Caspase-1及其激活的细胞因子IL-18在大鼠急性脊髓损伤后的表达及意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的半胱氨酸天冬氨酸特异性蛋白酶-1(caspase-1)及其激活的细胞因子与许多疾病的炎症反应和细胞凋亡有关,但与脊髓继发性损伤的关系目前尚不清楚。该研究旨在探讨caspase-1及其激活的细胞因子白细胞介素-18(Interleukin-18, IL-18)在大鼠急性脊髓损伤(spinal cord injury,SCI)后的表达及意义。
     方法成年雄性Sprague- Dawley(SD)大鼠48只随机分为对照组(A组)和脊髓损伤组(B组),每组24只,A、B组各再分4个亚组。B组应用改良的Allen’s重物打击法建立大鼠急性脊髓损伤模型,A组只做T9全椎板切除术。分别于术后6h、1d、3d、7d处死各组大鼠,以损伤部位为中心取材,HE染色观察脊髓组织病理变化,免疫组化染色检测caspase-1、IL-18的表达情况。
     结果对照组大鼠脊髓组织中少量细胞caspase-1、IL-18表达阳性。脊髓损伤后6h,损伤组caspase-1、IL-18的表达高于对照组,1d继续增高,3d表达最多,7d略有降低,但仍高于对照组。脊髓损伤组各时间点脊髓组织中caspase-1和IL-18表达阳性的细胞数较对照组显著增高(P<0.01)。
     结论正常大鼠脊髓组织内存在少量caspase-1、IL-18的表达。大鼠脊髓损伤后,caspase-1和IL-18的表达迅速增强。caspase-1和IL-18的表达增强表明其可能参与了脊髓继发性损伤,并可能是损伤性因素之一。
Objective The expressions of caspase-1 and cytokines activated by caspase-1 are associated with the pathophysiology of many diseases for its proinflammatory and proapototic peculiarity. However,its relationship to spinal cord injury has not yet been identified. This study aimed to investigate the roles of caspase-1 and interleukin-18 activated by caspase-1 in the rat acute spinal cord injury (SCI).
     Method 48 adult Sprague-Dawley (SD) male rats were randomly divided into two groups: The control group (group A) and spinal cord injury group(group B),each group consisted of 24 rats, group A and group B were randomly divided into four small groups.The rats of group B used modified Allen’s method established model of SCI, the rats of group A just underwent a T9 laminectomy without injury. The rats were sacrificed at 6h, 1d, 3d and 7d respectively after injury, the lesion areas of the spinal cord were dissected for morphological studies by hematoxylin and eosin staining, the expressions of caspase-1 and Il-18 were detected using immunohistochemistry method.
     Result The low expressions of caspase-1 and IL-18 were observed in the control group. The expressions of caspase-1 and IL-18 in the spinal cord injury group were higher than those in control group at 6h, it go on increased at 1d, peaked at 3d, decreased at 7d. The levels of caspase-1 and IL-18 in the spinal cord injury group were obviously higher than those in the control group at 6h, and at 1, 3, 7days after injury (P<0.01).
     Conclusion The low expressions of caspase-1 and IL-18 can be observed in the non-injury spinal cord. The expressions of caspase-1 and IL-18 increased quickly after SCI.The increased expressions of caspase-1 and IL-18 may play important roles in the pathogenesis of SCI.
引文
[1] Wang J, Lenardo MJ. Roles of caspases in apoptosis, development and cytokine maturation revealed by homozygous gene deficiencies [J]. J Cell Sci, 2000, 113(Pt5): 753-757.
    [2] Bartholdi D, Schwab ME. Expression of pro-inflammatory cytokine and chemokine mRNA upon experimental spinal cord injury in mouse: an in situ hybridization study [J]. Eur J Neurosci, 1997, 9(7): 1422-1438.
    [3] Hayashi M, Ueyama T, Nemoto K, et al. Sequential mRNA expression for immediate early genes, cytokines, and neurotrophins in spinal cord injury [J]. J Neurotrauma, 2000, 17(3): 203-218.
    [4] Klusman I, Schwab ME. Effects of pro-inflammatory cytokines in experimental spinal cord injury [J]. Brain Res, 1997, 762(1-2): 173-184.
    [5] Popovich PG, Wei P, Stokes BT. Cellular inflammatory response after spinal cord injury in Sprague-Dawley and Lewis rats [J]. J Comp Neurol, 1997, 377(3):443-464.
    [6] Crowe MJ, Shuman SL, Masters JN et al. Morphological evidence suggesting apoptosis nuclei in spinal cord injury [J]. Soc Neursci Abstr, 1995, 21: 232.
    [7]胥少汀.脊髓原发和继发损伤[J].中华骨科杂志,2005,25(9):575-576.
    [8] Vaquero J, Zurita M, de Oya S, et al. Vascular endothelial growth/permeability factor in spinal cord injury [J]. J Neurosurg, 1999, 90(2 Suppl): 220-223.
    [9] Majno G, Joris I. Apoptosis, oncosis and necrosis [J]. Am J Pathol, 1995, 146: 3-15.
    [10] Charriaut-Marlangue C, Margaill I, Represa A, et al. Apoptosis and necrosis after reversible focal ischemia:an in situ DNA fragmentation analysis [J]. J Cereb Blood Flow Metab, 1996, 16(2): 186-194.
    [11] Li GL, Brodin G, Farooque M, et al. Apoptosis and expression of Bcl-2 after compression trauma to rat spinal cord [J]. J Neuropathol Exp neurol, 1996, 55(3): 280-289.
    [12] Lui Xz, Xu XM, Hu R, et al. Neuronal and glial apoptosis after rtanmatic spinal cord injury[J]. J Neurosci, 1997, 17: 5395-5402.
    [13] Yong C, Arnold PM, Zoubine MN, et al. Apoptosis in cellular compartments of rat spinal cord after severe contusion injury [J]. J Neurotrauma, 1998, 15: 459-472.
    [14]傅强,候铁胜,刘善荣,等.大鼠脊髓压迫性损伤后神经细胞的死亡方式[J].第二军医大学学报,1997,18(6):557-559.
    [15]傅强,候铁胜,鲁凯伍,等.大鼠脊髓急性损伤后神经细胞的凋亡[J].中华创伤杂志,2001,17(4):222-224.
    [16] Emery E, Aldana P, Bunge MB, et al. Apoptosis after traumatic human spinal cord injury[J]. J Neurosury, 1998, 89: 911-920.
    [17] Schnell L, Fearn S, Klassen H, et al. Acute inflammatory responses to mechanical lesions in the CNS:differences between brain and spinal cord [J]. Eur J Neurosci, 1999, 11(10): 3648-3658.
    [18] Schnell L, Fearn S, Schwab ME, et al. Cytokine-induced acute inflammation in the brain and spinal cord [J]. J Neuropathol Exp Neurol, 1999, 58(3): 245-254.
    [19] Carlson SL, Parrish ME, Springer JE, et al. Acute inflammatory response in spinal cord following impact injury [J]. Exp Neurol, 1998, 151(1): 77-88.
    [20] Chatzipanteli K, Yanagawa Y, Marcillo AE, et al. Posttraumatic hypothermia reduces polymorphonuclear leukocyte accumulation following spinal cord injury in rats [J]. J Neurotrauma, 2000, 17(4): 321-332.
    [21] Taoka Y, Okajima K, Spinal cord injury in the rat [J]. Prog Neurobiol, 1998, 56(3): 341-358.
    [22] Taoka Y, Okajima K. Role of leukocytes in spinal cord injury in rats [J]. J Neurotrauma, 2000, 17(3): 219-229.
    [23] Schwab ME, Bartholdi D. Degeneration and regeneration of axons in the lesioned spinal cord [J]. Physiol Rev, 1996, 76(2): 319-370.
    [24] Schwartz M. Autoimmune involvement in CNS trauma is beneficial if well controlled [J]. Prog Brain Res, 2000, 128: 259-263.
    [25] Popovich PG, Jones TB, Mc Gaughy V, et al. T-lymphocyte infiltration of the traumatically injured spinal cord:pathological and physiological implications [J]. J Neurochem, 2003, 85(suppl): 65.
    [26] Yuan J, Shaham S, Ledoux S, et al. The C. elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-1 beta-converting enzyme. Cell, 1993, 75(4): 641-652.
    [27] Alnemri ES, Livingston DJ, Nicholson DW, et al. Human ICE/CED-3 protease nomenclature. Cell, 1996, 87(2): 171.
    [28] Thornberry NA, Lazebnik Y. Caspase:enemies within [J]. Sinence, 1998, 281(5381): 1312-1316.
    [29] Vincenz C, Dixit VM. Fas-associated death domain protein interleukin-1β-converting enzyme 2(FLICE2), an ICE/CED-3 homologue, is proximally involved in CD95 and p55-mediated death signaling [J]. J Biol Chem, 1997, 272(10): 6578-6583.
    [30] Van de Craen M, Van den Brande I, Declercq W, et al. Cleavage of caspase family members by granzyme B:a comparative study in vitro. Eur J Immunol, 1997, 27(5): 1296-1299.
    [31] Zhou Q, Salvesen GS. Activation of procaspase-7 by serine proteases includes a non-canonical specificity [J]. Biochem J, 1997, 324(Pt 2): 361-364.
    [32] Thome M, Hofmann K, Burns K, et al. Identification of CARDIAK, a RIP-like kinase that associates with caspase-1[J]. Curr Biol, 1998, 8(15): 885-888.
    [33] Humke EW, Shriver SK, Starovasnik MA, et al. ICEBERG: a novel inhibitor of interleukin-1 beta generation [J]. Cell, 2000, 103(1): 99-111.
    [34] Poyet JL, Srinivasula SM, Tnani M, et al. Identification of Ipaf, a human caspase-1-activating protein related to Apaf-1 [J]. J Biol Chem, 2001, 276(30): 28309-28313.
    [35] Yoo NJ, Park WS, Kim SY, et al. Nod1, a CARD protein, enhances pro-interleukin-1 beta processing through the interaction with pro-caspase-1 [J]. Biochem Biophy Res Commun, 2002, 299(4): 652-658.
    [36] Lee SH, Stehlik C, Reed JC, Cop, a caspase recruitment domain-containing proteim and inhibitor of caspase-1 activation processing [J]. J Biol Chem, 2001, 276(37): 34495- 34500.
    [37] Druilhe A, Srinivasula SM, Razmara M, et al. Regulation of IL-1 beta generation by Pseudo-ICE and ICEBERG, two dominant negative caspase recruitment domain proteins [J]. Cell Death Differ, 2001, 8(6): 649-657.
    [38] Van Criekinge W, Beyaert R, Van de Craen M, et al. Functional characterization of the prodomain of interleukin-1 beta-converting enzyme [J]. J Biol Chem, 1996, 271(44): 27245-27248.
    [39] Kim NG, Lee H, Son E, et al. Hypoxic induction of caspase-11 /caspase-1 / interleukin- 1 beta in brain microglia [J]. Brain Res Mol Brain Res, 2003, 114(2): 107-114.
    [40] Chang HY, Yang X. Proteases for cell suicide: functions and regulation of caspase [J]. Microbiol Mol Biol Rev, 2000, 64(4): 821-846.
    [41] Nakamura K, Okamura H, Wada M, et al. Endotoxin-induced serum factor that stimulates gamma interferon production [J]. Infect Immun,1989, 57(2): 590-595.
    [42] Okamura H, Tsutsi H, Komatsu T, et al. Cloning of a new cytokine that induces IFN-gamma production by T cells[J]. Nature, 1995, 378(6552): 88-91.
    [43] Akita K, Ohtsuki T, Nukada Y, et al. Involvement of caspase-1 and caspase-3 in the production and processing of mature human interleukin-18 in monocytic THP. 1 cells [J]. J Biol Chem, 1997, 272(42): 26595-26603.
    [44] Tone M, Thompson SA, Tone Y, et al. Regulation of IL-18(IFN-gamma-inducing factor) gene expression [J]. J Immunol, 1997, 159(12): 6156-6163.
    [45] Dinarello CA. Interleukin-18 [J]. Methods, 1999, 19(1): 121-132.
    [46] Yakovlev AG, Knoblach SM, Fan L, et al. Activation of CPP32-like caspase contuibutes to neuronal apoptosis and neurological dysfunction after traumatic brain injury [J]. J Neurosci, 1997, 17(19): 7415-7424.
    [47] Li M, Ona VO, Chen M, et al. Functional role and therapeutic implications of neuronal caspase-1 and caspase-3 in a mouse model of traumatic spinal cord injury [J]. Neuroscience, 2000, 99(2): 333-342.
    [48] Chaudhart P, Ahmed F, Quebada P, et al. Caspase inhibitors block the retinal ganglion cell death following optic nerve transaction [J]. Brain Res Mol Brain Res, 1999, 67: 36-45.
    [49] Miura M, et al. Cell, 1993, 75: 653.
    [50] Fink KB, Andrews LJ, Butler WE, et al. Reduction of post-traumatic brain injury and free radical production by inhibition of the caspase-1 cascade [J]. Neurosci, 1999, 94(4): 1213-1218.
    [51]刘世清,周华等.大鼠急性脊髓损伤后细胞凋亡的时空分布特点[J].中国矫形外科杂志[J]. 2003, 11(24): 1699-1700.
    [52]傅强,候铁胜,李明等.脊髓急性损伤后神经细胞凋亡的时相和空间分布特点[J].颈腰痛杂志[J]. 2001, 22(3): 199-201.
    [53] Lazebnik YA, Kaufmann SH, Densnoyer S, et al. Cleavage of poly (ADP-ribosome) polymerase by a protease with properties like ICE [J]. Nature, 1994, 371: 346-347.
    [54]韩泽广,陈国强等.白细胞介素1β转换酶家庭与细胞凋亡[J].国外医学分子生物学分册[J]. 1997, 19(1): 12-16.
    [55] Rabuffetti M, Sciorati C, Tarozzo G, et al. Inhibition of caspase-1 like activity by Ac-Tyr-Val-Ala-Asp-chloromethy1 ketone induces long-lasting neuroprotection in cerebral ischemia through apoptosis reduction and decrease of proin-flammatory cytokines [J]. J Neurosci, 2000, 20: 4398-4404.
    [56] Benchoua A, Guegan C, Couriaud C, et al. Specific caspase pathways are activated in the two stages of cerebral infarction [J]. J Neurosci, 2001, 21: 7127-7134.
    [57] Hedtjam M, Leverin AL, Eriksson K, et al. Interleukin-18 involvement in hypoxic- ischemic brain injury [J]. J Neurosci, 2002, 22: 5910-5919.
    [58] Harrison DC, Davis RP, Bond BC, Campbell CA, James MF, Parsons AA, et al. Caspase mRNA expression in a rat model of focal cerebral ischemia [J]. Braim Res Mol Brain Res, 2001, 89(1-2): 133-146.
    [59] Kim NG, Lee H, Son E, Kwon OY, Park JY, Park JH, et al. Hypoxic induction of caspase-11/caspase-1/interleukin-1beta in brain microglia [J]. Brain Res Mol Brain Res, 2003, 114(2): 107-114.
    [60] Arndt PG, Fantuzzi G, Abraham E.Expression of interleukin-18 in the lung after endotoxemia or hemorrhage-induced acute lung injury [J]. Am J Respir Cell Mol Biol, 2000, 22(6): 708-713.
    [61]刘波,何忠杰,林洪远等.创伤病人白细胞介素-18的变化及其致炎效应[J].世界急危重病医学杂志,2007,4(1):1639-1641.
    [62]辛玥,初桂兰.缺氧缺血新生大鼠脑组织caspase-1白细胞介素-18mRNA表达及其关系探讨[J].中华儿科杂志,2005,43(8):568-571.
    [63]毛定安,殷群等. Caspase-1及其激活的细胞因子在发育期惊厥性脑损伤中的作用[J].中国当代儿科杂志, 2006, 8(2): 133-136.
    [64] Dinarello CA. Interleukin-18, a proinflammatory cytokine [J]. Eur Cytokine Netw, 2000, 11(3): 483-486.
    [65] Norman J, Denham W, Chapman V, et al. TNF induces acinar cell apoptosis during acute pancreatitis. Gastroenterology, 1998, 114: 808-816.
    [66] Sndoval D, Gukovskaya A, Reavey P, et al. The role of neutrophilis and placte2 activating factor in mediating experimental pancreatitis. Gastroenterology, 1996, 111: 1081-1091.
    [67] O’Neill S, O’Neill AJ, Couroy E, et al. Altered caspase expression results in delayed neutrophil apoptosis in acute pancreatitis [J]. J Leukoc Biol, 2000, 68(1): 15-20.
    [68] Wang CY, Guttridge DC, Mayo MW, et al. NF-κB induces expression of the BCL-2 homologue AIBfI-1 to preferentially suppress chemotherapy induced apoptotis [J]. Mol Cell Biol, 1999, 19(9): 5923-5929.
    [69] Hinz M, Loser P, Mathas S, et al. Constitutive NF-ΚB maintains high expression of a characteristic genenetwork, including CD40, CD86, and a set of antiapoptotic genes in Hodgkin/Reed2 Sternberg cells [J]. Blood, 2001, 97(9): 2798-2807.
    [70] Lebel-Binay S, Berger A, Zinzindohoue F, et al. Interleukin-18: biological properties and clinical implication [J]. Eur Cytokine Netw, 2000, 11(1): 15-26.
    [71] Conti B, Park LC, Calingasan NY, et al. Cultures of astrocytes and microglia express interleukin-18 [J]. Brain Res Mol Brain Res, 1999, 67(1): 46-52.
    [72] Mori I, Hossain MJ, Takeda K, et al. Impaired microglia activation in the brain of IL-18-gene-disrupted mice after neurovirulent influenza A virus infection [J]. Virology, 2001, 287(1): 163-170.
    [1] Saha N, Moldovan F, Tardif G, et al. Interleukin-1βconverting enzyme/caspase-1 in human osteoarthritis tissues. Arthritis Rheuw, 1999, 42(8): 1577-1587.
    [2]韩泽广,陈国强,陈竺等.白细胞介素1β转化酶家族与细胞凋亡[J].国外医学分子生物学分册,1997,19(1):12-16.
    [3] Wang J, Lenardo MJ, Roles of caspases in apoptosis, development, and cytokine maturation revealed by homozygous gene deficiencies [J]. J Cell Sci, 2000, 113(pt5): 753-757.
    [4] Rothwell NJ. Functions and mechanisms of interleukin-1 in the brain. TIPS, 1991, 12, 430-436.
    [5] Dinarello CA. Biologic basis for interleukin-1 in disease [J]. Blood, 1996, 87(6): 2095-2147.
    [6] Dinarello CA. Infection, fever and exogenous and endogenous pyrogens some concepts have changed [J]. J Endotoxin Res, 2004, 10(4):201-222.
    [7] Hu H, Tang KF, Chua YN, et al. Expression of Interleukin-18 by nasopharyngeal carcinoma a cell: a factor that possibly initates the massive leukocyte infiltration [J]. Hum Pathol, 2004, 35(6): 722.
    [8] Pages F, Berger A, Henglein B, et al. Modulation of Interleukin-18 expression in human colon carcinoma consequences for tumor immune sureillence [J]. Int J Cancer, 1999, 84(3): 326.
    [9] Tasaki K, Yoshida Y, Maeda T, et al. Protective immunity is induced in murine colon carcinoma cells by the expression of interleukin-12 or interleukin-18, which activate type I helper T cell [J]. Cancer Gene Ther, 2000, 7(3): 247.
    [10] Tinel A, Tschopp J. The PIDDosome, a protein complex implicated in activation of caspase-2 in response to genotoxic stress [J]. Science, 2004, 304(5672): 843-846.
    [11] Jiang X, Wang X. Cytochrome C-mediated apoptosis [J]. Annu Rev Biochem, 2004, 73: 87-106.
    [12] Peter ME, Krammer PH. The CD95(APO-1/Fas) DISC and beyond [J]. Cell Death Differ, 2003, 10(1): 26-35.
    [13] Martinon F, Bums K, Tschopp J. The inflammasome amolecular platform triggering activation of inflammatory caspases and processing of proIL-1β[J]. Mol Cell, 2002, 10(2): 417-426.
    [14] Tschopp J, Martinon F, Bums K. NALPs a novel protein family involved in inflammation [J]. Nat Rev Mol Cell Biol, 2003, 4(2): 95-104.
    [15] Mariathasan S, Newton K, Monack DM, et al. Differential activation of the inflammasome by caspase-1 adaptors ASC and Ipaf [J]. Nature, 2004, 430(6996): 213-218.
    [16] Yamamoto M, Yaginuma K, Tsutsui H, et al. ASC is essential for LPS-induced activation of pro-caspase-1 independently of TLR associated signal adaptor moleculed [J]. Genes Cells, 2004, 9(11): 1055-1067.
    [17] Faustin B, Lartigue L, Bruey JM, et al. Reconstituted NALP1 inflammasome reveals two-step mechanism of caspase-1 activation [J]. Mol Cell, 2007, 25(5): 713-724.
    [18] Lich JD, Arthur JC, Ting JP. Cryopyrin in from the cold [J]. Immunity, 2006, 24(3): 241-243.
    [19] Martinon F, Tschopp J. Inflammatory caspases and inflammasomes master switches of inflammation [J]. Cell Death Differ, 2007, 14(1): 10-22.
    [20] Mariathasan S, Weiss DS, Newton K, et al. Cryopyrin activates the inflammasome in response to toxins and ATP [J]. Nature, 2006, 440(7081): 228-232.
    [21] Martinon F, Petrilli V, Mayor A, et al. Gout-associated uric acid crystals activate the NALP3 in flammasome [J]. Nature, 2006, 440(7081): 237-241.
    [22] Kanneganti TD, Ozoren N, Body-M alapel M, et al. Bacterial RNA and small antiviralcompounds activate caspase-1 through cryopyrin/Nalp3 [J]. Nature, 2006, 440(7081): 233-236.
    [23] Sutterwala FS, Ogura Y, Szczepanik M, et al. Critical role for ALP3/CIASI/Cryopyrin in innate and adaptive immunity [J]. Immunity, 2006, 24(3): 317-327.
    [24] Boyden ED, Dietrich WF. Nalplb controls mouse macrophage susceptibility to anthrax lethal toxin [J]. Nat Genet, 2006, 38(2): 240-244.
    [25] Hersh D, Monack DM, Smith MR, et al. The Salm onella invasi SipB induces macrophage apoptosis by binding to caspase-1 [J]. Proc N atl A cad SciU S A, 1999, 96(5): 2396-2401.
    [26] Hilbi H, Moss JE, Hersh D, et al. Shigella-induced apoptosis is dependent on caspase-1 which binds to IpaB [J]. J Biol Chem, 1998, 273(49): 32895-32900.
    [27] Zamboni DS, Kobayashi KS, Kohlsdorf T, et al. The Bircle cytosolic pattern recognition receptor contributes to the detection and control of Legionella pneumophila infection [J]. Nat Immu nol, 2006, 7(3): 318-325.
    [28]马学琴,张亚辉,周忠良,等.炎症Caspase与相关疾病[J].生命科学,2006,18(5):452-456.
    [29] Rothwell N, Allan S, Toulmond S. The role of interleukin-1 in acute neurodegeneration and stroke: pathophy siological and the rapeutic implications. JCL in Invest, 1997, 100(11): 2648-2652.
    [30] Li M W, Ona V O, Guegan C, et al. Functional role of caspase-1 and caspase-3 in an ALS Transgenic mouse model. Science 2000, 288(5464): 335-339.
    [31] Guegan C, Vila M, Teissman P, et al. Instrumental activation of bid by caspase-1 in a transgenic mouse model of ALS.Mol Cell Neurosci, 2002, 20(4): 553-562.
    [32] Friedlander RM, Brown RH, GagliardiniV,et al.Inhibition of ICE slows ALS in mice. Nature, 1997, 388: 31.
    [33] Zhang Y, Ona V O, Li M W, et al. Sequential activation of individual caspases, and ofalterations in Bcl-2 proapoptotic signals in a mouse model of Huntington’s disease. J Neurochem, 2003, 87(5): 1184-1192.
    [34] Ona V O, Li M W, Vonsattel J P G, et al. Inhibition of caspase-1 slows disease progression in a mouse model Huntington’s disease. Nature, 1999, 399(6733): 263-267.
    [35] Chen M, Ona VO, Li M, et al. Minocycline inhibits caspase-1 and caspase-3 expression and delays mortality in a transgenic mouse model of Huntington disease. Nat Med, 2000, 6(7): 797-801.
    [36] Boutin H, Kimber I, Rothwell N J, et al. The expanding interleukin-1 family and its receptors: do alternative IL-1 receptor/signaling pathways exist in the brain? Mol Neurobiol, 2003, 27(3): 239-248.
    [37] Kim NG, Lee H, Son E, et al. Hypoxic induction of caspase-11/caspase-1/ interleukin -1beta in brain microglia [J]. Brain ResMol Brain Res, 2003, 114(2): 107-114.
    [38] Hedt Jarn M, Levein AL, Eriksson, et al. Interleukin-18 involvement in hypoxic- ischemic brain injury [J]. J Neurosci, 2002, 22(14): 5910-5919.
    [39] Hayashi Y, Jikihara I, Yagi T, et al. Immunohis to chemical investigation of caspase-1 and effect of caspase-1 inhibitor in delayed neuronal death after transient cerebral ischemia. Brain Res, 2001, 893(1-2):113-120.
    [40] Vanden Berg WB. The role of cytokines and growth factors ncartilage destruction in osteoarthritis and rheumatoid arthritis. ZRheumatol, 1999, 58(3): 136-141.
    [41] Samad TA, Moore KA, Sapirstein A, et al. Inerleukin-1β-mediated induction of COX-2 in the CNS contributes to inflammatory pain hypersensitivity. Nature, 2001, 410 (6827): 471-475.
    [42] Rudolphi K, Gerwin N, Verzijl N, et al. Pranlnacasan, an inhibitor of interleukin-1βcoverting enzyme, reduces joint damage in two murine models of osteoarthritis. Osteoarthritis Cartilage, 2003, 11(10):738-746.
    [43] Rouquet N, Pages J C, Molina T, et al. ICE inhibitor YVADcmk is a potent therapeuticagent against in vivoliver apoptosis. Curr Biol, 1996, 6(9): 1192-1195.
    [44] Hoglen N C, Hirakawa B P, Fisher C D, et al. Characterization of the caspase inhibitor IDN-1965 in a model of apoptosis-associated liver injury.JPharmacol Exp Ther, 2001, 297(2): 811-818.
    [45] Kim K, Kim Y M, Park M, et al. A broad-spectrum caspase inhibitor blocks concanavalin A- induced hepatitis inmice. Clin Immunol, 2000, 97(3): 221-233.
    [46]张肇达,严律南,刘续宝.急性胰腺炎.北京:人民卫生出版社. 2004:1-3.
    [47] Denham W, Yang J, Norman J.Evidence for an unknown component of pancreaticascites that induces adult respiratory distress syndrome through an interleukin-1 and tumor necrosis factor-dependent mechanism.Surgery, 1997, 122(2): 295-301.
    [48] Norman J, Yang J, Fink G, et al. Severity and mortality of experimental pancreatitis are denpendent on interleukin-1 converting enzyme (ICE). J Interfer on Cytokine Res, 1997, 17(2): 113-118.
    [49] Rau B, Paszkowski A, Lillich S, et al. Differential effects of caspase-1/ interleukin-1beta converting enzyme on acinar cell necrosis and Apoptosis in severe acute experimental pancreatitis [J]. Lab Invest, 2001, 81(7): 1001-1013.
    [50] Rau B, Baumgart K, Paszkowski A S, et al. Clinical relevance of caspase-1 activated cytokines in acute pancreatitis:high correlation of serum interleukin-18 with pancreaticnecrosis and systemic complications.Crit Care Med, 2001, 29(8): 1556-1562.
    [51] Paszkowski AS, Rau B, Mayer JM, et al. Theraeutic application of caspase 1/interleukin- 1beta-converting enzyme inhibitor decreases the death rate in severe acute expermerntal pancreatitis [J]. Ann Surg, 2002, 235(1): 68-76.
    [52] Jee CD, Lee HS, Bae SI, et al. Loss of Caspase-1 gene expression in human gastric carcinoma and cell lines [J]. Int J O ncol, 2005, 26(5): 1265.
    [53] Yam anaka K, Clark R, Dow giert R, et al. Expression of interleukin-18 and caspase-1 in cutaneous T-cell lymphoma [J]. Clin Cancer Res, 2006, 12(2): 376.
    [54] Feng Q, Li P, Salamance C, et al. caspase-1 is down-regulated in human ovarian cancer cells and overexpression of caspase-1 alpha induces apoptosis [J]. Cancer Res, 2005, 65(19): 8591.
    [55] Hu H, Tang KF, Chun YN, et al. Expression of Interleukin-18 by nasopharyngeal carcinoma a cell: a factor that possibly initates the massive leukocyte infiltration [J]. Hum Pathol, 2004, 35(6): 722.
    [56] Pages F, Berger A, Henglein B, et al. Modulation of Interleukin-18 expression in human colon carcinoma consequences for tumor immune sureillence [J]. Int J Cancer, 1999, 84(3): 326.
    [57] Tasaki K, Yoshida Y, Maeda T, et al. Protective immunity is induced in murine colon carcinoma cells by the expression of interleukin-12 or interleukin-18, which activate type I helper T cell [J]. Cancer Gene Ther, 2000, 7(3): 247.
    [58]陈小红,王化修. Caspase-1和IL-18在胃癌组织中的表达及临床意义[J].实用癌症杂志,2008,23(3),132-134.
    [59] Huang WX, Huang P, Hillert J, Increased expression of caspase-1 and interleukin-18 in periphera blood mononuclear cells in patients with multiplesclerosis. MultScler, 2004, 10(5): 482-487.
    [60] Pages F, Lazar V, Berger A, et al. Analysis of interleukin-18, interleukin-1 converting enzyme(ICE) and interleukin-18-related cytokines in Crohn’s disease lesions. EurCytokine Netw, 2001, 12(1): 97-104.
    [61] Dinarello CA. Therapeutic strategies to reduce IL-1 activity in treating localand systemic inflammation. Curr Opin Pharmacol, 2004, 4(4):378-385.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700