四种绦虫蛋白酶及其抑制剂的系统挖掘与功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
绦虫(tapeworm)属于扁形动物门(Platyhelminthes)、绦虫纲(Cestoda),营寄生生活。据记载,地球上约有5000多种绦虫,其中有些种类,如细粒棘球绦虫、多房棘球绦虫和猪带绦虫等严重威胁人类和动物健康。棘球绦虫的中绦期(幼虫)寄生在人和动物的肝、肺等脏器,引起肝、肺包虫病,猪带绦虫的幼虫可寄生于人和动物的脑和肌肉组织,引起脑囊虫病或肌肉囊虫病。防治这些寄生虫病具有重要的公共卫生学意义。因此,药物靶标分子及疫苗和诊断候选抗原分子的筛选是绦虫学研究的热点,也是绦虫病防治的关键环节。猪带绦虫、细粒棘球绦虫、多房棘球绦虫和微口膜壳绦虫基因组的解析与研究,为绦虫病预防和控制技术研究与开发提供了丰富的数据资源。
     蛋白酶通过调控靶标蛋白质的激活、合成以及折叠来参与调解生物机体的绝大部分生理过程。蛋白酶对病毒、细菌和寄生虫相关病原体的复制和传播也至关重要。因此,蛋白酶及其抑制剂已成为医学领域疫苗和药物开发的重要靶标。
     本研究以四种绦虫基因组数据及其推导的蛋白质组数据为研究对象,以蛋白酶及其抑制剂为研究靶标,充分利用生物信息学技术,并结合一些专业的数据库,全面鉴定、分析了四种绦虫中蛋白酶和蛋白酶抑制剂的数量、种类及其潜在的功能。具体分析结果如下:
     1.分别从猪带绦虫(亚洲株)、细粒棘球绦虫、多房棘球绦虫、微口膜壳绦虫推导的蛋白质序列中鉴定出199、179、189和172个蛋白酶,约占蛋白编码基因总数的1.67%、1.75%、1.8%和1.70%,不包括无效冗余序列、无蛋白酶活性的同系物和可能出现的假基因等。
     2.鉴定的这些蛋白酶分布在天冬氨酸蛋白酶、半胱氨酸蛋白酶、金属蛋白酶、丝氨酸蛋白酶和苏氨酸蛋白酶这五大超家族中,其中,所占比例最高的是金属蛋白酶,约为33%-35%,其次是半胱氨酸蛋白酶(25%-29%)和丝氨酸蛋白酶(20%-28%),而天冬氨酸蛋白酶(2.2%-12%)和苏氨酸蛋白酶(7.5%-8.4%)所占比例较小。这些比例与其他物种中蛋白酶基因所占比例基本一致。这五类蛋白酶中,天冬氨酸蛋白酶所占比例在四种绦虫间变化最大,在猪带绦虫高达12%,而在其他三种绦虫则仅为2.2%-3.7%;其他四类蛋白酶在四种绦虫间所占比例变化较小。与近缘物种(吸虫和线虫)的比较研究发现,这四种绦虫中苏氨酸蛋白酶所占比例明显比曼氏血吸虫(6%)和秀丽线虫(5%)的高,而猪带绦虫中天冬氨酸蛋白酶所占比例显著高于曼氏血吸虫(4%)、秀丽线虫(5%)及其他三种绦虫。在半胱氨酸蛋白酶超家族,四种绦虫中均存在大量组织蛋白酶和泛素化与去泛素化蛋白酶。在丝氨酸蛋白酶超家族,四种绦虫中均存在大量胰蛋白酶样蛋白酶和枯草杆菌蛋白酶样丝氨酸肽链内切酶。
     3.通过KAAS(KEGG AutomaticAnnotation Server)分析发现,猪带绦虫、细粒棘球绦虫、多房棘球绦虫和微口膜壳绦虫中所鉴定的蛋白酶分别有117、163、146和165个能够找到直向同源分子(orthology)和KEGG(Kyoto Encyclopedia of Genes and Genomes)功能途径。其中,四种绦虫中与人类疾病相关的蛋白酶最多,分别是37、59、50和62个;参与代谢途径(Metabolism),如能量代谢、核酸和氨基酸代谢及药物代谢等的蛋白酶分别有24、20、20和27个;参与遗传信息传递过程的酶分子分别有19、22、22和19个;参与细胞途径,如细胞能量的转运、细胞的运动性、细胞增殖和死亡、细胞间信息的交流等的酶分子分别有21、27、25和25个;而参与环境信息处理过程(如信号转导、信号分子及其相互作用等)和生物有机体系统组成(如免疫、神经、消化、循环、分泌等系统)的依次分别是8、10、9、13个和8、25、20、19个。四种绦虫间比较分析发现,猪带绦虫中参与人类疾病和系统组成的蛋白酶显著少于其他三种绦虫。
     4.从猪带绦虫、细粒棘球绦虫、多房棘球绦虫和微口膜壳绦虫推导的蛋白质组中分别鉴定到35、38、36和27个蛋白酶抑制剂,不包括无效冗余序列、无抑制活性的同系物,主要分布在6-7个蛋白酶抑制剂家族。大部分抑制剂含有N-末端信号肽序列(44%-72%)和α跨膜螺旋结构(15%-31%)。
     5.所鉴定的蛋白酶抑制剂主要包括库尼茨型(Kunitz, KU)丝氨酸蛋白酶抑制剂、丝氨酸蛋白酶抑制剂(serpins)、半胱天冬酶抑制剂(BIR)及胱蛋白(Cystatins)等。其中,从四种推测蛋白质数据库中分别鉴定到20、21、20和14个蛋白质至少含有一个库尼茨型(Kunitz, KU)结构域,大部分Kunitz型丝氨酸蛋白酶抑制剂只含有一个Kunitz结构域,也有一些(2-3个)含有多个Kunitz结构域,且绝大部分蛋白质含有N-末端信号肽序列。几乎所有Kunitz结构域均含有保守的三个二硫键结构,也有极个别结构域中二硫键位置的半胱氨酸残基发生突变。我们从细粒棘球绦虫蛋白质数据库中鉴定的21个Kunitz抑制剂涵盖了Gonzalez等人曾鉴定的8个Kunitz丝氨酸蛋白酶抑制剂(EgKU1-8)。
     此外,从这四种绦虫蛋白质数据库中鉴定到5、6、4和6个丝氨酸蛋白酶抑制剂serpins,均含有较为保守的反应中心环。其中,从多房棘球绦虫鉴定的一个蛋白(EmuJ_001193100)与Merckelbach和Ruppel于2007年报道的多房棘球绦虫丝氨酸蛋白酶抑制剂serpinEmu序列完全相同。
     本研究将为寄生虫致病机理与宿主免疫抑制机理等研究提供新的思路,为新型、高效抗囊虫病/包虫病等蠕虫病的药物或疫苗研发提供重要的靶标分子。
Tapeworm belongs to Class Cestoda of Phylum Platyhelminthes. There are approximately5000specieson the earth, and among them, some species, such as Echinococcus granulosus, E. multilocularis,Taenia solium and so on, pose great threat to human and animal health. During living in livers, lungsand other organs of human and animals, metacestode larvae of E. granulosus and E. multilocularis leadto liver and/or lung hydatid disease. Neurocysticercosis or muscle cysticercosis occurs whenmetacestodes of T. solium are situated in the brain or muscle of human and animals. Prevention andtreatment on these parasitic diseases have important public health significance. Researches on novelefficient chemotherapeutic agents and immunoprophylaxis vaccines against parasites are emerging to behotspots in this field. It is a key step to screen and identify the chemotherapy targets and vaccinecandidates for the development of chemotherapeutic drugs and vaccines. Recently, the project ofsequencing and annotation of the genomes of T. solium, E. granulosus, E. multilocularis andHymenolepis microstoma has been completed. The data will provide rich resources for further studieson prevention and treatment methods against cestode infections.Proteases, also termed proteinases or peptidases, are proteolytic enzymes, involved in variousphysiological processes of all living organisms through regulating protein activation, synthesis andfolding of target proteins or molecules. Proteases are also essential for replication and dissemination ofviral, bacterial, parasitic and related pathogens, and therefore, the proteases are important targets forvaccines and drugs.
     In the present study, we identified and described the numbers, types, and potential functions of theproteases and their inhibitors from the putative proteomic data of four tapeworms using bioinformaticstechnology, combined with some databases. The results are as follows.
     1. After culling the data of redundant sequences, inactive homologs and putative pseudogenes, we haveidentified199,179,189and172proteases, which correspond to1.67%,1.75%,1.8%and1.70%of thepredicted proteins of T. solium (Asian strain), E. granulosus, E. multilocularis and H. microstoma,respectively.
     2. As expected, the proteases identified here are grouped into five catalytic classes with differentproportions:2%-12%aspartic proteases,25%-29%cysteine proteases,33%-35%metalloproteases,20%-28%serine proteases, and7.5%-8.4%threonine proteases, respectively, in four tapeworms. These proportions are largely in harmony with those from other organisms. Among five classes, theproportions of the aspartic proteases in T. solium (12%) is greater than those in other three tapeworms(2.2%-3.7%), and no significant differences are observed in other four protease classes among fourtapeworms. Comparatively, the proportions of the threonine proteases in the four tapeworms are higherthan those of Schistosoma mansoni (6%) and Caenorhabditis elegans (5%). We also note that obviousexpansion in the relative proportion of the aspartic proteases in T. solium compared to S. mansoni (4%)and C. elegans (5%). In the cysteine protease classes, a large number of Cathepsins and ubiquitinationand deubiquitination proteases were identified. Also, lots of trypsin-like proteases and subtilisin-likeserine endopeptidase were observed in the serine proteases.
     3. KAAS (KEGG Automatic Annotation Server) was able to assign orthology and KEGG (KyotoEncyclopedia of Genes and Genomes) functional pathways to117,163,146and165of T. solium, E.granulosus, E. multilocularis and H. microstoma proteases, respectively. Among them, the largestnumber of proteases is assigned to be engaged in human diseases:37,59,50and62in the fourtapeworms, respectively.24,20,20and27proteases are assigned to be involved in metabolic processes(including energy, nucleotide, amino acid and drug metabolism), respectively, while19,22,22and19proteases are involved in genetic information processing, respectively.21,27,25and25are involved incellular processes (such as communication and cell cycling), and8,10,9,13and8,25,20,19proteasesof the four tapeworms participate in environmental information processes and organismal systems,respectively. Comparatively, among the four tapeworms, a larger number of proteases are supposed tobe involved in human diseases in T. solium than those in other three cestodes.
     4. We identified35,38,36and27protease inhibitors from T. solium, E. granulosus, E. multilocularisand H. microstoma genomes, respectively, while inactive homologs and putative pseudogenes are notincluded. These inhibitors are classed into6-7inhibitor families, and most of them are containingN-terminal signal peptide sequence (44%-72%) and transmembrane α helix (15%-31%).
     5. The protease inhibitors identified here consist of Kunitz serine protease inhibitors, serine proteaseinhibitors (serpins), caspase inhibitors (BIR), Cystatin (Cystatins) and so on. We observed that20,21,20and14proteins containing at least one Kunitz domains were present in the four cestodes genomes,respectively, and the majority of these Kunitz serine proteases contained a N-terminal signal peptidesequence. Almost all of these Kunitz domains were comprised of conserved three disulfide bonds.In addition, we identified5,6,4and6serine protease inhibitors (serpins) in these four tapeworms,which contain a conservative reactive center loop. It is noted that the serpins sequences of E.multilocularis (EmuJ_001193100) identified here are the same as that of serpinEmureported by Merckelbach and Ruppel in2007.
     In conclusion, these comprehensive analyses on these proteases will not only represent a goodcomplement to the growing knowledge of proteolytic enzymes, but also provide a foundation forexpanding our knowledge in cestodes and exploring potential targets for the development of newchemotherapies and immunoprophylaxis
引文
1.李祥春,张开光.组织蛋白酶B与胃癌研究进展.安徽医药,2010:996-998.
    2.曾广智,谭宁华,贾锐锐,等.组织蛋白酶及其抑制剂研究进展.云南植物研究,2005:337-354.
    3. Abdulla, M.H., Lim, K.C., Sajid, M., et al. Schistosomiasis mansoni: Novel chemotherapy using acysteine protease inhibitor. Plos Med,2007,4:130-138.
    4. Alberts, B. Molecular biology of the cell,4th Edition. Garland Science, NewYork,2002,1548.
    5. Alcala-Canto, Y., Ibarra-Velarde, F., Sumano-Lopez, H., et al. Effect of a cysteine proteaseinhibitor on Fasciola hepatica (liver fluke) fecundity, egg viability, parasite burden, and size inexperimentally infected sheep. Parasitol Res,2007,100:461-465.
    6. Alvizo, O., Mittal, S., Mayo, S.L., et al. Structural, kinetic, and thermodynamic studies ofspecificity designed HIV-1protease. Protein Sci,2012,21:1029-1041.
    7. Ascenzi, P., Bocedi, A., Bolognesi, M., et al. The bovine basic pancreatic trypsin inhibitor (Kunitzinhibitor): a milestone protein. Curr Protein Pept Sci,2003,4:231-251.
    8. Ashburner, M., Ball, C.A., Blake, J.A., et al. Gene ontology: tool for the unification of biology. TheGene Ontology Consortium. Nat Genet,2000,25:25-29.
    9. Assana, E., Kyngdon, C.T., Gauci, C.G., et al. Elimination of Taenia solium transmission to pigs ina field trial of the TSOL18vaccine in Cameroon. Int J Parasitol,2010,40:515-519.
    10. Assana, E., Lightowlers, M.W., Zoli, A.P., et al. Taenia solium taeniosis/cysticercosis in Africa:Risk factors, epidemiology and prospects for control using vaccination. Vet Parasitol,2012.
    11. Atkinson, H.J., Babbitt, P.C., Sajid, M. The global cysteine peptidase landscape in parasites. TrendsParasitol,2009,25:573-581.
    12. Barrett, A.J., Rawlings, N.D., Woessner, J.F. Handbook of proteolytic enzymes,2nd ed. Edition.Elsevier Academic Press, Amsterdam; London,2004
    13. Becker, A.B., Roth, R.A. An unusual active site identified in a family of zincmetalloendopeptidases. Proc Natl Acad Sci U SA,1992,89:3835-3839.
    14. Berriman, M., Haas, B.J., LoVerde, P.T., et al. The genome of the blood fluke Schistosoma mansoni.Nature,2009,460:352-358.
    15. Beuming, T., Niv, M.Y., Skrabanek, L.A., et al. Specific PDZ-peptide interactions identified withPDZBase-a database of PDZ-domain mediated protein-protein interactions. Biophys J,2005,88:219a-219a.
    16. Blanton, R.E., Licate, L.S., Aman, R.A. Characterization of a native and recombinant Schistosomahaematobium serine protease inhibitor gene product. Mol Biochem Parasitol,1994,63:1-11.
    17. Bode, W., Gomis-Ruth, F.X., Huber, R., et al. Structure of astacin and implications for activation ofastacins and zinc-ligation of collagenases. Nature,1992,358:164-167.
    18. Bos, D.H., Mayfield, C., Minchella, D.J. Analysis of regulatory protease sequences identifiedthrough bioinformatic data mining of the Schistosoma mansoni genome. BMC Genomics,2009,10:488.
    19. Botelho, T.O., Guevara, T., Marrero, A., et al. Structural and functional analyses reveal thatStaphylococcus aureus antibiotic resistance factor HmrA is a Zinc-dependent esndopeptidase. JBiol Chem,2011,286:25697-25709.
    20. Britton, C., Murray, L. Cathepsin L protease (CPL-1) is essential for yolk processing duringembryogenesis in Caenorhabditis elegans. J Cell Sci,2004,117:5133-5143.
    21. Britton, C., Murray, L. A cathepsin L protease essential for Caenorhabditis elegans embryogenesisis functionally conserved in parasitic nematodes. Mol Biochem Parasit,2002,122:21-33.
    22. Britton, C., Redmond, D.L., Knox, D.P., et al. Identification of promoter elements of parasitenematode genes in transgenic Caenorhabditis elegans. Mol Biochem Parasit,1999,103:171-181.
    23. Brown, W.M., Dziegielewska, K.M. Friends and relations of the cystatin superfamily--newmembers and their evolution. Protein Sci,1997,6:5-12.
    24. Cadinanos, J., Schmidt, W.K., Fueyo, A., et al. Identification, functional expression and enzymicanalysis of two distinct CaaX proteases from Caenorhabditis elegans. Biochem J,2003,370:1047-1054.
    25. Caffrey, C.R., Britton, C., H., M.J. Chapter445-Helminth Cysteine Proteases, Handbook ofProteolytic Enzymes,2013,2.
    26. Caffrey, C.R., Britton, C., McKerrow, J.H. Chapter445-Helminth Cysteine Proteases Handbookof Proteolytic Enzymes.2013,2:1949-1957.
    27. Caffrey, C.R., McKerrow, J.H., Salter, J.P., et al. Blood 'n' guts: an update on schistosome digestivepeptidases. Trends Parasitol,2004,20:241-248.
    28. Caffrey, C.R., Ryan, M.F. Characterisation of proteolytic activity of excretory-secretory productsfrom adult Strongylus vulgaris. Vet Parasitol,1994,52:285-296.
    29. Caffrey, C.R., Steverding, D. Kinetoplastid papain-like cysteine peptidases. Mol Biochem Parasitol,2009,167:12-19.
    30. Cai, G.B., Bae, Y.A., Kim, S.H., et al. A membrane-associated metalloprotease of Taenia soliummetacestode structurally related to the FACE-1/Ste24p protease family. International Journal forParasitology,2006,36:925-935.
    31. Cai, X., Yuan, G., Zheng, Y., et al. Effective production and purification of the glycosylatedTSOL18antigen, which is protective against pig cysticercosis. Infect Immun,2008,76:767-770.
    32. Cai, Y.D., Chou, K.C. Predicting membrane protein type by functional domain composition andpseudo-amino acid composition. J Theor Biol,2006,238:395-400.
    33. Carrell, R.W., Stein, P.E., Fermi, G., et al. Biological implications of a3A structure of dimericantithrombin. Structure,1994,2:257-270.
    34. Chandramohanadas, R. Apicomplexan parasites co-opt host calpains to facilitate their escape frominfected cells (vol324, pg794,2009). Science,2009,326:522-522.
    35. Chen, J.M., Rawlings, N.D., Stevens, R.A., et al. Identification of the active site of legumain linksit to caspases, clostripain and gingipains in a new clan of cysteine endopeptidases. FEBS Lett,1998,441:361-365.
    36. Chitwood, D.J. Research on plant-parasitic nematode biology conducted by the United StatesDepartment ofAgriculture-Agricultural Research Service. Pest Manag Sci,2003,59:748-753.
    37. Choe, Y., Leonetti, F., Greenbaum, D.C., et al. Substrate profiling of cysteine proteases using acombinatorial peptide library identifies functionally unique specificities. J Biol Chem,2006,281:12824-12832.
    38. Chopin, V., Stefano, G.B., Salzet, M. Amino-acid-sequence determination and biological activity oftessulin, a naturally occurring trypsin-chymotrypsin inhibitor isolated from the leech Theromyzontessulatum. Eur J Biochem,1998,258:662-668.
    39. Chou, K.C. Prediction of protein cellular attributes using pseudo-amino acid composition. Proteins,2001a,43:246-255.
    40. Chou, K.C. Prediction of protein cellular attributes using pseudo-amino acid composition (vol43,pg246,2001). Proteins,2001b,44:60-60.
    41. Chou, K.C., Cai, Y.D. Prediction of protease types in a hybridization space. Biochem Biophys ResCommun,2006,339:1015-1020.
    42. Chou, K.C., Cai, Y.D. Prediction of protein subcellular locations by GO-FunD-PseAA predictor.Biochem Biophys Res Commun,2004,320:1236-1239.
    43. Chou, K.C., Shen, H.B. ProtIdent: a web server for identifying proteases and their types by fusingfunctional domain and sequential evolution information. Biochem Biophys Res Commun,2008,376:321-325.
    44. Correnti, J.M., Brindley, P.J., Pearce, E.J. Long-term suppression of cathepsin B levels by RNAinterference retards schistosome growth. Mol Biochem Parasitol,2005,143:209-215.
    45. Day, T.A., Chen, G.Z. The metalloprotease inhibitor1,10-phenanthroline affects Schistosomamansoni motor activity, egg laying and viability. Parasitology,1998,116:319-325.
    46. de Oliveira Fraga, L.A., Lamb, E.W., Moreno, E.C., et al. Rapid induction of IgE responses to aworm cysteine protease during murine pre-patent schistosome infection. BMC Immunol,2010,11:56.
    47. de Silva, N.R., Brooker, S., Hotez, P.J., et al. Soil-transmitted helminth infections: updating theglobal picture. Trends Parasitol,2003,19:547-551.
    48. De Vries, E., Bakker, N., Krijgsveld, J., et al. An AC-5cathepsin B-like protease purified fromHaemonchus contortus excretory secretory products shows protective antigen potential for lambs.Vet Res,2009,40.
    49. Delcroix, M., Sajid, M., Caffrey, C.R., et al. A multienzyme network functions in intestinal proteindigestion by a platyhelminth parasite. J Biol Chem,2006,281:39316-39329.
    50. Desmarais, W.T., Bienvenue, D.L., Bzymek, K.P., et al. The1.20angstrom resolution crystalstructure of the aminopeptidase from Aeromonas proteolytica complexed with tris: A tale of bufferinhibition. Structure,2002,10:1063-1072.
    51. Ding, J., Zheng, Y., Wang, Y., et al. Immune responses to a recombinant attenuated Salmonellatyphimurium strain expressing a Taenia solium oncosphere antigen TSOL18. Comp ImmunolMicrobiol Infect Dis,2013,36:17-23.
    52. Dodd, R.B., Drickamer, K. Lectin-like proteins in model organisms: implications for evolution ofcarbohydrate-binding activity. Glycobiology,2001,11:71R-79R.
    53. Donnelly, S., O'Neill, S.M., Stack, C.M., et al. Helminth cysteine proteases inhibit TRIF-dependentactivation of macrophages via degradation of TLR3. J Biol Chem,2010,285:3383-3392.
    54. Duggan, B.M., Dyson, H.J., Wright, P.E. Inherent flexibility in a potent inhibitor of bloodcoagulation, recombinant nematode anticoagulant protein c2. Eur J Biochem,1999,265:539-548.
    55. Dvorak, J., Beckmann, S., Lim, K.C., et al. Biolistic transformation of Schistosoma mansoni:Studies with modified reporter-gene constructs containing regulatory regions of protease genes.Mol Biochem Parasitol,2010,170:37-40.
    56. Dvorak, J., Mashiyama, S.T., Sajid, M., et al. SmCL3, a gastrodermal cysteine protease of thehuman blood fluke Schistosoma mansoni. PLoS Negl Trop Dis,2009,3: e449.
    57. Dy, C.Y., Buczek, P., Imperial, J.S., et al. Structure of conkunitzin-S1, a neurotoxin andKunitz-fold disulfide variant from cone snail. Acta Crystallogr D Biol Crystallogr,2006,62:980-990.
    58. Ebner, S., Sharon, N., Ben-Tal, N. Evolutionary analysis reveals collective properties andspecificity in the C-type lectin and lectin-like domain superfamily. Proteins,2003,53:44-55.
    59. Enemark, H., Al-Sabi, M., Knapp, J., et al. Detection of a high-endemic focus of Echinococcusmultilocularis in red foxes in southern Denmark, January2013. Euro Surveill,2013,18.
    60. Faust, D.M., Guillen, N. Virulence and virulence factors in Entamoeba histolytica, the agent ofhuman amoebiasis. Microbes and Infection,2012,14:1428-1441.
    61. Fojan, P., Jonson, P.H., Petersen, M.T., et al. What distinguishes an esterase from a lipase: a novelstructural approach. Biochimie,2000,82:1033-1041.
    62. Ford, L., Guiliano, D.B., Oksov, Y., et al. Characterization of a novel filarial serine proteaseinhibitor, Ov-SPI-1, from Onchocerca volvulus, with potential multifunctional roles duringdevelopment of the parasite. J Biol Chem,2005,280:40845-40856.
    63. Ford, L., Zhang, J., Liu, J., et al. Functional analysis of the cathepsin-like cysteine protease genesin adult Brugia malayi using RNAinterference. PLoS Negl Trop Dis,2009,3: e377.
    64. Fujinaga, M., Cherney, M.M., Oyama, H., et al. The molecular structure and catalytic mechanismof a novel carboxyl peptidase from Scytalidium lignicolum. Proc Natl Acad Sci U S A,2004,101:3364-3369.
    65. Ge, G., Seo, N.S., Liang, X., et al. Bone morphogenetic protein-1/tolloid-related metalloproteinasesprocess osteoglycin and enhance its ability to regulate collagen fibrillogenesis. J Biol Chem,2004,279:41626-41633.
    66. Geldhof, P., Molloy, C., Knox, D.P. Combinatorial RNAi on intestinal cathepsin B-like proteinasesin Caenorhabditis elegans questions the perception of their role in nematode biology. MolBiochem Parasitol,2006,145:128-132.
    67. Geldhof, P., Visser, A., Clark, D., et al. RNA interference in parasitic helminths: current situation,potential pitfalls and future prospects. Parasitology,2007,134:609-619.
    68. Gettins, P.G. Serpin structure, mechanism, and function. Chem Rev,2002,102:4751-4804.
    69. Ghedin, E., Wang, S., Spiro, D., et al. Draft genome of the filarial nematode parasite Brugia malayi.Science,2007,317:1756-1760.
    70. Ghendler, Y., Arnon, R., Fishelson, Z. Schistosoma mansoni: isolation and characterization ofSmpi56, a novel serine protease inhibitor. Exp Parasitol,1994,78:121-131.
    71. Giraudoux, P., Raoul, F., Pleydell, D., et al. Drivers of Echinococcus multilocularis transmission inChina: small mammal diversity, landscape or climate? PLoS Negl Trop Dis,2013,7: e2045.
    72. Gonzalez, S., Flo, M., Margenat, M., et al. A family of diverse Kunitz inhibitors fromEchinococcus granulosus potentially involved in host-parasite cross-talk. PLoS One,2009,4:e7009.
    73. Goodwin, R.L., Baumann, H., Berger, F.G. Patterns of divergence during evolution of alpha1-proteinase inhibitors in mammals. Mol Biol Evol,1996,13:346-358.
    74. Graminho, E.R., da Silva, R.R., de Freitas Cabral, T.P., et al. Purification, characterization, andspecificity determination of a new serine protease secreted by Penicillium waksmanii. ApplBiochem Biotechnol,2013,169:201-214.
    75. Grasberger, B.L., Clore, G.M., Gronenborn, A.M. High-resolution structure of Ascaris trypsininhibitor in solution: direct evidence for a pH-induced conformational transition in the reactive site.Structure,1994,2:669-678.
    76. Gregory, W.F., Maizels, R.M. Cystatins from filarial parasites: evolution, adaptation and functionin the host-parasite relationship. Int J Biochem Cell Biol,2008,40:1389-1398.
    77. Grutter, M.G. Caspases: key players in programmed cell death. Curr Opin Struct Biol,2000,10:649-655.
    78. Guay, J., Falgueyret, J.P., Ducret, A., et al. Potency and selectivity of inhibition of cathepsin K, Land S by their respective propeptides. Eur J Biochem,2000,267:6311-6318.
    79. Guiliano, D.B., Hong, X.Q., McKerrow, J.H., et al. A gene family of cathepsin L-like proteases offilarial nematodes are associated with larval molting and cuticle and eggshell remodeling. MolBiochem Parasit,2004,136:227-242.
    80. Hartmann, S., Lucius, R. Modulation of host immune responses by nematode cystatins. Int JParasitol,2003,33:1291-1302.
    81. Hashmi, S., Britton, C., Liu, J., et al. Cathepsin L is essential for embryogenesis and developmentof Caenorhabditis elegans. J Biol Chem,2002,277:3477-3486.
    82. Hashmi, S., Zhang, J., Oksov, Y., et al. The Caenorhabditis elegans cathepsin Z-like cysteineprotease, Ce-CPZ-1, has a multifunctional role during the worms' development. J Biol Chem,2004,279:6035-6045.
    83. Hegglin, D., Deplazes, P. Control of Echinococcus multilocularis: Strategies, feasibility andcost-benefit analyses. Int J Parasitol,2013,43:327-337.
    84. Hendil, K.B., Kriegenburg, F., Tanaka, K., et al. The20S proteasome as an assembly platform forthe19S regulatory complex. J Mol Biol,2009,394:320-328.
    85. Hengst, U., Albrecht, H., Hess, D., et al. The phosphatidylethanolamine-binding protein is theprototype of a novel family of serine protease inhibitors. J Biol Chem,2001,276:535-540.
    86. Hernandez-Romano, P., Hernandez, R., Arroyo, R., et al. Identification and characterization of asurface-associated, subtilisin-like serine protease in Trichomonas vaginalis. Parasitology,2010,137:1621-1635.
    87. Hirano, K., Yufu, T., Hirano, M., et al. Regulatory mechanism for the expression ofprotease-activated receptors: Arole of small G proteins. J Pharmacol Sci,2004,94:64p-64p.
    88. Hola-Jamriska, L., King, L.T., Dalton, J.P., et al. Functional expression of dipeptidyl peptidase I(Cathepsin C) of the oriental blood fluke Schistosoma japonicum in Trichoplusiani insect cells.Protein Expr Purif,2000,19:384-392.
    89. Hsieh, J.J.D., Cheng, E.H.Y., Korsmeyer, S.J. Taspase1: A threonine aspartase required forcleavage of MLLand proper HOX gene expression. Cell,2003,115:293-303.
    90. Huang, W.Y., Haas, T.A., Biesterfeldt, J., et al. Purification and crystallization of a novelmembrane-anchored protein: the Schistosoma haematobium serpin. Acta Crystallogr D,1999,55:350-352.
    91. Hunt, L.T., Dayhoff, M.O. A surprising new protein superfamily containing ovalbumin,antithrombin-III, and alpha1-proteinase inhibitor. Biochem Biophys Res Commun,1980,95:864-871.
    92. Huntington, J.A., Read, R.J., Carrell, R.W. Structure of a serpin-protease complex shows inhibitionby deformation. Nature,2000,407:923-926.
    93. Huppatz, C., Durrheim, D.N. Control of neglected tropical diseases. N Engl J Med,2007,357:2407; author reply2407-2408.
    94. Hwang, J.H., Lee, W.G., Na, B.K., et al. Identification and characterization of a serine proteaseinhibitor of Paragonimus westermani. Parasitol Res,2009,104:495-501.
    95. Irving, J.A., Pike, R.N., Lesk, A.M., et al. Phylogeny of the serpin superfamily: implications ofpatterns of amino acid conservation for structure and function. Genome Res,2000,10:1845-1864.
    96. Jasmer, D.P., Mitreva, M.D., McCarter, J.P. mRNA sequences for Haemonchus contortus intestinalcathepsin B-like cysteine proteases display an extreme in abundance and diversity compared withother adult mammalian parasitic nematodes. Mol Biochem Parasitol,2004,137:297-305.
    97. Jex, A.R., Liu, S., Li, B., et al. Ascaris suum draft genome. Nature,2011,479:529-533.
    98. Jones, G.C., Riley, G.P. ADAMTS proteinases: a multi-domain, multi-functional family with rolesin extracellular matrix turnover and arthritis. Arthritis Res Ther,2005,7:160-169.
    99. Kamphuis, I.G., Kalk, K.H., Swarte, M.B., et al. Structure of papain refined at1.65A resolution. JMol Biol,1984,179:233-256.
    100. Kang, J.M., Sohn, W.M., Ju, J.W., et al. Identification and characterization of a serine proteaseinhibitor of Clonorchis sinensis. Acta Tropica,2010,116:134-140.
    101. Kim, T., Oh, J., Woo, J.M., et al. Expression and relationship of male reproductive ADAMs inmouse. Biol Reprod,2006,74:744-750.
    102. Klemba, M., Goldberg, D.E. Biological roles of proteases in parasitic protozoa. Annu RevBiochem,2002,71:275-305.
    103. Klotz, C., Ziegler, T., Figueiredo, A.S., et al. A helminth immunomodulator exploits host signalingevents to regulate cytokine production in macrophages. PLoS Pathog,2011,7: e1001248.
    104. Kobayashi, Y., Ishizaki, S., Nagashima, Y., et al. Ani s1, the major allergen of Anisakis simplex:purification by affinity chromatography and functional expression in Escherichia coli. Parasitol Int,2008,57:314-319.
    105. Kobayashi, Y., Ishizaki, S., Shimakura, K., et al. Molecular cloning and expression of two newallergens from Anisakis simplex. Parasitol Res,2007,100:1233-1241.
    106. Krecek, R.C., Michael, L.M., Schantz, P.M., et al. Prevalence of Taenia solium cysticercosis inswine from a community-based study in21villages of the Eastern Cape Province, South Africa(vol154, pg38,2008). Vet Parasitol,2011,183:198-200.
    107. Krecek, R.C., Mohammed, H., Michael, L.M., et al. Risk factors of porcine cysticercosis in theEastern Cape Province, SouthAfrica. PLoS One,2012,7.
    108. Krogh, A., Larsson, B., von Heijne, G., et al. Predicting transmembrane protein topology with ahidden Markov model: application to complete genomes. J Mol Biol,2001,305:567-580.
    109. Lal, M., Caplan, M. Regulated intramembrane proteolysis: signaling pathways and biologicalfunctions. Physiology,2011,26:34-44.
    110. Lamkanfi, M., Declercq, W., Kalai, M., et al. Alice in caspase land. A phylogenetic analysis ofcaspases from worm to man. Cell Death Differ,2002,9:358-361.
    111. Leigh, S., Whittall, R.A., Humphries, S.E. Update and analysis of the UCL low density lipoproteinreceptor gene (LDLR) familial hypercholesterolaemia (FH) database. J Med Genet,2008,45:S71-S71.
    112. Li, A.H., Moon, S.U., Park, Y.K., et al. Identification and characterization of a cathepsin L-likecysteine protease from Taenia solium metacestode. Vet Parasitol,2006,141:251-259.
    113. Li, X., Massey, H.C., Jr., Nolan, T.J., et al. Successful transgenesis of the parasitic nematodeStrongyloides stercoralis requires endogenous non-coding control elements. Int J Parasitol,2006c,36:671-679.
    114. Li, Z., King, C.L., Ogundipe, J.O., et al. Preferential recognition by human IgE and IgG4of aspecies-specific Schistosoma haematobium serine protease inhibitor. J Infect Dis,1995,171:416-422.
    115. Lightowlers, M.W. Eradication of Taenia solium cysticercosis: a role for vaccination of pigs. Int JParasitol,2010a,40:1183-1192.
    116. Lightowlers, M.W. Fact or hypothesis: Taenia crassiceps as a model for Taenia solium, and theS3Pvac vaccine. Parasite Immunol,2010b,32:701-709.
    117. Luan, Y., Xu, W. The structure and main functions of aminopeptidase N. Curr Med Chem,2007,14:639-647.
    118. Lun, Z.R., Gasser, R.B., Lai, D.H., et al. Clonorchiasis: a key foodborne zoonosis in China. LancetInfect Dis,2005,5:31-41.
    119. Lustigman, S., McKerrow, J.H., Shah, K., et al. Cloning of a cysteine protease required for themolting of Onchocerca volvulus third stage larvae. J Biol Chem,1996,271:30181-30189.
    120. Lustigman, S., Zhang, J., Liu, J., et al. RNA interference targeting cathepsin L and Z-like cysteineproteases of Onchocerca volvulus confirmed their essential function during L3molting. MolBiochem Parasitol,2004,138:165-170.
    121. MacKenzie, S.H., Schipper, J.L., Clark, A.C. The potential for caspases in drug discovery. CurrOpin Drug Discov Devel,2010,13:568-576.
    122. Maki, M., Maemoto, Y., Osako, Y., et al. Evolutionary and physical linkage between calpains andpenta-EF-hand Ca2+-binding proteins. Febs Journal,2012,279:1414-1421.
    123. Malagon, D., Diaz-Lopez, M., Benitez, R., et al. Cathepsin B-and L-like cysteine proteaseactivities during the in vitro development of Hysterothylacium aduncum (Nematoda: Anisakidae), aworldwide fish parasite. Parasitol Int,2010,59:89-92.
    124. Marchler-Bauer, A., Lu, S., Anderson, J.B., et al. CDD: a Conserved Domain Database for thefunctional annotation of proteins. NucleicAcids Res,2011,39: D225-229.
    125. Marchler-Bauer, A., Zheng, C.J., Chitsaz, F., et al. CDD: conserved domains and proteinthree-dimensional structure. NucleicAcids Research,2013,41: D348-D352.
    126. Marcondes, M.F., Torquato, R.J., Assis, D.M., et al. Mitochondrial intermediate peptidase:expression in Escherichia coli and improvement of its enzymatic activity detection with FRETsubstrates. Biochem Biophys Res Commun,2010,391:123-128.
    127. Marra, B.M., Souza, D.S., Aguiar, J.N., et al. Protective effects of a cysteine proteinase propeptideexpressed in transgenic soybean roots. Peptides,2009,30:825-831.
    128. McCafferty, D.G., Lessard, I.A.D., Walsh, C.T. Mutational analysis of potential zinc-bindingresidues in the active site of the enterococcal D-Ala-D-Ala dipeptidase VanX. Biochemistry,1997,36:10498-10505.
    129. McKerrow, J.H., Caffrey, C., Kelly, B., et al. Proteases in parasitic diseases. Annu RevPathol-Mech,2006,1:497-536.
    130. Meeusen, E.N., Balic, A., Bowles, V. Cells, cytokines and other molecules associated withrejection of gastrointestinal nematode parasites. Vet Immunol Immunopathol,2005,108:121-125.
    131. Merckelbach, A., Ruppel, A. Biochemical properties of an intracellular serpin from Echinococcusmultilocularis. Mol Biochem Parasitol,2007,156:84-88.
    132. Mezyk, R., Bzowska, M., Bereta, J. Structure and functions of tumor necrosis factor-alphaconverting enzyme. Acta Biochim Pol,2003,50:625-645.
    133. Mima, J., Hayashida, M., Fujii, T., et al. Structure of the carboxypeptidase Y inhibitor IC incomplex with the cognate proteinase reveals a novel mode of the proteinase-protein inhibitorinteraction. J Mol Biol,2005,346:1323-1334.
    134. Min, D.Y., Lee, Y.A., Ryu, J.S., et al. Caspase-3-mediated apoptosis of human eosinophils by thetissue-invading helminth Paragonimus westermani. Int Arch Allergy Immunol,2004,133:357-364.
    135. Mitreva, M., Jasmer, D.P., Zarlenga, D.S., et al. The draft genome of the parasitic nematodeTrichinella spiralis. Nat Genet,2011,43:228-235.
    136. Mock, W.L., Stanford, D.J. Arazoformyl dipeptide substrates for thermolysin. Confirmation of areverse protonation catalytic mechanism. Biochemistry,1996,35:7369-7377.
    137. Modha, J., Doenhoff, M.J. Schistosoma mansoni host-parasite relationship: interaction ofcontrapsin with adult worms. Parasitology,1994,109(Pt4):487-495.
    138. Mohapatra, A.D., Kumar, S., Satapathy, A.K., et al. Caspase dependent programmed cell death indeveloping embryos: a potential target for therapeutic intervention against pathogenic nematodes.PLoS Negl Trop Dis,2011,5: e1306.
    139. Molehin, A.J., Gobert, G.N., McManus, D.P. Serine protease inhibitors of parasitic helminths.Parasitology,2012,139:681-695.
    140. Molinari, J.L., Mejia, H., White, A.C., Jr., et al. Taenia solium: a cysteine protease secreted bymetacestodes depletes human CD4lymphocytes in vitro. Exp Parasitol,2000,94:133-142.
    141. Morgunova, E., Tuuttila, A., Bergmann, U., et al. Structure of human pro-matrixmetalloproteinase-2: activation mechanism revealed. Science,1999,284:1667-1670.
    142. Moriya, Y., Itoh, M., Okuda, S., et al. KAAS: an automatic genome annotation and pathwayreconstruction server. Nucleic Acids Res,2007,35: W182-185.
    143. Mulder, N.J., Apweiler, R. The InterPro database and tools for protein domain analysis. CurrProtoc Bioinformatics,2008, Chapter2: Unit27.
    144. Muzulin, P.M., Kamenetzky, L., Gutierrez, A.M., et al. Echinococcus granulosus antigen B genefamily: further studies of strain polymorphism at the genomic and transcriptional levels. ExpParasitol,2008,118:156-164.
    145. Nhan, T.Q., Liles, W.C., Schwartz, S.M. Physiological functions of caspases beyond cell death. AmJ Pathol,2006,169:729-737.
    146. Nieuwhof, G.J., Bishop, S.C. Costs of the major endemic diseases of sheep in Great Britain and thepotential benefits of reduction in disease impact. Anim Sci,2005,81:23-29.
    147. Nolden, M., Ehses, S., Koppen, M., et al. The m-AAA protease defective in hereditary spasticparaplegia controls ribosome assembly in mitochondria. Cell,2005,123:277-289.
    148. Nowotny, M., Gaidamakov, S.A., Ghirlando, R., et al. Structure of human RNase H1complexedwith an RNA/DNA hybrid: insight into HIV reverse transcription. Mol Cell,2007,28:264-276.
    149. Oda, H., Takeichi, M. Evolution Structural and functional diversity of cadherin at the adherensjunction. J Cell Biol,2011,193:1137-1146.
    150. Ohta, N., Kumagai, T., Maruyama, H., et al. Research on calpain of Schistosoma japonicum as avaccine candidate. Parasitol Int,2004,53:175-181.
    151. Oi, N., Jeong, C.H., Nadas, J., et al. Resveratrol, a red wine polyphenol, suppresses pancreaticcancer by inhibiting leukotrieneA(4)hydrolase. Cancer Res,2010,70:9755-9764.
    152. Pearson, M.S., Ranjit, N., Loukas, A. Blunting the knife: development of vaccines targetingdigestive proteases of blood-feeding helminth parasites. Biol Chem,2010,391:901-911.
    153. Peigneur, S., Billen, B., Derua, R., et al. A bifunctional sea anemone peptide with Kunitz typeprotease and potassium channel inhibiting properties. Biochem Pharmacol,2011,82:81-90.
    154. Petersen, T.N., Brunak, S., von Heijne, G., et al. SignalP4.0: discriminating signal peptides fromtransmembrane regions. Nat Methods,2011,8:785-786.
    155. Polgár, L. Chapter405-Catalytic mechanisms of cysteine peptidases, handbook of proteolyticenzymes.2013,2:1773-1784.
    156. Prevot, P.P., Adam, B., Boudjeltia, K.Z., et al. Anti-hemostatic effects of a serpin from the saliva ofthe tick Ixodes ricinus. J Biol Chem,2006,281:26361-26369.
    157. Puente, X.S., Sanchez, L.M., Overall, C.M., et al. Human and mouse proteases: a comparativegenomic approach. Nat Rev Genet,2003,4:544-558.
    158. Quesada, V., Diaz-Perales, A., Gutierrez-Fernandez, A., et al. Cloning and enzymatic analysis of22novel human ubiquitin-specific proteases. Biochem Biophys Res Commun,2004,314:54-62.
    159. Quezada, L.A., McKerrow, J.H. Schistosome serine protease inhibitors: parasite defense orhomeostasis?AnAcad Bras Cienc,2011,83:663-672.
    160. Ranasinghe, S., McManus, D.P. Structure and function of invertebrate Kunitz serine proteaseinhibitors. Dev Comp Immunol,2013,39:219-227.
    161. Ranjit, N., Zhan, B., Hamilton, B., et al. Proteolytic degradation of hemoglobin in the intestine ofthe human hookworm Necator americanus. J Infect Dis,2009,199:904-912.
    162. Ranjit, N., Zhan, B., Stenzel, D.J., et al. Afamily of cathepsin B cysteine proteases expressed in thegut of the human hookworm, Necator americanus. Mol Biochem Parasitol,2008,160:90-99.
    163. Rawlings, N.D. Peptidase inhibitors in the MEROPS database. Biochimie,2010,92:1463-1483.
    164. Rawlings, N.D., Barrett A J. Chapter77-Introduction: metallopeptidases and their clans.handbook of proteolytic enzymes.2013a.
    165. Rawlings, N.D., Barrett A J. Chapter559-Introduction: serine peptidases and their clans,handbook of proteolytic enzymes.2013b.
    166. Rawlings, N.D., Barrett, A.J. Handbook of proteolytic enzymes.2013.
    167. Rawlings, N.D., Barrett, A.J., Bateman, A. MEROPS: the database of proteolytic enzymes, theirsubstrates and inhibitors. NucleicAcids Res,2012,40: D343-350.
    168. Rawlings, N.D., Morton, F.R. The MEROPS batch BLAST: a tool to detect peptidases and theirnon-peptidase homologues in a genome. Biochimie,2008,90:243-259.
    169. Redmond, D.L., Smith, S.K., Halliday, A., et al. An immunogenic cathepsin F secreted by theparasitic stages of Teladorsagia circumcincta. Int J Parasitol,2006,36:277-286.
    170. Reverter, D., Wu, K., Erdene, T.G., et al. Structure of a complex between Nedd8and the Ulp/Senpprotease family member Den1. Journal of Molecular Biology,2005,345:141-151.
    171. Rhoads, M.L., Fetterer, R.H. Developmentally regulated secretion of cathepsin L-like cysteineproteases by Haemonchus contortus. J Parasitol,1995,81:505-512.
    172. Rhoads, M.L., Fetterer, R.H., Hill, D.E. Trichuris suis: A secretory serine protease inhibitor. ExpParasitol,2000,94:1-7.
    173. Rinaldo-Matthis, A., Haeggstrom, J.Z. Structures and mechanisms of enzymes in the leukotrienecascade. Biochimie,2010,92:676-681.
    174. Roche, L., Tort, J., Dalton, J.P. The propeptide of Fasciola hepatica cathepsin L is a potent andselective inhibitor of the mature enzyme. Mol Biochem Parasit,1999,98:271-277.
    175. Ronquist, F., Huelsenbeck, J.P. MrBayes3: Bayesian phylogenetic inference under mixed models.Bioinformatics,2003,19:1572-1574.
    176. Russo, S., Baumann, U. Crystal structure of a dodecameric tetrahedral-shaped aminopeptidase. JBiol Chem,2004,279:51275-51281.
    177. Saarela, J., Oinonen, C., Jalanko, A., et al. Autoproteolytic activation of humanaspartylglucosaminidase. Biochem J,2004,378:363-371.
    178. Sajid, M., McKerrow, J.H. Cysteine proteases of parasitic organisms. Mol Biochem Parasit,2002,120:1-21.
    179. Sako, Y., Nakaya, K., Ito, A. Echinococcus multilocularis: identification and functionalcharacterization of cathepsin B-like peptidases from metacestode. Exp Parasitol,2011,127:693-701.
    180. Sako, Y., Yamasaki, H., Nakaya, K., et al. Cloning and characterization of cathepsin L-likepeptidases of Echinococcus multilocularis metacestodes. Mol Biochem Parasitol,2007,154:181-189.
    181. Santos, A.L., Braga-Silva, L.A. Aspartic protease inhibitors: effective drugs against the humanfungal pathogen Candida albicans. Mini Rev Med Chem,2013,13:155-162.
    182. Schaffer, A.A., Aravind, L., Madden, T.L., et al. Improving the accuracy of PSI-BLAST proteindatabase searches with composition-based statistics and other refinements. Nucleic Acids Res,2001,29:2994-3005.
    183. Schulz, H., Dale, G.E., Karimi-Nejad, Y., et al. Structure of human endothelin-converting enzyme Icomplexed with phosphoramidon. J Mol Biol,2009,385:178-187.
    184. Schwarzer, D., Stummeyer, K., Gerardy-Schahn, R., et al. Characterization of a novelintramolecular chaperone domain conserved in endosialidases and other bacteriophage tail spikeand fiber proteins. J Biol Chem,2007,282:2821-2831.
    185. Seife, C. Blunting nature's Swiss army knife. Science,1997,277:1602-1603.
    186. Servida, F., Lecis, D., Scavullo, C., et al. Novel second mitochondria-derived activator of caspases(Smac) mimetic compounds sensitize human leukemic cell lines to conventional chemotherapeuticdrug-induced and death receptor-mediated apoptosis. Invest New Drugs,2011,29:1264-1275.
    187. Sethadavit, M., Meemon, K., Jardim, A., et al. Identification, expression and immunolocalizationof cathepsin B3, a stage-specific antigen expressed by juvenile Fasciola gigantica. Acta Trop,2009,112:164-173.
    188. Shen, H.B., Chou, K.C. Identification of proteases and their types. Anal Biochem,2009,385:153-160.
    189. Shen, H.B., Chou, K.C. PseAAC: a flexible web server for generating various kinds of proteinpseudo amino acid composition. Anal Biochem,2008,373:386-388.
    190. Sheng, M., Sala, C. PDZ domains and the organization of supramolecular complexes. Annu RevNeurosci,2001,24:1-29.
    191. Shepherd, J.C., Aitken, A., McManus, D.P. A protein secreted in vivo by Echinococcus granulosusinhibits elastase activity and neutrophil chemotaxis. Mol Biochem Parasitol,1991,44:81-90.
    192. Shindo, T., Van Der Hoorn, R.A.L. Papain-like cysteine proteases: key players at molecularbattlefields employed by both plants and their invaders. Mol Plant Pathol,2008,9:119-125.
    193. Shingles, J., Lilley, C.J., Atkinson, H.J., et al. Meloidogyne incognita: molecular and biochemicalcharacterisation of a cathepsin L cysteine proteinase and the effect on parasitism following RNAi.Exp Parasitol,2007,115:114-120.
    194. Shiomi, T., Okada, Y. MT1-MMP and MMP-7in invasion and metastasis of human cancers.Cancer Metastasis Rev,2003,22:145-152.
    195. Sichler, K., Hopfner, K.P., Kopetzki, E., et al. The influence of residue190in the S1site oftrypsin-like serine proteases on substrate selectivity is universally conserved. FEBS Lett,2002,530:220-224.
    196. Siddiqui, A.A., Phillips, T., Charest, H., et al. Enhancement of Sm-p80(large subunit of calpain)induced protective immunity against Schistosoma mansoni through co-delivery of interleukin-2and interleukin-12in a DNAvaccine formulation. Vaccine,2003,21:2882-2889.
    197. Siezen, R.J., Leunissen, J.A. Subtilases: the superfamily of subtilisin-like serine proteases. ProteinSci,1997,6:501-523.
    198. Simister, P.C., Banfield, M.J., Brady, R.L. The crystal structure of PEBP-2, a homologue of thePEBP/RKIPfamily. Acta Crystallogr D Biol Crystallogr,2002,58:1077-1080.
    199. Smooker, P.M., Jayaraj, R., Pike, R.N., et al. Cathepsin B proteases of flukes: the key to facilitatingparasite control? Trends Parasitol,2010,26:506-514.
    200. Sojka, D., Franta, Z., Horn, M., et al. Profiling of proteolytic enzymes in the gut of the tick Ixodesricinus reveals an evolutionarily conserved network of aspartic and cysteine peptidases. ParasitVectors,2008,1:7.
    201. Song, C., Gallup, J.M., Day, T.A., et al. Development of an in vivo RNAi protocol to investigategene function in the filarial nematode, Brugia malayi. PLoS Pathog,2010,6: e1001239.
    202. Southan, C. A genomic perspective on human proteases as drug targets. Drug Discov Today,2001,6:681-688.
    203. Southan C, U.M., Barnes MR. A bioinformatics perspective on genetics in drug discovery anddevelopment. John Wiley&Sons, West Sussex.2007
    204. Spakulova, M., Orosova, M., Mackiewicz, J.S. Cytogenetics and chromosomes of tapeworms(Platyhelminthes, Cestoda). Adv Parasitol,2011,74:177-230.
    205. Stack, C.M., Caffrey, C.R., Donnelly, S.M., et al. Structural and functional relationships in thevirulence-associated cathepsin L proteases of the parasitic liver fluke, Fasciola hepatica. J BiolChem,2008,283:9896-9908.
    206. Stenflo, J., Stenberg, Y., Muranyi, A. Calcium-binding EGF-like modules in coagulationproteinases: function of the calcium ion in module interactions. Bba-Protein Struct M,2000,1477:51-63.
    207. Stocker, W., Grams, F., Baumann, U., et al. The metzincins-topological and sequential relationsbetween the astacins, adamalysins, serralysins, and matrixins (collagenases) define a superfamilyof Zinc-peptidases. Protein Sci,1995,4:823-840.
    208. Sussman, F., Villaverde, M.C., Dominguez, J.L., et al. On the active site protonation state inaspartic proteases: implications for drug design. Curr Pharm Des,2012.
    209. Tato, P., Fernandez, A.M., Solano, S., et al. A cysteine protease from Taenia solium metacestodesinduce apoptosis in human CD4+T-cells. Parasitol Res,2004,92:197-204.
    210. Tatsuta, T., Langer, T. AAA proteases in mitochondria: diverse functions of membrane-boundproteolytic machines. Res Microbiol,2009,160:711-717.
    211. Taylor, A.B., Smith, B.S., Kitada, S., et al. Crystal structures of mitochondrial processing peptidasereveal the mode for specific cleavage of import signal sequences. Structure,2001,9:615-625.
    212. Tholander, F., Roques, B.P., Fournie-Zaluski, M.C., et al. Crystal structure of leukotriene A4hydrolase in complex with kelatorphan, implications for design of zinc metallopeptidase inhibitors.FEBS Lett,2010,584:3446-3451.
    213. Tiberti, M., Papaleo, E. Dynamic properties of extremophilic subtilisin-like serine-proteases. JStruct Biol,2011,174:69-83.
    214. Tie, Y., Wang, Y.F., Boross, P.I., et al. Critical differences in HIV-1and HIV-2protease specificityfor clinical inhibitors. Protein Sci,2012,21:339-350.
    215. Tomkinson, B., Lindas, A.C. Tripeptidyl-peptidase II: A multi-purpose peptidase. Int J BiochemCell B,2005,37:1933-1937.
    216. Tsai, I.J., Zarowiecki, M., Holroyd, N., et al. The genomes of four tapeworm species revealadaptations to parasitism. Nature,2013.
    217. Turk, B. Targeting proteases: successes, failures and future prospects. Nat Rev Drug Discov,2006,5:785-799.
    218. Ultaigh, S.N., Carolan, J.C., Britton, C., et al. Acathepsin L-like protease from Strongylus vulgaris:an orthologue of Caenorhabditis elegans CPL-1. Exp Parasitol,2009,121:293-299.
    219. Urwin, P.E., Lilley, C.J., Atkinson, H.J. Ingestion of double-stranded RNA by preparasitic juvenilecyst nematodes leads to RNAinterference. Mol Plant Microbe Interact,2002,15:747-752.
    220. van Gent, D., Sharp, P., Morgan, K., et al. Serpins: structure, function and molecular evolution. IntJ Biochem Cell Biol,2003,35:1536-1547.
    221. Wang, Y., Wang, C.R., Zhao, G.H., et al. The complete mitochondrial genome of Orientobilharziaturkestanicum supports its affinity with African Schistosoma spp. Infect Genet Evol,2011,11:1964-1970.
    222. Wang, Y.C., Zhang, Y.J., Ha, Y. Crystal structure of a rhomboid family intramembrane protease.Nature,2006,444:179-183.
    223. Watt, W., Koeplinger, K.A., Mildner, A.M., et al. The atomic-resolution structure of humancaspase-8, a key activator of apoptosis. Struct Fold Des,1999,7:1135-1143.
    224. Weiss, N., Kokot, A., Luger, T.A., et al. Subtilisin-kexin isoenzyme-1-a novel player in melanomabiology. Pigm Cell Melanoma R,2011,24:861-861.
    225. Williamson, A.L., Lecchi, P., Turk, B.E., et al. A multi-enzyme cascade of hemoglobin proteolysisin the intestine of blood-feeding hookworms. J Biol Chem,2004,279:35950-35957.
    226. Wlodawer Alexander, G.A., James Michael N.G. Chapter2-catalytic pathways of asparticpeptidases, handbook of proteolytic enzymes,2013,1.
    227. Wright, C.W., Clem, R.J. Sequence requirements for Hid binding and apoptosis regulation in thebaculovirus inhibitor of apoptosis Op-IAP. Hid binds Op-IAP in a manner similar to Smac bindingof XIAP. J Biol Chem,2002,277:2454-2462.
    228. Xiao, S., Zhan, B., Xue, H., et al. The evaluation of recombinant hookworm antigens as vaccines inhamsters (Mesocricetus auratus) challenged with human hookworm, Necator americanus. ExpParasitol,2008,118:32-40.
    229. Xu, H., Shan, J., Jurukovski, V., et al. TSP50encodes a testis-specific protease and is negativelyregulated by p53. Cancer Res,2007,67:1239-1245.
    230. Yan, Y., Liu, S., Song, G., et al. Characterization of a novel vaccine candidate and serine proteinaseinhibitor from Schistosoma japonicum (Sj serpin). Vet Parasitol,2005,131:53-60.
    231. Yang, Y.B., Hu, D., Wang, L.X., et al. Molecular cloning and characterization of a novel serpingene of Clonorchis sinensis, highly expressed in the stage of metacercaria. Parasitol Res,2009,106:221-225.
    232. Yao, T., Song, L., Xu, W., et al. Proteasome recruitment and activation of the Uch37deubiquitinating enzyme byAdrm1. Nat Cell Biol,2006,8:994-1002.
    233. Yatsuda, A.P., Bakker, N., Krijgsveld, J., et al. Identification of secreted cysteine proteases from theparasitic nematode Haemonchus contortus detected by biotinylated inhibitors. Infection andImmunity,2006,74:1989-1993.
    234. Zang, X.X., Maizels, R.M. Serine proteinase inhibitors from nematodes and the arms race betweenhost and pathogen. Trends Biochem Sci,2001,26:191-197.
    235. Zelenski, N.G., Rawson, R.B., Brown, M.S., et al. Membrane topology of S2P, a protein requiredfor intramembranous cleavage of sterol regulatory element-binding proteins. J Biol Chem,1999,274:21973-21980.
    236. Zelensky, A.N., Gready, J.E. The C-type lectin-like domain superfamily. FEBS J,2005,272:6179-6217.
    237. Zhang, M., Park, S.M., Wang, Y., et al. Serine protease inhibitor6protects cytotoxic T cells fromself-inflicted injury by ensuring the integrity of cytotoxic granules. Immunity,2006,24:451-461.
    238. Zhang, W., Li, J., Jones, M.K., et al. The Echinococcus granulosus antigen B gene familycomprises at least10unique genes in five subclasses which are differentially expressed. PLoS NeglTrop Dis,2010,4: e784.
    239. Zhou, G.P., Cai, Y.D. Predicting protease types by hybridizing gene ontology and pseudo aminoacid composition. Proteins,2006,63:681-684.
    240. Zimic, M., Pajuelo, M., Rueda, D., et al. Utility of a protein fraction with cathepsin L-Like activitypurified from cysticercus fluid of Taenia solium in the diagnosis of human cysticercosis. Am J TropMed Hyg,2009,80:964-970.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700