它物种具有明显差异,长度仅达后足股节的一半。雄性肛上板形状与小稻蝗相似,但两侧无疣状突起,端部中央向后延伸,长大于宽,呈三角形。雌性下生殖板中央无凹槽,两侧无隆起的脊,末端无齿。对该物种进行线粒体DNA Cytb基因片段序列测定,并与从GenBank下载的9个稻蝗属物种Cytb序列进行比对,采用NJ、MP和ML方法构建系统进化树,系统进化树显示12个Oxya sp个体构成独立的支,证明该物种是稻蝗属一新种。
     6)基于稻蝗属物种及近缘属种的大量RAPD-PCR结果,筛选出稻蝗属物种特异性的RAPD条带,对特异条带进行克隆、测序,序列同源比对后设计特异引物,以稻蝗属不同物种和蝗总科其它物种基因组DNA为模板进行PCR扩增。以随机引物S823扩增得到约650 bp的RAPD条带,这些条带在稻蝗属不同物种中序列高度同源,G+C含量大于15%,并富含大量的A、T重复区。基于同源区域设计的特异引物对稻蝗属物种可以扩增出目的条带,而对稻蝗属外的其它物种均无扩增条带。因此认为该条带属于稻蝗属特异RAPD条带,基于序列设计的特异引物可用于稻蝗属物种的快速分子鉴定。
Oxya Serville, which is in Oedipodidae, Orthoptera, Insecta, is a worldwide agricultural pest. In recent years, most researches of Oxya genus are focus on Oxya chinensis using different methods, such as morphology, cytology, biochemistry and molecular biology. The study of other Oxya species is still limited.
     In this study, genetic diversity, genetic structure and phylogeography of three Oxya species were examined using DNA sequences, AFLP technology and morphological marker. The results were analyzed combined with informations of biogeography to discuss the genetic differnciation and ecological adaption. The main contents and conclusions are as follows:
     1) In this study, we used AFLP marker to investigate the genetic diversity and population structure of rice grasshoppers collected from south China, with emphasis on testing the hypothesis that there was significant genetic differentiation among grasshopper populations associated with different hosts (i.e. wild vs. cultivated rice). Seven populations consisting of 104 individuals were sampled from Hainan Island and the mainland of south China. Eight primer combinations produced 564 reliable bands, of which 563 were polymorphic. Oxya japonica showed considerable genetic variation at population level, with gene diversity (HE) ranging from 0.1103 to 0.2035. Genetic diversity were studied on seven populations, and generally three populations from wild rice had higher levels of genetic diversity (HE=0.1635) than the other four populations feeding on cultivated rice (HE=0.1327). We observed high population differentiation, with Fst ranging from 0.4172 to 0.7652 among the seven populations. However, Mantel test detected no significant correlation between genetic distance and geographical distance (r=0.3541; p=0.0689). By contrast, we found significant genetic differentiation between groups collected from different hosts. These data suggested that the anthropogenic activity in cultivated rice fields (i.e. pesticides, fertilization and cultivation) could have played an important role in shaping the genetic structure of O. japonica.
     2) 100 individuals of Oxya japonica were analyzed by using mitochondrial cytochrome oxidase subunit one (COI) DNA sequences collected in four Southeast Asian countries, to examine whether phylogeographic pattern and population genetic is related to past geological events and/or climatic oscillations. Four populations of Philippines have higher haplotype diversity and nucleotide diversity than populations from mainland. Five geographic groups were identified which congruent with the geographically separated. It is notable that networks presented deep genetic divergence pattern.Several unobserved haplotypes were existed between ach two adjacent geographical groups. AMOVA and FST value showed that high genetic variance among groups were found which indicating a relatively strong geographic structure for this species. LAMARC analysis showed that there had been frequent historical gene flow of O. japonica among local populations within region, while low gene flow existed among regions. Networks and high FST values all suggested that all clades diverged in allopatry from a common ancestor, and deep divergences were happened related to specific geologic events. Significantly negative values of Fu's Fs tests and unimodal mismatch distributions of the frequencies of pairwise differences were presented in TC and north Philippines groups, which all indicated these populations had passed through recent demographic expansions after the bottleneck. The expansion times of TC and north Philippines groups were 92820 years ago and 70940 years ago respectively. The divergence time between north Philippines group and south Philippines group and Malaya group and south China group was 0.74 and 1.13 Mya respectively. The time between the Philippines populations and mainland populations was 1.55 Mya while the time between TC and other populations was dating back to 2.13 Mya during the late Miocene to early Pliocene.
     3) Population genetic diversity and structure of this Oxya species was examined using both DNA sequences and AFLP technology. The samples of 12 populations were collected from four Southeast Asian countries, among which 175 individuals were analysed using mitochondrial DNA cytochrome c oxidase subunit I (COI) sequences, and 232 individuals were examined using amplified fragment length polymorphisms (AFLP) to test whether the phylogeographical pattern and population genetics of this species are related to past geological events and/or climatic oscillations. No obvious trend of genetic diversity was found along a latitude/longitude gradient among different geographical groups. Phylogenetic analysis indicated three deep monophyletic clades that approximately correspond to three geographical regions separated by high mountains and a deep strait, and TCS analysis also revealed three disconnected networks, suggesting that spatial and temporal separations by vicariance, which were also supported by AMOVA as a source of the molecular variance presented among groups. Gene flow analysis showed that there had been frequent historical gene flow among local populations in different regions, but the networks exhibited no shared haplotype among populations. In conclusion, the past geological events and climatic fluctuations are the most important factor on the phylogeographical structure and genetic patterns of O. hyla intricata in Southeast Asia. Habitat, vegetation, and anthropogenic effect may also contribute to gene flow and introgression of this species. Moreover, temperature, abundant rainfall and a diversity of graminaceous species are beneficial for the migration of O. hyla intricata. High haplotype diversity, deep phylogenetic division, negative Fu's Fs values and unimodal and multimodal distribution shapes all suggest a complicated demographic expansion pattern of these O. hyla intricata populations, which might have been caused by climatic oscillations during glacial periods in the Quaternary.
     4) Morphology of 12 Oxya hyla intricata populations and 10 Oxya japonica populations from China and Philippines was analyzed. Length of body, length of elytra, length of pronotum, length of femur, width of femur were chosen, measured by electronic vernier caliper and analyzed by using SPSS 11.5 software. Morphological difference between male and female individuals, morphological difference of different populations and the correlations among body measurement indices and between body measurements and elevation were analyzed in order to demonstrate the relation between morphology and environment. Female individuals were obviously larger than male individuals. The results of O. hyla intricata indicated that three populations (TC, XZ, WN) from China have have significant difference with all populations from Philippines,. The results of O. japonica indicated significant difference was exist between Chinese and Philippines populations. Based on the above results, we proposed that (i) Geographical barrier was the major reason for significant differentiation of morphological characters between Chinese and Philippines populations and (ii) these two Oxya species with large body and high mobile ability were benefit for survival in the high elevation area.
     5) Morphological description and phylogenetic analysis were conducted to indentify a species of the genus Oxya collected form Tengchong, Yunnan province. This species has most characters of genus Oxya, but differns in:1). the length of elytra was much smaller than other Oxya specie; 2). the epiproct was similar with O. hyla intricata but without wart at the edge.3). Female subgenital plate has no central fovea and edge teeth. Mitochondrial cytochrome b gene fragment sequence was analyzed and compared with other Cytb gene sequence of download from GenBank, and three phylogenetic trees were conducted base on NJ, MP and ML method. Phylogenetic tree indicated 12 individuals of Oxya sp. form a monophyletic group and suggested that this species belongs to genus Oxya.
     6) Oxya-specific RAPD band was screened out from lots of RAPD-PCR results, the specific band was cloned and sequenced, a pair of primer was designed based on homologue region after sequence alignment. PCR was performed by using designed specific primers, genomic DNA from different Oxya species and other Acridoidea species were used as template. A clear and reproductive band about 650 bp amplified from random primer S823 was present in different Oxya species, sequence analysis showed high nucleotide homology (92.3%-96.6%), each sequence determined consisted of 651-667 nucleotides, with G+C content >15% and repetitive A or T regions. Sequence characterized amplified region (SCAR) primers for specific PCR were developed, a expected specific band (550 bp) can be amplified using SCAR primers in seven species of Oxya examined but absent in Pseudoxya diminuta and other Acridoidea species. Oxya-specific SCAR molecular marker was identified, SCAR primers can be used for rapid identification of Oxya species.
引文
[1]施立明.遗传多样性及其保护.生物科学信息,1990,3:143-146.
    [2]钱迎倩,马克平.生物多样性研究的原理与方法.北京,中国科学技术出版社,1994.18-21.
    [3]Kerr JT. Species richness, endemism, and the choice of areas for conservation. Conservation Biology,1997,8,1094-1100.
    [4]彭奕欣,黄诗笺.进化生物学.长沙,武汉大学出版社,1997,32-33.
    [5]谢国文,颜亨梅,张文辉等.生物多样性保护与利用.长沙,湖南科学技术出版社,2001,11-34.
    [6]Lei FM, Wei GA, Zhao HF, Yin ZH, Lu JL. China subregional avian endemism and biodiversity conservation. Biodivers Conserv,2007,4,1119-1130.
    [7]胡志昂,张亚平.中国动植物的遗传多样性.杭州,浙江科学技术出版社,1997,65-68.
    [8]张知彬,王祖望,李典谟.生态复杂性研究—综述与展望.生态学报,1998,4,433-441.
    [9]Chapin FS, Schulze ED and Mooney HA. Biodiversity and ecosystem processes. Trends Ecol Evol,1992,7,107-108.
    [10]Naeem S. Speices redundancy and ecosystem reliability. Conservatiom Biology,1998, 12,39-45.
    [11]Naeem S, Thompson LJ and Lawler SP. Declining biodiversity can alter the performance of ecosystems. Nature,1994,368,734-736.
    [12]Naeem S and Li SB. Biodiversity enhances ecosystem reliability. Nature,1997,390: 507-509.
    [13]黄建辉.生态系统内的物种多样性对稳定性的影响.北京,中国科学技术出版社,1994,178-191.
    [14]周集中,马世骏.生态系统的稳定性.见:马世骏(主编),现代生态学透视.北京,科学出版社,1990,54-71.
    [15]陈静华.蜂猴属的分子系统发育及分子群体遗传学研究[D].山东大学,2005.
    [16]龙继蓉.中国家兔遗传多样性研究[D].四川农业大学,2001.
    [17]李华.中国猪种SLADQB基因外显子2的遗传多样性及进化机制研究[D].四川 农业大学,2002.
    [18]Zeng LY, Li ZG, Tashi T, Chen J, Zhong Y, Geng YP. Microsatellite markers for the cushion rock jasmine, Androsace tapete (Primulaceae), a species endemic to the Qinghai-Tibetan Plateau. American Journal of Botany,2010,10,94-96.
    [19]Wang L, Liu JM, Jian SG, Zhang WJ, Wang QB, Liu N, Zhong Y.2006.Genetic diversity and populations structure in Elephantopus scaber (Asteraceae) from South China as revealed by ISSR markers. Plant Biosystems,2006,3,273-297.
    [20]Liu JM, Wang L, Geng YP, Wang QB, Luo LJ and Zhong Y. Genetic diversity and population structure of Lamiophlomis rotate (Lamiaceae), an endemic species of Qinghai-Tibet Plateau. Genetica,2006,1,385-394.
    [21]Brown DM, Brenneman RA, Koepfli KP, Pollinger JP, Mila B, Georgiadis NJ, Louis Jr EE, Grether GF, Jacobs DK and Wayne RK. Extensive population genetic structure in the giraffe. BMC Biology,2007,5,57.
    [22]Lambertini C, Gustafsson MHG, Frydenberg J, Speranza M, Brix H. Genetic diversity patterns in Phragmites australis at the population, regional and continental scales. Aquatic Botany,2008,2,160-170.
    [23]Gruenthal KM, Burton RS. Genetic structure of natural populations of the California black abalone (Haliotis cracherodii Leach,1814), a candidate for endangered species status. J Exp Mar Biol Ecol,2008,1,47-58.
    [24]Briggs JG. Biogeography and plate tectonics, Development in Palaeontology and Stratigraphy. Amsterdam, Elsevier Science Publishers,1987,10.
    [25]Riddle BR. Is biogeography emerging from its identity crisis? Journal of Biogeography,2005,2,185-186.
    [26]Ryder OA. Species conservation an d systematics:the dilemma of subspecies. Trends EcolEvol,1986,1,9-10.
    [27]Wright S. Isolation by distance. Genetics,1943,2,114-138.
    [28]Peterson MA, Denno RF. The influence of dispersal and diet breadth on patterns of genetic isolation by distance in phytophagous insects. American Naturalist,1998,3, 428-446.
    [29]Schluter D. Ecology and the origin of species. Trends Ecol Evol,2001,7,372-381.
    [30]Funk DJ. Filchak KE, Feder JL. Herbivorous insects:model systems for the comparative study of speciation ecology. Genetica,2002,2,251-267.
    [31]Coyne JA, Orr HA. Speciation. Sinauer Associates, Sunderland, Massachusetts,2004, 75-78.
    [32]Martel C, Rejass, A, Rousset F, Bethenod MT, Bourguet D. Host-plant-associated genetic differentiation in Northern French populations of the European corn borer. Heredity,2003,2,141-9.
    [33]Alvarez N, Hossaert-McKey M, Restoux G, Delfado-SalinasA, Benrey B. Anthropogenic effects on population genetics of phytophagous insects associated with domesticated plants. Evolution,2007,12,2614-2622.
    [34]Ebach MC, Humphries CJ, Williams DM. Phylogenetic biogeography deconstructed, Journal of Biogeography,2003,9,1285-1296.
    [35]Briggs JC. Fishes and birds:Gondwana life rafts reconsidered. Systematic biology, 2003,4,548-553.
    [36]Raxworthy CJ, Forsmer MR, Nussbaum RA. Chameleon radiation by oceanic dispersal. Nature,2002,415,784-787.
    [37]Avise JC. Molecular Markers, Natural History and Evolution. Chapman and Hall, New York,1994,38-46.
    [38]Arise JC. Phylogeography:the History and Formation of Species. Harward University Press, Cambridge,2000,45-48.
    [39]Cowie RH and Holland BS. Dispersal is fundamental to biogeography and evolution of biodiversity on oceanic islands. Journal of Biogeography,2006,2,193-198.
    [40]Huntley B, Webb T. Migration:species response to climatic variations caused by changes in the Erath's orbit. Journal of Biogeography,1989,1,5-19.
    [41]Klicka J, and Zink RM. The impotence of recent ice ages in speciation:a failed paradigm. Science,1997,5332,1666-1669.
    [42]Warner BG, Mathewes RW and Clague JJ. Ice-free conditions on the Queen Charlotte Islands British Columbia, at the height of late W isconsin glaciation. Science,1982,4573,675-677.
    [43]Sinclair WT, Morman JD and Ennos RA. The postglacial history of Scots pine(Pinus sylvestris L.) in western Europe:evidence from mitochondrial DlNA variation. Mol Ecol,1999,8,83-88.
    [44]Pielou EC. After the Ice Age. University of Chicago Press, Chicago,1991.15-16.
    [45]Climap. Seasonal reconstruction of the Earth's surface at the last glacial maximum. Geological Society of America, Map and Chart Series MC,1981,36,1-18.
    [46]Conroy CJ and Cook JA. Phylogeography of a post—glacial colonizer:Microtus lobgicaudus (Rodentia; Muridae). Mol Ecol,2000,9:165-175.
    [47]Fehlberg SD, Ranker TA. Evolutionary history and phylogeography of Encelia farinosa (Asteraceae) from the Sonoran, Mojave, and Peninsular Deserts. Mol Phylogenet Evol,2009,2,326-335.
    [48]Cooper SJB, Ibrahim KM and Hewitt GM. Postglaeial expansion and subdivision in the European grasshopper Chorthippus parallelus, Mol Ecol,1995,4,49-60.
    [49]杨怀仁.第四纪地质学.北京:中国高等教育出版社,1987,26-37.
    [50]李难.进化论教程.北京,高等教育出版社,2004,270-273.
    [51]王献溥,刘玉凯.生物多样性的理论与实践.北京,中国环境科学出版社,1994,64-67.
    [52]Li SH, Yeung CK, Feinstein J, Han L, Le MH, Wang CX, Ding P. Sailing through the Late Pleistocene:unusual historical demography of an East Asian endemic, the Chinese Hwamei (Leucodioptron canorum canorum), during the last glacial period. Mol Ecol,2009,4,622-633.
    [53]Song G, Qu YH, Yin Z, Li S, Liu NF, Lei FM. Phylogeography of the Alcippe morrisonia (Aves:Timaliidae):long population history beyond late Pleistocene glaciations. BMC Evol Biol,2009,9,143-153.
    [54]Zhang MW, Rao DQ, Yang JX, Yu GH, Wilkinson JA. Molecular phylogeography and population structure of a mid-elevation montane frog Leptobrachium ailaonicum in a fragmented habitat of southwest China. Mol Phylogenet Evol,2010,1,47-58.
    [55]Huang S, He S, Peng Z, Zhao K, Zhao E. Molecular phylogeography of endangered sharp-snouted pitviper (Deinagkistrodon acutus; Reptilia, Viperidae) in Mainland China. Mol Phylogenet Evol,2007,3,942-952.
    [56]Jin YT, Liu NF. Phylogeography of Phrynocephalus erythrurus from the Qiangtang Plateau of the Tibetan Plateau. Mol Phylogenet Evol,2010,3,933-940.
    [57]罗林广.分子标记及其在作物遗传育种中的应用.江西农业学报,1997,1,45-54.
    [58]张慧红,黄晓磊,姜立云,乔格侠,郑哲民.甜菜蚜(半翅目,蚜科)的种下分化 —基于形态与分子数据.动物分类学报,2010,3,537-545.
    [59]Guo YP, Duan YH, Bai GR and Ma EB. Lack of chromosomal Polymorphism among Oxya chinensis population on different body sizes in China.动物学报),2001, 47,23-29.
    [60]张红国,刘睿智,段晓刚.人类性染色体研究进展.国际遗传学杂志,2006,3,212-216.
    [61]张虎芳,郑乐怡.半翅目昆虫染色体研究进展.昆虫知识,1998,4,243-246.
    [62]Caccone A and Sbordoni V. Molecular evolutionary divergence among North American cave crickets. Ⅰ. Allozyme variation. Evolution,1987,6,1198-1214.
    [63]Foley DH, Paru R and Bryan JH. The Anopheles Punctulatus group of mosquitos in the Solomen Islands and Vanutu surveyed by allozyme electrophoresis. Men Vet Entomol,1994,4,37-48.
    [64]Bekele E, Fido RJ, Tatham AS, Shewry PR. Heterogeneity and polymorphism of seed proteins in tef (Eragrostis tef). Hereditas,1995,1,67-72.
    [65]Zheng XY, Zhong Y,Duan YH, Li CX, Dang L, Guo YP, Ma EB. Genetic variation and population structure of Oriental Migratory Locust, Locusta migratoria manilenses in China by Allozyme, SSRP-PCR, and AFLP Markers. Biochemcial Genetics,2006,7,332-346.
    [66]Vos P, Hogers R, Bleeker M, Reijans M, Van-Delee T, Homes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M. AFLP—a new technique for DNA-fingerprinting. Nucleic Acids Res,1995,21,4407-4414.
    [67]Cooke RJ. Modern methods for cultivar verification and the transgenic plant challenge. Seed Sci Technol,1999,2,669-680.
    [68]Mueller UG, Wolfenbarger LL. AFLP genotyping and fingerprinting. Trends Ecol Evol,1999,10,194-389.
    [69]李志勇,赵惠燕,葛凤晨,薛运波.AFLP分子标记技术的发展及其在蜜蜂学研究中的应用.昆虫知识,2009,2,313-316.
    [70]张民照,康乐.AFLP标记的特点及其在昆虫学研究中的应用.昆虫学报,2002,4:538-543.
    [71]Yoshiura K, Kinoshita A, Ishida T. A SNP in the ABCC11 gene is the determinant of human earwax type, Nature Genet,2006,38,324-330.
    [72]Miritz C, Dowling TE, Brown WM. Evolutions of animal mitochondrial DNA: relevance for population biology and systematics. Annual Review of Ecology and Systematics,1987,18,269-292.
    [73]Harrison RG. Animal mitochondrial DNA as a genetic marker in population and evolutionary biology. Trends Ecol Evol,1989,4,6-11.
    [74]Arana MV, Gallo LA, Vendramin GG, Pastorino MJ, Sebastiani F, Marchelli P. High genetic variation in marginal fragmented populations at extreme climatic conditions of the Patagonian Cypress Austrocedrus chilensis. Mol Phylogenet Evol,2010,3, 941-949.
    [75]Arrigo N, Buerki S, Sarr A, Guadagnuolo R, Kozlowski G. Phylogenetics and phylogeography of the monocot genus Baldellia (Alismataceae):Mediterranean refugia, suture zones and implications for conservation. Mol Phylogenet Evol,2011, 1,33-42.
    [76]Borer M, Alvarez N, Buerki S, Margraf N, Rahier M, Naisbit RE. The phylogeography of an alpine leaf beetle:Divergence within Oreina elongata spans several ice ages. Mol Phylogenet Evol,2010,2,703-709.
    [77]Brown WM, George M, Wilson AC. Rapid evolution of animal mitochondrial-DNA. Proc Natl Acad Sci,1979,4,1967-1971.
    [78]Shendure J, Ji H. Next-generation DNA sequencing. Nature Biotechnology,2008,26, 1135-1145.
    [79]Hollis D. A preliminary revision of the genus Oxya Audient Serville (Orthoptera: Acridoidea). Bulletin of British Museum (Natural History) Entomology,1971,26, 269-343.
    [80]张经元,贾志英,石志,王向荣.山西蝗虫.太原,山西科学技术出版社,1995,26-28.
    [81]王海川,王青川.陕西长安及汉中两地中华稻蝗的比较.昆虫学报,1997,4,374-378.
    [82]谢娟英,许升全,蒋国芳,郑哲民.秦岭南北5地中华稻蝗(Oxya chinensis)的亲缘关系.广西科学,1999,4,304-306.
    [83]马恩波.稻蝗属一新种及其染色体C带核型分析.动物分类学报,1995,2,200-203.
    [84]马恩波,郑哲民.五种稻蝗染色体核型和C带带型的比较.昆虫学报,1989,4,399-405.
    [85]马恩波,郭亚平,任竹梅,白贵荣.三种稻蝗染色体C带核型及其细胞分类学关系.走向21世纪的中国昆虫学,2000,58-61.
    [86]李春选,段毅豪,郑先云,马恩波.山西省8种蝗虫8个种群的遗传学研究.遗传学报,2003,2,119-127.
    [87]Han Y, Duan YH, Ma EB, Qiao HX. Genetic Structure of Three Populations of Oxya chinensis in Shanxi, China. Zoological Research,2001,1,76-80.
    [88]Li CL, Duan YH, Lu FP, Guo YP, Li CX, Ma EB. Genetic differentiation among four populations of Chinese rices grasshopper Oxya chinensis in China. Acta Zoological Sinica,2004,2,187-192.
    [89]Qiao HX, Duan YH, Ma EB, Han Y. Comparative allozyme analysis of several grasshopper species. Acta Genetica Sinica,2002,2,133-137.
    [90]马恩波,任竹梅,郭亚平.中国小稻蝗种内多态性研究.山西大学学报,2002,2,163-167.
    [91]马晋,李涛,龙文敏,安玮玮,郭亚平,马恩波.中华稻蝗不同地理种群遗传多样性的AFLP分析.遗传,2010,2,1-7.
    [92]Ren ZM, Ma EN, Guo YP and Zhong Y. A molecular phylogeny of Oxya (Orthoptera: Acridoidea) in China inferred from partial cytochrome b gene sequences. Mol Phylogenet Evol,2004,2,516-521.
    [93]张建珍,马恩波,郭亚平.稻蝗属部分种类RAPD及其分子系统学关系.遗传学报,2003,6,533-539
    [94]张建珍,马恩波,郭亚平.日本稻蝗部分种群遗传多样性研究,四川动物,2008,27.758-760.
    [95]张建珍,郭亚平,张敏,马恩波.山稻蝗不同种群的遗传多样性研究,动物分类学报,2007,3,606-612.
    [96]Yeh FC, Yang RC, Boyle T. POPGENE (Version 1.31). Microsoft Window-bases Freeware for Population Genetic Analysis. University of Alberta and the Centre for International Forestry Research.1999, Available from: http://www.ualberta.ca/wfyeh/.
    [97]Rohlf FJ. NTSYSpc. Version 2.1 Op. Applied Biostatistics, Setauket, NY 11733-2870, USA.1998. Available from:http://www.exe tersoftware. com/cat/ntsyspc/ntsyspc.html.
    [98]Excoffier L, Laval G, Schneider S. Arlequin 3.01:An Integrated Software Package for Population Genetics Data Analysis. Switzerland, Institute of Zoology, University of Berne.2006.
    [99]Felsenstein J. PHYLIP (Phylogeny Inference Package), version 3.6. Distributed by the author. Department of Genome Sciences. University of Washington, Seattle, Washington.2004.
    [100]Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics,2000,4,945-959.
    [101]Nielsen R, Wakeley J. Distinguishing migration from isolation:A Markov chain Monte Carlo approach. Genetics,2001,2,885-896.
    [102]Clement M, Posada D, Crandall KA. TCS:a computer program to estimate gene genealogies. Mol Ecol,2000,9,1657-1659.
    [103]Beerli P, Felsenstein J. Maximum likelihood estimation of a migration matrix and effective population sizes in n subpopulations by using a coalescent approach. Proc Nat Acad Sci,2001,8,4563-4568.
    [104]Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface:flexible startegies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res,1997,24,4876-4882.
    [105]Rozas J, Sanchez-DelBarrio JC, Messeguer X, Rozas R. Dnasp (DNA Sequence Polymorphism) Version 4.10.2. Departament de Genetica, Universitat de Barcelona, Spain.2005, Available from:http://www.ub.es/dnasp/.
    [106]Posada D, Crandall KA. MODELTEST:testing the model of DNA substitution. Bioinformatics 1998,14,817-818.
    [107]Swofford D. PAUP*. Phylogenetic analysis using parimony (*and other methods). 4.0th edition. Sunderland, Massachusetts:Sinauer Associates.2002.
    [108]Guindon S, Gascuel O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol,2003,5,696-704.
    [109]Saitou N, Nei M. The neighbour-joining method—a new method for reconstructing phylogenetic trees. Mol Biol Evol,1987,4,406-425.
    [110]Bassam BJ, Caetano-Anolles G, Gresshoff PM. Fast and sensitive silver staining of DNA in polyacrylamide gels. Anal Biochem,1991,1,80-83.
    [111]Nei M. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics,1978,3,583-590.
    [112]Mantel N. Detection of disease clustering and a generalized regression approach. Cancer Research,1967,2,209-220.
    [113]Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE:a simulation study. Mol Ecol,2005,14, 2611-2620.
    [114]孔令和,陈亮.中华稻蝗生物学特性及其综合防治技术.农业服务,2008,8,61-62.
    [115]Zhang DX, Yan LN, Ji YJ, Hewitt GM, Huang ZS. Unexpected relationships of substructured populations in Chinese Locusta migratoria. BMC Evo Biol 2009,9, 144.
    [116]Lehmann T, Hawley WA, Grebert H, Danga M, Atieli F, Collins FH. The Rift Valley complex as a barrier to gene flow for Anopheles gambiae in Kenya. The Journal of Heredity.1999,6,613-621.
    [117]Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol,1994,3,294-299.
    [118]Pfenninger M, Posada D. Phylogeographic history of the land snail Candidula unifasciata (Helicellinae, Stylommatophora):Fragmentation, corridor migration, and secondary contact. Evolution,2002,9,1776-1788.
    [119]Nylander JAA. MrModeltest v2. Program distributed by the author. Evolutionary Biology Centre, Uppsala University,2004.
    [120]Hasegawa M, Kishino H, Yano T. Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol,1985,22,160-174.
    [121]Fleischer RC, McIntosh CE, Tarr CL. Evolution on a volcanic conveyor belt:using phylogeographic reconstructions and K-Arbased ages of the Hawaiian Islands to estimate molecular evolutionary rates. Mol Ecol,1998,7,533-545.
    [122]Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics,1989,3,585-595.
    [123]Fu YX. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics,1997,2,915-925.
    [124]Nei, M. and Takahata N. Effective population size, genetic diversity, and coalescence time in subdivided populations. J. Mol. Evol,1993,3,240-244.
    [125]Myers N, Mittermeier RA, Mittermeier CG, Fonseca GABD, Kent J. Biodiversity hotspots for conservation priorities. Nature,2000,403,853-858.
    [126]Wu CY. Origin and evolution of flora of xizang. In:Wu, C.Y. (Ed.), Flora Xizangica. Beijing, Science Press,1987,879-902.
    [127]Li M, Wei F, Goossens B, Feng Z, Tamate HB, Bruford MW, Funk SM. Mitochondrial phylogeography and subspecific variation in the red panda (Ailurus fulgens):implications for conservation. Mol Phylogenet Evol,2005,1,78-89.
    [128]Long Y, Wan H, Yan FM, Xu CR, Lei GC, Li SW, Wang RJ. Glacial effects on sequence divergence of mitochondrial COII of Polyura eudamippus (Lepidoptera: Nymphalidae) in China. Biochem. Genet,2006,7-8,361-377.
    [129]Pang JF, Wang YZ, Zhong Y, Hoelzel AR, Papenfuss TJ, Zeng X, Ananjeva NB, Zhang YP. A phylogeny of Chinese species in the genus Phrynocephalus (Agamidae) inferred from mitochondrial DNA sequences. Mol Phylogenet Evol,2003,3, 398-409.
    [130]Hrbek T, Farias IP, Crossa M, Sampaio I, Porto JIR, Meyer A. Population genetic analysis of Arapaima gigas, one of the largest freshwater fishes of the Amazon basin: implications for its conservation. Anim Conserv,2005,8,297-308.
    [131]Walker FM, Sunnucks P, Taylor AC. Evidence for habitat fragmentation altering within-population processes in wombats. Mol Ecol,2008,7,1674-1684.
    [132]Marina BC, Graciela MPD, Daniela G, Ernesto C, Jaime JP and Cristina NG. Contrasting genetic structure of urban and rural populations of the wild rodent Calomys musculinus (Cricetidae, Sigmodontinae). Mammalian Biology,2011,1, 41-50.
    [133]Hafner DJ, Riddle BR, Alvarez-Castaneda ST. Evolutionary relationships of white-footed mice (Peromyscus) on islands in the Sea or Cortes, Mexico. J Mammal, 2001,3,775-790.
    [134]Castoe TA, Spencer CL, Parkinson CL. Phylogeographic structure and historical demography of the western diamondback rattlesnake (Crotalus atrox):A perspective on North American desert biogeography. Mol Phylogenet Evol,2007,1,193-212.
    [135]Kuchta SR, Tan AM. Isolation by distance and post-glacial range expansion in the rough-skinned newt, Taricha granulose. Mol. Ecol,2005,1,225-244.
    [136]Yang DT. The Amphibia-Fauna of Yunnan. Beijing, China Forestry Publishing House,1991.
    [137]Zhao EM. Distribution patterns of amphibians in temperate eastern Asia. In: Duellman, W.E. (Ed.), Patterns of Distribution of Amphibians:a Global Perspective. Baltimore, John Hopkins University Press,1999,421-443.
    [138]Martrat B, Grimalt JO, Lopez-Martinez C, Cacho I, Sierro FJ, Flores JA, Zahn R, Canals M, Curtis JH, Hodell DA. Abrupt Temperature Changes in the Western Mediterranean over the Past 250,000 Years. Science,2004,5702,1762-1765.
    [139]Yuan D, Cheng H, Edwards RL, Dykoski CA, Kelly MJ, Zhang M, Lin Y, Wang Y, Wu J, Dorale JA, An Z, Cai Y. Timing, duration, and transitions of the last interglacial Asian monsoon. Science,2004,5670,575-578.
    [140]Peng YN, Wan Y, Luo LS. The study on the diversity and sustainable development in Hengduanshan Mountain of Yunnan. Human Geography,2000,6,50-53.
    [141]张建珍,马恩波,郭亚平.日本稻蝗部分种群遗传多样性研究,四川动物,2008,5.758-760.
    [142]刘晓健,张建珍,郭亚平,马恩波.小稻蝗5个种群的遗传关系研究.山西大学学报(自然科学版),2007,2,95-97.
    [143]Sword, G.A., Dopman, E.B. Developmental specialization and geographic structure of host plant use in a polyphagous grasshopper, Schistocerca emarginata (=lineata) (Orthoptera:Acrididae). Oecologia,1999,3,437-445.
    [144]Carranza S, Arnold EN, Mateo JA, Lopez-Jurado LF. Long distance colonization and radiation in gekkonid lizards, Tarentola reptilia:gekkonidae, revealed by mitochondrial DNA sequences. Proc R Soc Lond B,2000,1444,637-649.
    [145]Thorpe RS, Leadbeater DL, Pook CE. Molecular clocks and geological dates: cytochrome b ofAnolis extremus substantially contradicts dating of Barbados emergence. Mol Ecol,2005,7,2087-2096.
    [146]Axelrod DI, Ai-Shehbaz I, Raven PH. History of the modern flora of China. In: Zhang AL, Wu SG (Eds.), Floristic Characteristics and Diversity of East Asian Plants. Beijing, China Higher Education Press/Springer,1996,43-55.
    [147]Wang HW, Ge S. Phylogeography of the endangered Cathaya argyrophylla (Pinaceae) inferred from sequence variation of mitochondrial and nuclear DNA. Mol Ecol,2006,13,4109-4122.
    [148]李涛,马晋,张敏,张建珍,郭亚平,马恩波.基于形态特征的中华稻蝗生物地理学分析.动物分类学报,2011,1,125-131.
    [149]郑哲民.蝗虫分类学.西安,陕西师范大学出版社,1993,76-80.
    [150]Nkongolo KK, Michael P, Gratton WS. Identification and characterization of RAPD markers inferring genetic relationships among Pine species. Genome,2002,1,51-58.
    [151]Alves BC, Hossepian de Lima VF, Moreira-Filho C. Development of Y-chromosome-Specific SCAR Markers Conserved in Taurine, Zebu and Bubaline Cattle. Reprod domest anim,2010,6,1047-1051.
    [152]职金华,康绍乐,夏晓华,杜启艳,常重杰.一个新的泥鳅雄性特异DNA片段(简报).分子细胞生物学报,2009,3,231-236.
    [153]Mikhailova NA, Gracheva YA, Backeljau T, Granovitch AI. A potential species-specific molecular marker suggests interspecific hybridization between sibling species Littorina arcane and L. saxatilis (Mollusca, Caenogastropoda) in natural populations. Genetica,2009,3,333-340.
    [154]Huang C H., Lee F L., Tai C J. A novel specific DNA marker in Saccharomyces bayanus for species identification of the Saccharomyces sensu stricto complex. Journal of Microbiological Methods,2008,3,531-534.
    [155]Thenmozhi R, Balaji K, Kanagavel M, Karutha Pandian S. Development of species-specific primers for detection of Streptococcus pyogenes from throat swabs. FEMS microbiology letters,2010,2,110-116.
    [156]张建珍.中国稻蝗属遗传分化研究[D].山西大学,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700