Wolbachia诱导昆虫宿主细胞质不亲和的分子机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
沃尔巴克氏体(Wolbachia)是一类革兰氏阴性细菌,广泛存在于多种节肢动物的生殖细胞或体细胞中,能够通过宿主卵细胞质传递给子代。最新的研究表明,除了在丝状线虫、陆生等足动物、蜘蛛目和蜱螨目中存在外,其在昆虫中的分布更为广泛,超过65%以上的昆虫种类中都发现有Wolbachia感染,包括直翅目、膜翅目、半翅目、鞘翅目、双翅目和同翅目等。目前,Wolbachia的研究已成为国内外热点领域之一,主要原因是它能对宿主的生殖产生多种调节作用,包括雌性化、孤雌生殖、杀雄、精卵细胞质不亲和(CI)等,正是由于这些调节作用,使Wolbachia得以在宿主种群内成功传播。其中,CI是最为普遍的表型,即当Wolbachia感染的雄性宿主受精于未感染或感染了不同Wolbachia菌株的雌性宿主时,产生的后代由于发育缺陷在胚胎时期死亡。而感染相同Wolbachia菌株的雌性和雄性宿主在交配后则能产生正常发育并携带Wolbachia的后代。有关cI的分子机制直到现在仍未得到明确的解释。研究发现,在cI胚胎进行核分裂时,雄性原核出现染色质间桥,因此无法正常存活。
     本研究首次对我国六个不同地区黑腹果蝇Drosophila melanogaster)体内Wolbachia的感染状况进行检测,发现湖北武汉、天津、云南六库地区的黑腹果蝇均被Wolbachia感染,而其它三个地区(海南尖峰岭、河南鸡公山、西藏下察隅)无感染现象。通过克隆得到它们的wsp基因序列,提交GenBank,注册号分别为:FJ403330,FJ403331,FJ403332。并对所得序列进行系统进化分析表明,感染这三个地区果蝇的Wolbachia品系之间亲缘关系十分相近,均属于A大组的Mel亚群。
     Hira是一种组蛋白调节基因,其突变也能引起果蝇的雄性原核发育障碍,为了研究cI与Hira基因的关系,我们首先通过qRT-PCR的方法检测了不同感染状态下,宿主果蝇Hira基因的表达水平。结果发现,在Wolbachia感染能引起强CI表型(后代胚胎孵化率很低)的雄性果蝇中,Hira表达水平显著低于弱CI表型或未感染的雄果蝇。由于cI的强度随雄性宿主日龄的增加逐渐下降,通过分析1d和5d雄蝇中Hira的表达水平发现,5d雄蝇中Hira的表达水平显著高于1d的雄果蝇。此外,考虑到宿主果蝇幼虫发育时间与cI强度密切相关,幼虫发育期长的雄性果蝇引起的cI强度越低(后代胚胎孵化率升高),通过比较感染wMelPop但幼虫发育时间不同的雄性果蝇中Hira基因的表达,发现随着幼虫发育期的延长,其体内Hira基因表达水平逐渐升高。幼虫发育速度最快的果蝇“兄长”引起的cI强度最高,但其体内Hira基因表达水平却最低。这些结果表明,Wolbachia感染引起雄性果蝇体内Hira基因表达下调可能是导致CI的原因之一。
     为了探究这种现象是否只发生在果蝇这种单一宿主上,通过检测埃及伊蚊(传播登革热病毒的主要媒介昆虫)中Hira的表达,发现了与果蝇中类似的结果,即CI强度越高,引起CI的雄蚊体内Hira的表达量越低。为了进一步证明Wolbachia感染引起雄性宿主体内Hira基因表达下调是导致CI的原因,利用RNA干扰(RNAi)技术,将未感染雄蚊中的Hira基因敲降,模拟感染Wolbachia雄蚊的状况,然后将之与未感染雌蚊进行交配,结果产生了类似CI的表型,即导致子代胚胎孵化率下降,并且感染Wolbachia的雌蚊能够部分挽救这种由于雄蚊Hira基因敲降引起的缺陷。体外细胞学研究发现,一种与Hira基因具有明显互补序列的微小RNA (aae-miR-12)在感染和未感染Wolbachia的埃及伊蚊细胞中表达水平存在差异。与未感染的Aag2细胞相比,aae-miR-12在感染wMelPop-CLA的蚊子细胞中的表达水平上调,这种结果是与Hira基因表达情况截然相反,表明aae-miR-12可能与Wolbachia感染有关,并可能对Hira基因的表达起调控作用。为了进一步验证这一假说,我们将人工合成的aae-miR-12类似物和抑制物分别转染细胞,并检测细胞中Hira基因的表达情况,发现aae-miR-12对Hira基因表达具有明显抑制作用。当把aae-miR-12类似物转染到未感染Wolbachia的蚊子细胞后,细胞中Hira基因表达明显下调;然而,当把aae-miR-12抑制物转染入感染wMelPop-CLA的细胞时,Hira基因表达水平与对照相比显著上升。而利用体外构建pIZ/GFP-Hira载体,以GFP为报告基因的方法,发现aae-miR-12可以通过与Hira基因序列的互补配对来抑制其表达。因此,从以上结果推测,在埃及伊蚊中,Hira基因的表达可能受到一种微小RNA—aae-miR-12的负调控作用。Wolbachia感染可能通过上调aae-miR-12表达,抑制Hira基因表达,最终导致宿主CI的表型,这个结果将为研究Wolbachia与宿主相互关系提供一条新的思路。
     为了全面探究Wolbachia感染引起CI的分子机制,通过microarray技术比较了感染和未感染Wolbachia的雄性果蝇三龄幼虫的精巢中差异表达的基因,结果发现,有296个基因表达量发生至少1.5倍以上的改变(q<0.05),这些基因的功能涉及到新陈代谢、免疫、生殖等。其中,167个基因发生上调,129个基因发生下调。采用定量RT-PCR的方法进一步验证了部分基因,证明其表达改变模式与microarray的结果一致。有趣的是,Wolbachia感染导致与免疫相关的基因大部分出现上调,而与生殖相关的基因则多数下调。根据这些结果我们推测,Wolbachia可能一方面激活了宿主的免疫途径,另一方面却对其精子发生产生不利影响。具体基因功能正在进一步研究中。
Wolbachia are a widespread negative bacterium of maternally inherited of arthropod, cytoplasmic transferring by host egg. Recent study have proved that Wolbachia are distributed in about 65% insect including Orthoptera, Hymenoptera, Heteroptera, Coleoptera, Diptera and Homoptera, except for ubiquitous in filar nematode, isopod, Araneae and Ticks. Though detecting Wolbachia infection of six distrincts of Drosophila melanogaster line in China, we found that populations from Wuhan in Hubei Province, Tianjin and Liuku in Yunnan Province are infected by Wolbachia, while there was no infected phenomenon in other three areas (Jianfeng mountain in Hainan Province, Jigong hill in Henan Province, Xiachayu in Tibet). The wsp gene sequences were obtained through cloning and submitted to GenBank, the accession numbers assigned are FJ403330, FJ4O3331, FJ403332. Though phylogenetic analyzing these sequences, the genetic relationship of Wolbachia strain infecting Drosophila in these three areas was very similar to each other, all belonging to Mel group in A supergroup of Wolbachia.
     The reason why Wolbachia has become one of investigative hotspot in domestic and abroad is that it can regulate host reproductive mode through multiple mechanism, such as feminization, parthenogenesis, male-killing and Cytoplasmic Incompatibility (CI) etc, by which way Wolbachia can be extensive disseminated. Among them, CI is the most frequent phenotype, occurs when Wolbachia infected males mate with uninfected females resulting in no or very low numbers of viable offspring. The molecular mechanisms underlying CI are currently unknown. Some study on Cytology showed that male pronucleus can not be formed normally in CI embryo due to constructing chromatin bridge in the karyokinesis process. One point mutation of Histone regulation (Hira) gene could also induce male pronucleus developmental disabilities in Drosophila. In order to study the relationship between CI and Hira gene expression level, firstly we use qRT-PCR to detect Hira gene expression level in Drosophila melanogaster infected Wolbachia with different CI strength. The results showed that in Drosophila males with strong CI strength (progeny had low egg hatch rate), the Hira expression level was significantly lower than that in males with low CI or the uninfected. Because CI strength fall-off by the increasing male age, we compared the Hira expression level between 1 day and 5 day old Drosophila males. The results demonstrated that as the increasing male age, the Hira expression level step-up gradually. In addition, it was proved that there was antagonism relationship between patrogenesis speed and CI strength, through detecting Hira expression level of infected males with different larval developmental time. The offspring embryonal hatch rate increase as the elongation of developmental time. That is, the elder brother with the most development speed had the strongest CI strength, but their Hira expression level was the lowest. All these results indicated that the down-regulation of Hira in Drosophila males caused by Wolbachia infection may be one important reason of inducing CI.
     In purpose of proving this phenomenon is not just happened in single species-Drosophila melanogaster, we also inspected the Hira gene expression in another host Aedes aegypti (major intermediary of Dengue Virus transmission), the analogical results were obtained. To further verify the conclusion, RNA interference technology was adopt to knock down the Hira gene in uninfected mosquito males, which mimic the infected males, then the mating between Hira-silenced males and uninfected females is performed to turn out a mimic of CI Phenotype. Besides, Wolbachia in females can'rescue'some of the damage resulting from silencing of the Hira gene in males. In vitro cytology study suggest that the expression of a micro RNA (aae-miR-12) which has obviously complementary sequences were difference between Wolbachia infected and uninfected Aedes aegypti cells. The aae-miR-12 signal was significantly stronger in Aag2.wMelPop-CLA cells compared to uninfected cells, which was opposite to the Hira expression. The result suggested that aae-miR-12 may be associated with Wolbachia infection and regulate the expression of the Hira gene. To further test this hypothesis, we adopt synthetic mimics and inhibitors of aae-miR-12 transfection experiment to validate that aae-miR-12 can repress Hira expression. Hira gene expression in Aag2 cells transfected with the aae-miR-12 mimic was significantly lower compared to mock-transfected cells or control-mimic transfected cells. Significantly higher Hira expression was found in Aag2.wMelPop-CLA cells when transfected with the aae-miR-12 inhibitor as compared to mock-transfected cells or control-inhibitor transfected cells. Additional experiments were performed in Aedes cell line using GFP as a reporter gene and constructing PIZ/GFP-Hira vector, proving that aae-miR-12 may suppress Hira expression through complementary pairing. Taken together these results suggest that Hira gene may be negatively regulated by one micro RNA aae-miR-12 in Aedes aegypti, in addition, Wolbachia infection is likely to inhibit Hira gene expression, through up-regulating aae-miR-12, finally induce CI Phenotype of host. These results will supply a firenew insight for the study on the relationship between Wolbachia and their host.
     Furthermore, in order to fully explore the molecular mechanism of CI caused by Wolbachia infection, we adopt Genechip to identify that a total of 296 genes expression had at least a 1.5 fold change in Wolbachia infected D. melanogaster larval testes, when comparing to the uninfected. Differential expression of genes related to metabolism, immunity, reproduction and other functions were observed. Among them,167 genes were up-regulated and 129 genes were down-regulated. Interestingly, most of the genes putatively involved in immunity were up-regulated in the presence of Wolbachia. In contrast, most of the genes putatively associated with reproduction (especially spermatogenesis) were down-regulated in the presence of Wolbachia. According to these results we infer that, Wolbachia infection may activate host immune path, however, take some adverse effect on spermatogenesis. Specific gene function is being studied.
引文
[1]Stouthamer R, Breeuwer JAJ, Luck RF et al. Molecular identification of microorganisms associated with parthenogenesis. Nature,1993,361:66-68.
    [2]Weisburg WG, Dobson ME, Sammel JE et al. Phylogenetic diversty of the Rickettsiae. Bacterial,1989,171:4202-4206.
    [3]West SA, Cook JM, Werren JH et al. Wolbachia in two host-parasitoid communities. Mol Ecol, 1998,7:1457-1465.
    [4]Werren J H, Windsor D, Guo LR. Distribution of Wolbachia among neotropical arthropods. Proc R Soc,1995,262:197-204.
    [5]Werren JH. Biology of Wolbachia. Annu Rev Entomol,1997,42:587-609.
    [6]Bandi C, Anderson TJ, Genchi C et al. Phylogeny of Wolbachia in filarial nematodes. Proc BiolSci,1998,265:2407-2413.
    [7]Louis C, Nigro L. Ultrastructural evidence of Wolbachia Rickettsiales in Drosophila simulans and their relationships with unidirectional cross-incompatibility. Invert Pathol,1989,54: 39-44.
    [8]Breeuwer JAJ, Stouthamer R, Barns SM et al. Phylogeny of cytoplasmic incompatibility microorganisms in the parasitoid wasp genus Nasonia based on 16S ribosomal DNA sequences. Insect Mol Biol,1992,1:25-36.
    [9]Lo N, Casiraghi M, Salati E et al. How many Wolbachia supergroups exist? Mol Biol Evol, 2002,19:341-346.
    [10]Braig HR, Zhou W, Dobson S et al. Cloning and characterization of a gene encoding Wolbachia pipientis. JBacteriol,1998,180:2373-2378.
    [1]Zhou WG, Rousset F, O'Neill S. Phylogeny and PCR-based classification of Wolbachia strains using wsp gene sequences. Proc R Soc,1998,265:509-515.
    [12]Van-Meer MM, Witteveldt J, Stouthamer R. Phylogeny of the arthropod endosymbiont Wolbachia, based on the wsp gene.InsectMol.Biol,1999,8:399-08.
    [13]Riegler M, Sidhu M, Miller WJ et al. Evidence for a Global Wolbachia Replacement in Drosophila melanogaster. Curr Biol,2005,15:1428-1433.
    [14]Paraskevopoulos C, Bordenstein SR, Wernegreen JJ. Toward a Wolbachia Multilocus Sequence Typing System: Discrimination of Wolbachia Strains Present in Drosophila Species. Curr Microbiol,2006,53:388-395.
    [15]Baldo L, Dunning Hotopp JC, Jolley KA et al. Multilocus sequence typing system for the endosymbiont Wolbachia pipientis..Appl Environ Microbiol,2006,72:7098-7110.
    [16]Werren JH, Guo L, Windsor DW. Distribution of Wolbachia in neotropical arthropods. Proc. R. Soc. London B,1995,262:147-204.
    [17]Johanowicz DL, Hoy MA. Molecular evidence for A-Wolbachia endocytobiont in the predatory mite Metaseiulus occidentalis. Cell. Biochem,1995,21:198.
    [18]Sironi M, Bandi C, Sacchi L. Molecular evidence for a close relative of the arthropod endosymbiont Wolbachia in a filarial worm. Mol. Biochem. Parasitol,1995,74:223-227.
    [19]刘锐,李志红,孙晓等.首次发现沃尔巴克氏体Wolbachia对我国南亚果实蝇的感染现象.昆虫知识,2006,43:368-370.
    [20]宋社吾,赵彤言,董言德等.我国蚊虫特内感染Wolbachia的wsp基因序列测定与分析.昆虫学报,2002,45:571-577.
    [21]董鹏,王进军.三色书虱体内共生微生物Wolbachia的wsp基因的分子检测.动物学研究,2004,25:456--459.
    [22]褚栋,丛斌.不同生物型烟粉虱体内Wolbachia共生菌的检测及其系统树分析.昆虫学报,2005,48:518-525.
    [23]甘波谊,周伟国,冯利冰等.沃尔巴克氏体在中国三种稻飞虱中的感染.昆虫学报,2002,45:14-17.
    [24]付海滨,丛斌.感染有沃尔巴克氏体的赤眼蜂对寄主卵的选择性.中国生物防治,2005,21(增刊):83-85
    [25]王欢,李凯,刘怀等.两种金小蜂体内Wolbachia的wsp基因分子检测及序列分析.植物保护学报,2006,33:235-240.
    [26]朱道弘,贺一原,赵吕权等.栗瘿蜂体内Wolbachia的感染及其wsp基因序列分析.林业科学,2007,43:133-137.
    [27]苗慧,洪晓月,谢霖等.二斑叶螨体内感染的Wolbachia的wsp基因序列测定与分析.昆虫学报,2006,49:146-153.
    [28]苗慧,洪晓月,谢霖等.朱砂叶螨体内感染的Wolbachia的wsp基因序列测定与分析.昆虫学报,2004,47:738-743.
    [29]国伟,沈佐锐.棉蚜体内感染沃尔巴克氏体(Wolbachia)的分子检测.微生物学杂志,2004,24:1-3.
    [30]邓素芳,陈长缨,许升全.两种蚂蚁体内Wolbachia的wsp基因序列测定.陕西师范大学学报(自然科学版),1997,34:49-51.
    [31]丛斌,付海滨,王翠敏等.米蛾体内Wolbachia的wsp基因序列测定与系统发育分析.昆虫学报,2005,48:815-818.
    [32]Kose H, Karr TL. Organization of Wolbachia pipientis in the Drosophila fertilized egg and embryo revealed by anti-Wolbachia monoclonal antibody. Mech Dev,1995,51:275-288.
    [33]Byers JR, Wilkes A. A rickettsialike microorganism in Dahlbominus fuscipennis: observations on its occurrence and ultrastruture. Can J Zool,1970,48:959-964.
    [34]Rigaud T, Juchault P, Mocquard J. Experimental study of temperature effects on the sex ratio of broods in terrestrial Crustacea Armadillidium vulgare Latr: possible implications in natural populations. J.Evol.Biol,1991,4:603-617.
    [35]Huigens, EAlmeida M, Boons PAH et al. Natural interspecific and intraspecific horizontal transfer of parthenogenesis-inducing Wolbachia in Trichogramma wasps. Royal Society of London Proceedings. Series B-Biol Sci,2004,271:509-515.
    [36]Cordaux RA. Michel S, Frelon RM. Evidence for a new feminizing Wolbachia strain in the isopod Armadillidium vulgare:evolutionary implications. Heredity,2004,93:78-84.
    [37]Werren JH, Zhang W, Guo LR..Evolution and phylogeny of Wolbachia: reproductive parasites of arthropods. Proc R Soc London,1995,261:55-63.
    [38]Braig HR, Guzman H, Tesh RB. Replacement of the natural Wolbachia symbiont of Drosophila simulans with a mosquito counterpart. Nature,1994,367:453-455.
    [39]Riegler M, Stauffer C. Wolbachia infections and superinfections in cytoplasmically incompatible populations of the European cherry fruit fly Rhagoletis cerasi (Diptera, Tephritidae). Mol Ecol,2002,11:2425-2434.
    [40]Jamnongluk W, Kittayapong P. Wolbachia infections of Tephritid fruit flies: Molecular evidence for five distinct strains in a single host species; Curr Microbiol,2002,45:255-260.
    [41]Mouton L, Henri H, Bouletreau M et al. Strain-specific regulation of intracellular Wolbachia density in multiply infected insects. Mol Ecol,2003,12:3459-3465.
    [42]Hilgenboecker K, Hammerstein P, Schlattmann P. How many species are infected with Wolbachia?-a statistical analysis of current data. FEMS Microbiol Lett,2008,281:215-220.
    [43]Dobson SL, Marsland EJ, Veneti Z et al. Characterization of Wolbachia Host Cell Range via the In Vitro Establishment of Infections. Appl Environ Microbiol,2002,68: 656-660.
    [44]Sun LV, Foster JM, Tzertzinis G. Determination of Wolbachia Genome Size by Pulsed-Field Gel Electrophoresis. J. Bacteriol,2001,183:2219-2225.
    [45]Masui S, Sasaki T, Ishikawa H. The first detection of the insertion sequence ISW1 in the intracellular reproductive parasite Wolbachia.Plasmid,1999,42:13-17.
    [46]O'Neill SL, Giordano R, Colbert AME.16S rRNA phylogenetic analysis of the bacterial endosymbionts associated with cytoplasmic incompatibility in insects. PNAS,1992,89: 2699-2702.
    [47]Ormaetxe I, Burke GR, Riegler M et al. Distribution, Expression, and Motif Variability of Ankyrin Domain Genes in Wolbachia pipientis. JBacteriol,2005,187:5136-5145.
    [48]Ormaetxe I, O'Neill SL. Wolbachia-host interactions:connecting phenotype to genotype. Ecol Ind Microbiol,2007,10:221-224.
    [49]Zhiyong X, Gavotte L, Xie Y et al. Genome-wide analysis of the interaction between the endosymbiotic bacterium Wolbachia and its Drosophila host. BMC Genomics,2008.9:1.
    [50]崔建平,仲泉,李文卓等.灰飞虱Wolbachia群体生物学的遗传特性研究.复旦大学学报,1998,37:5452-5461.
    [51]Hariri AR, Werren JH, Wilkinson GS. Distribution and reproductive effects of Wolbachia in stalk eyed flies (Diptera: Diopsidae). Heredity,1998,81:2545-2601.
    [52]Vavre F, Girin C, Bouletreau M. Phylogenetic status of a fecundity-enhancing Wolbachia that does not induce thelytoky in Trichogramma. Insect Mol Biol,1999,8:714-721.
    [53]Girin C, Bouletreau M. Microorganism-associated variation in host infestation efficiency in a parasitoid wasp, Trichogramma bourarachae (Hymenoptera: Trichogrammatidae). Experientia, 1995,51:4004-4011.
    [54]Aleksandrov ID, Aleksandrova MV, Goriacheva Ⅱ. Removing endosymbiotic Wolbachia specifically decreases lifespan of females and competitiveness in a laboratory strain of Drosophila melanogaster. Genetic,2007,43:1372-1378.
    [55]Fleury F, Vavre F, Ris N., et al. Physiological cost induced by the Maternally-transmitted endosymbiont Wolbachia in the Drosophila parasitoid Leptopilina heterotoma. Parasitol,2000, 121:4993-5001.
    [56]Wright JD, Barr AR. The ultrastructure and symbiotic relationships of Wolbachia of mosquitoes of the Aedes scutellaris group. J Ultrastruct Res,1980,72:633-641.
    [57]Min KT, Benzer S. Genetics Wolbachia, normally a symbiont of Drosophila, can be virulent, causing degeneration and early death. PNAS,1997,94: 107952-107961.
    [58]Sinkins SS, O'Neill SL. Wolbachia as a vehicle to modify insect populations. Boca Raton, FL: CRC Press,2000,2:271-288.
    [59]Stouthamer R., Luck RF, Hamilton WD. Antibiotics cause parthenogenetic Trichogramma (Hymenoptera/Trichogrammatidae) to revert to sex. PNAS,1990,87: 2424-2427.
    [60]Stouthamer R. Wolbachia-lnduced Parthenogenesis. New York, Oxford University Press,1997, 102-104.
    [61]Stouthamer R, Werren JH. Microbes associated with parthenogenesis in wasps of the genus Trichogramma. J. Invertebr. Pathol,1993,61:6-9.
    [62]彩万志.孤雌生殖及其在进化上的意义.昆虫知识,1989,26:364-367.
    [63]Rousset F, Bouchon D, intureau BP, Wolbachia endosymbionts responsible for various alterations of sexuality in arthropods. Proc R Soc London,1992,250:91-98.
    [64]Moret Y, Juchault P, Rigaud T. Wolbachia endosymbiont responsible for cytoplasmic incompatibility in a terrestrial crustacean: effects in natural and foreign hosts. Heredity,2001, 86:325-332.
    [65]Hurst GDD, Graf SJH, Majerus TMO et al. Invasion of one insect species, Adalia bipunctata by two different male-killing bacteria. Insect Morl Biol,1999,8:435-441.
    [66]Charlat S, Ballard JWO, Mercot H. What maintains noncytoplasmic incompatibility inducing Wolbachia in their hosts:a case study from a natural Drosophila yakuba population. J. Evol Biol,2004,17:322-330.
    [67]Stouthamer R, Luck RF, Hamilton WD. Antibiotics cause parthenogenetic Trichogramma (Hymenoptera/Trichogrammatidae) to revert to sex. Proc Natl Acad Sci USA,1990,87: 2424-2427.
    [68]Hoshizaki S, Shimada T. PCR-based detection of Wolbachia, cytoplasmic incompatibility microorganisms, infected in natural populations of Laoellphax striatellus (Homoptera: Delplhacidae) in central Japan:has the distribution of Wolbachia spread recently?. Insect Mol.Bio,1995,4:237-243.
    [69]Brower J H. Cytoplasmic incompatibility:occurrence in a stored-product pest Ephestia cautella. Ann. Entomol. Soc. Am,1975,69:1011-1015.
    [70]Breeuwer JAJ. Wolbachia and cytoplasmic incompatibility in the spider mite Tetrany chnsurticae and T. turkestani. Heredity,1997,79:41-47.
    [71]Moret Y, Juchault P, Rigaud T. Wolbachia endosymbiont responsible for cytoplasmic incompatibility in a terrestrial crustacean:effects in natural and foreign hosts. Heredity,2001, 86:325-332.
    [72]O'Neill SL, Karr TL. Bidirectional incompatibility between conspecific populations of Drosophila simulans. Nature,1990,348:178-180.
    [73]Holden PR, Brookfieid JFY, Jones P. Cloning and characterization of an ftsZ homologue from a bacterial symbiont of Drosophila melanogaster. Mol. Gen. Genetic,1993,240:213-220.
    [74]Giordano R, O'Neill SL, Robertson HM. Wolbachia infection and the expression of cytoplasmic incompatibility in Drosophilia sechellia and D.mauritiana. Genetics,1995,140: 1307-1317.
    [75]Callaini G, Riparbelli MG, Giordano R et al. Mitotic defects associated with Cytoplasmic incompatibility in Drosophila simulans. J Invertebr Pathol,1996,1:55-64.
    [76]Tram U, Sullivan W. Role of delayed nuclear envelope breakdown and mitosis in Wolbachia induced cytoplasmic incompatibility. Science,2002,296:1124-1126.
    [77]Ryan SL, Saul GB. Post-fertilization effect of incompatibility factors in Mormoniella. Mol. Gen. Genet,1968,103:29-36.
    [78]Breeuwer JA, Werren JH. Microorganisms associated with chromosome destruction and reproductive isolation between two insect species. Nature,1990,346:558-562.
    [79]Ahmad K, Henikoff S. The histone variant H3.3 marks active chromatin by replication independent nucleosome assembly. Mol. Cell,2002,9:191-200.
    [80]Tram U, Fredrick K, Werren JH et al. Paternal chromosome segregation during the first mitotic division determines cytoplasmic incompatibility phenotype. Cell Sci,2006,119:3655-3663.
    [81]Bordenstein SR, Uy JJ, Werren JH. Host genotype determines cytoplasmic incompatibility type in the haplodiploid genus Nasonia. Genetics,2003,164:223-233.
    [82]Callaini G, Dallai R, Riparbelli MG. Wolbachia-induced delay of paternal chromatin condensation does not prevent maternal chromosomes from entering anaphase in incompatible crosses of Drosophila simulans. Cell Sci,1997,110:271-280.
    [83]Lassy CW, Karr TL. Cytological analysis of fertilization and early embryonic development in incompatible crosses of Drosophila simulans. Mech.Dev,1996,57:47-58.
    [84]Takada S, Kelkar A, Theurkauf WE. Drosophila checkpoint kinase-couples centrosome function and spindle assembly to genomic integrity. Cell,2003,113:87-99.
    [85]Werren JH, O'Neill SL. The evolution of heritable symbionts.. Oxford: Oxford University Press, 1997,32:1-41
    [86]Zabalou S. Apostolaki A, Pattas S et al. Multiple rescue factors within a Wolbachia strain. Genetics,2008,178:2145-2160.
    [87]Bossan B, Koehncke A, Hammerstein P. A new model and method for understanding Wolbachia-induced cytoplasmic incompatibility. PLoS ONE,2011,6:1-9.
    [88]Clark ME, Veneti Z, Bourtzis K et al. Wolbachia distribution and cytoplasmic incompatibility during sperm development: the cyst as the basic cellular unit of CI expression. Mech. Dev, 2003,120:85-98.
    [89]Duron O, Fort P, Weill M. Influence of aging on cytoplasmic incompatibility, sperm modification and Wolbachia density in Culex pipiens mosquitoes. Heredity,2007,98: 368-374.
    [90]Werren JH, Baldo L, Clark ME. Wolbachia: master manipulators of invertebrate biology. Nat. Rev. Microbiol,2008,6:741-751.
    [91]Snook RR, Cleland SY, Wolfner MF et al. Offsetting effects of Wolbachia infection and heat shock on sperm production in Drosophila simulans:analyses of fecundity, fertility and accessory gland proteins. Genetics,2000,155:167-178.
    [92]Hussain M, Frentiu FD, Moreira LA et al. Wolbachia uses host microRNAs to manipulate host gene expression and facilitate colonization of the dengue vector Aedes aegypti. Proc. Natl. Acad. Sci. USA,2011,108:9250-9255.
    [93]Xi Z, Gavotte L, Xie Y et al. Genome-wide analysis of the interaction between the endosymbiotic bacterium Wolbachia and its Drosophila host. BMC Genomics,2008,9: 1.
    [94]Hughes GL, Ren X, Ramirez JL et al. Wolbachia infections in Anopheles gambiae cells: transcriptomic characterization of a novel host-symbiont interaction. PLoS Pathog, 2011,7: e1001296.
    [95]Dunning Hotopp JC, Clark ME, Oliveira DC et al. Widespread lateral gene transfer from intracellular bacteria to multicellular eukaryotes. Science,2007,317: 1753-1756.
    [96]Werren JH, Richards S, Desjardins CA et al. Functional and evolutionary insights from the genomes of three parasitoid Nasonia species. Science,2010,327:343-348.
    [97]Takada S, Kelkar A, Theurkauf WE. Drosophila checkpoint kinase-couples centrosome function and spindle assembly to genomic integrity. Cell,2003,113:87-99.
    [98]Caron C, Govin J, Rousseaux S et al. How to pack the genome for a safe trip. Prog. Mol Subcell. Biol,2005,38:65-89.
    [99]Hurst D, Rylett CM, Isaac RE et al. The Drosophila angiotensin-converting enzyme homologue Ance is required for spermiogenesis. Dev. Biol,2003,254:238-247.
    [100]Riparbelli MG, Giordano R, Callaini G. Effects of Wolbachia on sperm maturation and architecture in Drosophila simulans Riverside. Mech. Dev,2007,124: 699-714.
    [101]Tram U, Ferree PM, Sullivan W. Identification of Wolbachia-host interacting factors through cytological analysis. Microbes Infect,2003,5:999-1011.
    [102]Ferree PM, Sullivan W. A genetic test of the role of the maternal pronucleus in Wolbachia-induced cytoplasmic incompatibility in Drosophila melanogaster. Genetics,2006, 173:839-847.
    [103]Landmann F, Orsi GA, Loppin B et al. Wolbachia mediated cytoplasmic incompatibility is associated with impaired histone deposition in the male pronucleus. PLoS Pathog,2009,5: e1000343.
    [104]Sinkins SS, O'Neill SL. Wolbachia as a vehicle to modify insect populations. Insect Transgenes:Methods Appl,2000, p.271-288.
    [105]Sanogo YO, Dobson SL. Molecular discrimination of Wolbachia in the Culex pipiens complex: evidence for variable bacteriophage hyperparasitism. Insect Mol Biol,2004,13:365-369.
    [106]Bonnefoy E, Orsi GA, Couble P et al. The essential role of Drosophila HIRA for de novo assembly of paternal chromatin at fertilization.PIoS Genet,2007,3:1991-2006.
    [107]Fire A, Xu S, Montgomery MK et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature,1998,391:806-811.
    [108]Reinhart BJ, Slack FJ, Basson M et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature,2000,403:901-906.
    [109]Miller SC, Brown SJ, Tomoyasu Y. Larval RNAi in Drosophila? Dev Genes Evol,2008,218: 505-510.
    [110]Mello CC, Conte D. Revealing the world of RNA interference. Nature,2004,431:338-342.
    [111]Wang J, Barr MM. RNA Interference in Caenorhabditis elegans. Methods Enzymol,2005,392, 36-55.
    [112]Yamada R, Floate KD, Riegler M et al. Male development time influences the strength of Wolbachia-induced cytoplasmic incompatibility expression in Drosophila melanogaster. Genetics,2007,177:801-808.
    [113]Reynolds KT, Hoffmann AA. Male age, host effects and the weak of expression or non-expression of cytoplasmic incompatibility in Drosophila strains infected by the maternally inherited Wolbachia. Genet Res,2002,80:79-87.
    [114]Xi Z, Gavotte L, Xie Y et al. Genome-wide analysis of the interaction between the endosymbiotic bacterium Wolbachia and its Drosophila host. BMC Genomics,2008,9:1.
    [115]Brennan LJ, Keddie BA, Braig HR et al. The endosymbiont Wolbachia pipientis induces the expression of host antioxidant proteins in an Aedes albopictus cell line. PLoS ONE,2008,3: e2083.
    [116]Kambris Z, Blagborough AM, Pinto SB et al. Wolbachia stimulates immune gene expression and inhibits plasmodium development in Anopheles gambiae. PLoS Pathog,2010,6. pii: elOO1143.
    [117]Moreira LA, Iturbe-Ormaetxe I, Jeffery JA et al. A Wolbachia symbiont in Aedes aegypti limits infection with dengue, Chikungunya, and Plasmodium. Cell,2009,139:1268-1278.
    [118]Reed KM, Werren JH. Induction of paternal genome loss by the paternal sex-ratio chromosome and cytoplasmic incompatibility bacteria(Wolbachia):a comparative study of early embryonic events. Mol Reprod Dev,1995,40:408-418.
    [119]Clark ME, Bailey-Jourdain C, Ferree PM et al. Wolbachia modification of sperm does not always require residence within developing sperm. Heredity,2008,101:420-428.
    [120]Tagami H, Ray-Gallet D, Almouzni G et al. Histone H3.1 and H3.3 complexes mediate nucleosome assembly pathways dependent or independent of DNA synthesis. Cell,2004,116: 51-61.
    [121]Nakatani Y,Ray G, Quivy P et al. Two distinct nucleosome assembly pathways: dependent or independent of DNA synthesis promoted by histone H3.1 and H3.3 complexes.Cold Spring Harb Symp Quant Biol,2004,69:273-280.
    [122]Akhmanova A, Miedema K, Wang Y et al.The localization of histone H3.3 in germ line chromatin of Drosophila males as established with a histone H3.3-specific antiserum. Chromosoma,1997,106:335-347.
    [123]Couldrey C, Carlton MB, Nolan PM. A retroviral gene trap insertion into the histone 3.3A gene causes partial neonatal lethality, stunted growth, neuromuscular deficits and male sub-fertility in transgenic mice. Hum Mol Genet,1999,8:2489-2495.
    [124]Loppin B, Bonnefoy E, Anselme C et al. The histone H3.3 chaperone HIRA is essential for chromatin assembly in the male pronucleus. Nature,2005,437:1386-1390.
    [125]Poinsot D, Charlat S, Mercot H. On the mechanism of Wolbachia induced cytoplasmic incompatibility:confronting the models with the facts. Bioessays,2003,25:259-265.
    [126]Laven, H. Speciation and evolution in Culex pipiens. In genetics of insect vectors of diseases. North Holland: Elsevier,1967,7:251-275.
    [127]Zabalou S, Riegler M, Theodorakopoulou M et al. Wolbachia-induced cytoplasmic incompatibility as a means for insect pest population control. PNAS,2004,101:15042-15045.
    [128]Banerjee D, Slack F. Control of developmental timing by small temporal RNAs:A paradigm for RNA-mediated regulation of gene expression. Bioessays,2002,24: 119-129.
    [129]Hutvagner G, Zamore PD. A microRNA in a multiple-turnover RNAi enzyme complex. Science,2002,297:2056-2060.
    [130]Tang, G, Zamore PD. Biochemical dissection of RNA silencing in plants. Methods Mol Biol, 2004,257:223-244.
    [131]Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell,1993,75:843-854.
    [132]Mead EA, Tu ZJ. Cloning, characterization, and expression of microRNAs from the Asian malaria mosquito, Anopheles stephensi. BMC Genomics,2008,9:1471-1479.
    [133]Liu Q, Tuo WB, Gao H et al. MicroRNAs of parasites:current status and future perspectives. Biomed Life Sci,2010,107:501-507.
    [134]Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell,2005,120:15-20.
    [135]Krek A, Griun D, Poy MN et al. Combinatorial microRNA target predictions. Nat Genet,2005, 37:495-500.
    [136]Xie X, Kulbokas EJ, Golub TR et al. Systematic discovery of regulatory motifs in human promoters and 3'UTRs by comparison of several mammals. Nature,2005,434:338-345.
    [137]Wienholds, E, Plasterk, R.H. MicroRNA function in animal development. FEBS Lett,2005, 579:5911-5922.
    [138]Du T, Zamore PD. microPrimer: the biogenesis and function of microRNA. Development, 2005,132:4645-4652.
    [139]McMeniman CJ, RV Lane, Cass BN et al. Stable introduction of a life-shortening Wolbachia infection into the mosquito Aedes aegypti. Science,2009,323:141-144.
    [140]Moreira LA, Luciano AM, Iturbe-Ormaetxe I et al. A Wolbachia symbiont in Aedes aegypti limits infection with dengue, Chikungunya, and Plasmodium. Cell,2009,139:1268-78.
    [141]Akey CW, Luger K. Histone chaperones and nucleosome assembly. Curr Opin. Biotechnol, 2003,13:6-14.
    [142]Loppin B, Berger F, Couble P, Paternal chromosome incorporation into the zygote nucleus is controlled by maternal haploid in Drosophila. Dev Biol,2001,231:383-396.
    [143]Bassa BP, Cullenb K, McCallb K. The axon guidance gene lola is required for programmed cell death in the Drosophila ovary. Dev Biol,2007,2:771-785.
    [144]Soltani-Bejnood M, Thomas SE, Villeneuve L et al. Role of the mod (mdg4) common region in homolog segregation in Drosophila male meiosis. Genetics,2007,176:161—180.
    [145]Kuhn R, Kuhn C, Borsch D et al. A cluster of four genes selectively expressed in the male germ line of Drosophila melanogaster. Mech Dev,1991,35:143-151.
    [146]Droge W. Oxidative stress and aging. Adv Exp Med Biol,2003,543:191-200.
    [147]Kremer N, Voronin D, Charif D et al. Wolbachia interferes with ferritin expression and iron homeostasis in insects. PloS Pathog,2009,5:el000630.
    [148]Kremer N, Dedeine F, Charif D et al. Do variable compensatory mechanisms explain the polymorphism of the dependence phenotype in the Asobara tabida-Wolbachia association? Evolution,2010,64:2969-2979.
    [149]Anselme C, Perez-Brocal V, Vallier A et al. Identification of the weevil immune genes and their expression in the bacteriome tissue. BMC Biol,2008,6:43.
    [150]Erturk-Hasdemir D, Broemer M, Leulier F et al. Two roles for the Drosophila IKK complex in the activation of Relish and the induction of antimicrobial peptide genes. Proc Natl Acad Sci USA,2009,106:9779-9784.
    [151]Bourtzis K, Pettigrew MM, O'Neill SL. Wolbachia neither induces nor suppresses transcripts encoding antimicrobial peptides. Insect Mol Biol,2000,9: 635-639.
    [152]Bian G, Xu Y, Lu P et al. The endosymbiotic bacterium Wolbachia induces resistance to dengue virus in Aedes aegypti. PLoS pathog, 2011,6:el000833.
    [153]Thomas P, Kenny N, Eyles D et al. Infection with the wMel and wMelPop strains of Wolbachia leads to higher levels of melanization in the hemolymph of Drosophila melanogaster, Drosophila simulans and Aedes aegypti. Dev Comp Immunol, 2011,35:360-365.
    [154]Cook PE, McGraw EA.Wolbachia pipientis:an expanding bag of tricks to explore for disease control. Trends Parasitol,2010,26:373-375.
    [155]Wu M, Deboy R, Brownlie JC. Phylogenomics of the reproductive parasite Wolbachia pipientis wMel:a streamlined genome overrun by mobile genetic elements. PloS Biol,2004,2: 327-341.
    [156]Evans O, Caragata EP, McMeniman CJ. Increased locomotor activity and metabolism of Aedes aegypti infected with a life-shortening strain of Wolbachia pipientis. J Exp Biol,2009,212: 1436-1441.
    [157]Masui S, Sasaki T, Ishikawa H. Genes for the type IV secretion system in an intracellular symbiont, Wolbachia, a causative agent of various sexual alterations in arthropods. JBacteriol, 2000,182:6529-6531.
    [158]Gruntenko NE, Karpova EK, Adonyeva NV et al. Juvenile hormone,20-hydroxyecdysone and dopamine interaction in Drosophila virilis reproduction under normal and nutritional stress conditions. J Insect Physiol,2005,51:417-425.
    [159]Taub-Montemayor TE, Min KJ, Chen Z et al. JH III production, titers and degradation in relation to reproduction in male and female Anthonomus grandis. J Insect Physiol,2005,51: 427-434.
    [160]Dubrovsky EB, Dubrovskaya VA, Bilderback AL et al. The isolation of two juvenile hormone-inducible genes in Drosophila melanogaster. Dev Biol,2000,224:486-495.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700