新型半芳香聚酰胺的合成与表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科学技术的飞速发展,为了解决电子产品的小型化、精密化和降低成本的问题,通常采用在集成电路板上搭载、连接半导体芯片和电子元件的工艺,故此,表面实装技术(SMT)得到迅速推广和普及。但这种新的技术对所使用的有机材料的耐热性、精密成型性及尺寸稳定性提出了更严格的要求。
     聚酰胺在电子电器领域有着广泛的应用,为了适应对其耐热性、吸水率、尺寸稳定性等方面新的要求,人们在进行分子结构设计时可在分子主链上引入带有热稳定性好的芳香环,例如用芳香族酸或胺代替脂肪族酸或胺,来合成全芳香族或半芳香族聚酰胺。全芳香族聚酰胺由于熔点很高,成型加工极为困难,主要用于溶液法制造纤维。一些已应用的半芳香聚酰胺虽然熔点较低,容易加工,但耐热性能相对较差。最近开发出来的PA9T是以对苯二甲酸与较长碳链的壬二胺聚合得到的,其具有兼顾耐热性与加工性的优点,发展十分迅速。
     利用本体聚合,我们合成了七种新型的半芳香聚酰胺,探索了聚合条件对反应的影响,并对其基本性能进行了研究,考察了产物的热分解、熔融结晶行为和结晶动力学,以期为新型耐热性聚酰胺的开发、研究打下基础。以上研究工作迄今未见报道,本研究工作得到了以下主要结果与结论:
     1.以对苯二甲酸、间苯二甲酸、4,4’-联苯二甲酸、4,4’-二羧基联苯砜和4,4’-二羧基联苯醚分别与癸二胺和十二碳二元胺反应,合成了聚对苯二甲酰癸二胺(PA10T)、聚间苯二甲酰癸二胺(PA10I)、聚4,4’-二羧基联苯砜癸二胺(PA10S)、聚4,4’-二羧基联苯醚癸二胺(PA10O)、聚4,4’-联苯酰十二碳二胺(PA12B)、聚4,4’-二羧基联苯砜十二碳二胺(PA12S)和聚4,4’-二羧基联苯醚十二碳二胺(PA12O)等七种新型的半芳香聚酰胺,并对其基本性能进行了表征。
     2.采用本体聚合时,聚合物粘数随反应温度的升高而增大,但反应温度过高时,聚合物粘数又有一定的下降;同一反应温度下,聚合物粘数随聚合时间的延长而增大,当时间延长到一程度后,增大趋势不大。最佳反应条件为:预聚合温度220℃,时间1~2h;聚合温度260~270℃,时间4~5h。对于PA10I,反应温度230℃,时间5h。
     3.用偏光显微镜(PLM)研究了半芳香聚酰胺PA120、PA12S等溫熔体结晶的球晶形态及生成条件。发现随着结晶条件不同,可生成五种不同形态的球晶。
     4.通过FTIR和~1H-NMR图谱分析,确定了这些产物是所要制备的半芳香聚酰胺
     5.用DSC对不同热处理方式处理的半芳香聚酰胺PA12O、PA12S的熔融行为进行
With the rapid development of science and technology, the surface mount technology(SMT) was made general and universal application for making the electronic products miniaturization , precision and lower cost in semiconductor CMOS chips and electronic components which were jointed together on the integrated device electronics in the electron industry. Such a new technology bring a higher demand for the used organic materials, such as thermal tolerance , dimension precision and stability.One often introduces the aromatic rings into the organic macromolecular main chain to enhance polymer's thermal tolerance and reduce their water absorption. For example, aromatic acid or aromatic amine was used in place of aliphatic acid or aliphatic amine to synthesize the aromatic or semi-aromatic polyamides. Aromatic polyamides were mainly used in manufacturing fibre, and difficult to mold. Some semi-aromatic polyamides, has a relatively lower melting point(T_m). Though it is easy for molding, but its thermal tolerance was not good enough. PA9T exploited recently was synthesized using terephthalic acid and nonane diamine owned combined merits of the heat-durability and the processing ability.In this study, we synthesized seven kinds of new semi-aromatic polyamides by bulk polymerization, The effect of polymerization condition on reaction was investigated. The thermal decomposition the behaviors of melting and crystallinity of product were studied. The above research works still have not been seen in the literature up to date. The results of our works summarized as follows:l.poly(decamethyleneterephthalamide)(PA10T),poly(decamethyleneisophthalam ide)(PA10I),Poly(dodecamethylene-biphenyldicarboxylic-amides)(PA12B), poly(decamethylene-dicarboxydiphenylether-amides)(PA 10O), poly(decamethylene -dicarboxydiphenylsulfone-amides)(PA10S),poly(dodecamethylene-dicarboxydipheny lether-amides)(PA12O),poly(dodecamethylene-dicarboxydiphenylsulfone-amides)(PA 12S) were synthesized using terephthalic acid, isophthalic acid, biphenyldicarboxylic acid , dicarboxydiphenyl ether acid , dicarboxydiphenyl sulfone acid with decamethylene diamine and dodecamethylene diamines. We studied some characters of these polymer.2. In bulk polymerization, the reduced viscosity of product increases with
    reaction temperature, but it will decreases under too high reaction temperature. In the same reaction temperature, the reduced viscosity increases with prolongation of reaction time. Optimal reaction condition was 220°C, 1 ~2h in the first step; then at the 260~270°C, for 4~5h. For PA10I, the reaction temperature was 230"C, for 5h.3. The morphology of semi-aromatic crystallization from melt was observed by PLM from Tg~Tm. Different spherulite forms were observed as varying the crystallization temperature and crystallization condition.4. The structures of polymerization products are ascertained by their spectrum of FTIR and 'H-NMR. The result show these products are semi-aromatic polyamides.5. The glass transition temperature (Tg), equilibrium melting point temperature and equilibrium heat of fusion of semi-aromatic polyamides were determined by means of differential scanning calorimetry (DSC). The equilibrium melting point temperature of semi-aromatic polyamides are to be 259.6°C(PA12O) and 275.4°C(PA12S) from the Hoffman's method. In the DSC heating curves of isothermally melt crystallized from cold quenching, there are two crystals, Peak I is to be microcrystallite formation in the boundary layer between the larger crystallites, Peak II is the major crystal in the isothermal crystallization process.6. The TG results of semi-aromatic polyamides indicate that the thermal degradation process of semi-aromatic polyamides is one-step reaction. The activation energy of the solid-state process was determined using Kissinger and Flynn - Wall -Ozawa methods, the results are to be 247.5 ~249.3KJ/mol for PA12O and 213. 2 -214. 8KJ/mol for PA12S. Analysis of experimental results suggests the actual reaction mechanisms of semi-aromatic polyamides is Deceleration type.7. Nonisothermal crystallization kinetics of semi-aromatic polyamides were investigated by DSC. The nonisothermal crystallization process of semi-aromatic po;yamides PA12O and PA12S were analyzed by Jeziorny modified Avrami equation. The Avrami exponent n is greater, which indicate that the mode of nucleation and the growth of the nonisothermal crystallization are complicated and that the nucleation mode might include both homogeneous and heterogeneous. The activation energies (AE) of PA12O and PA12S were determined to be -173.7KJ/mol and -215.2KJ/mol, respectively, for the nonisothermal crystallization processes by the Kissinger's methods.
引文
[1] Yeong Chool Yu, Won Ho Jo. Segmented block copolyetheramides based on nylon 6 and polyoxypropylene. Ⅰ. Synthesis and characterization. Journal of Applied Polymer Science, 1994,54(5): 585-591
    [2] La Mantia F T, Scaffaro R. Melt stabilization of wet polyamide 6. Polymer Degradation and Stability, 2002,75(3): 473-477
    [3] Lanska, Bozena, Stabilization of polyamides—Ⅰ. The efficiency of antioxidants in polyamide 6, Polymer Degradation and Stability, 1996, 53(1): 89-98
    [4] Rhee S, White J L. Crystal structure, morphology, orientation, and mechanical properties of biaxially oriented polyamide 6 films. Polymer, 2002, 43(22): 5903-5914
    [5] Kudo K, Suguie T, Hirami M. Melt-polymerized aliphatic-aromatic copolyamides. Ⅰ. Melting points of nylon 66 copolymerized with aromatic diamines and terephthalic acid. Journal of Applied Polymer Science, 1992, 44(9): 1625-1629
    [6] Naoya Ogata. Studies on polycondensation reactions of nylon salt. Ⅰ. The equilibrium in the system of polyhexamethylene adipamide and water. Die Makromolekulare Chemie, 1960, 42(1): 52-67
    [7] Huang C C, Chang F C. Reactive compatibilization of polymer blends of poly(butylene terephthalate) and polyamide 6,6: 2. Morphological and mechanical properties. Polymer, 1997,38(17): 4287-4293
    [8] Colin A. F, Leslie H R, Nick E B. Water penetration in nylon 6,6: Absorption, desorption, and exchange studied by NMR microscopy. Journal of Polymer Science Part A: Polymer Chemistry, 1993, 31(1): 159-168
    [9] 张江荣,魏运方.高性能半芳香聚酰胺工程塑料的性能及应用进展.精细化工中间体,2002,32(6):1-4
    [10] Gijsman P, Tummers D, Janssen K. Differences and similarities in the thermo oxidative degradation of polyamide 46 and 66. Polym Degr Stab, 1995, 49(1): 121-125
    [11] Powell C S, Kalika D S. The semicrystalline morphology of aliphatic-aromatic polyamide blends. Polymer, 2000,41 (12): 4651-4659
    [12] Siciliano A, Severgnini D, Seves A, Pedrelli T, Vicini L. Thermal and mechanical behavior of polyamide 6/polyamide 6I/6T blends. J Appl Polym Sci, 1996, 60: 1757-1764
    [13] Kudo K, Suguie T, Hirami M. Melt-polymerized aliphatic-aromaticcopolyamides. Ⅰ. Melting points of nylon 66 copolymerized with aromatic diamines and terephthalic acid. J Appl Polym Sci, 1992, 44: 1625-1629
    [14] Ellis T S. Moisture-induced plasticization of amorphous polyamides and their blends. J. Appl Polym Sci, 1998, 36: 451-466
    [15] 刘德山,傅清红,周其庠.芳—脂族共聚酰胺热致液晶的合成与表征.清华大学学报(自然科学版),1990,30(3):47-53
    [16] 单国荣,潘智存,贺玉斌,王晓工,刘德山,周其庠.合成方法对芳香共聚酰胺性能的影响.Ⅰ.共聚酰胺的对数比浓粘度.高分子材料科学与工程,1997,13(6):56-59
    [17] 赵育.新型耐热聚酰胺PA9T.四川化工和腐蚀控制,1999,2(5):16-22
    [18] 张红荣,魏运方.高性能半芳香族聚酰胺工程塑料的性能及应用进展.精细化工中间体,2002,32(6):1-5
    [19] 冯美平,吴雷.耐热性聚酰胺新品种PA9T.工程塑料应用,2002,30(2):58-60
    [20] Poppe W, Chen Y T, Autry L W, Richardson J A, Sinclair D P. Crystalline polyamide composition from dicarboxylic acid mixture and diamine. US4603166, 1986
    [21] JP 10310697A2: Semiaromatic polyamide resin composition
    [22] Ogo Y, Amimoto Y. Semiaromatic polyamide resin composition. US6117942, 2000
    [23] Prevost, Jean-Pierre, Roberjot, Daniel. Single phase/amorphous blends of amorphous semiaromatic polyamides and semicrystalline nylon polyamides. US5266655, 1993
    [24] Ogo Y, Murakami H, Oouchi K, Sudou M, Amimoto Y, Omori S, Wakatsuru K, Hayashi R, Nozaki M. Semiaromatic polyamides, processes for preparing the same and compositions containing the same. US5849826, 1998
    [25] 马治P,布朗代尔P.高度耐化学试剂的透明聚酰胺组合物.ZL 92113896.2,1992
    [26] 小合佳正,村上英达,大内邦裕,须藤胜,纲本良胜,大森智,若鹤健二,林隆一,野奇雅裕.半芳香聚酰胺及其制备方法和其组合物的制备方法.ZL 96191289.8,1996
    [27] 菲施H,皮帕G,米尔巴哈K,格里森H.具有高结晶度的部分芳族共聚酰胺模塑料.ZL 95105614.X,1995
    [28] 杨贵生,卢凤才.催化剂用量对MC聚酰胺合成、形态与性能的影响.高分子学报,1 992,1:15-22
    [29] Alberto B, Domennico G, Mario G, Pietro M, Giorgio M. Thermal decomposition processes in aliphatic-aromatic polyamides investigated by mass spectrometry. Macromolecules, 1986, 19: 2693-2699
    [30] Inoue J. Polymer news. Journal of Applied Polymer Science, 1961, 5(18): 753-754
    [31] Furukawa K, Seki S, Akashi T. Transparent copolyamides. Japan, JP 75103594, 1975: 1-6
    [32] 翟羽伸.从新型聚酰胺树脂PA9T的开发看树脂品种牌号的创新.化工新型材料,1999,27(1):14-16
    [33] 日本三井石油化学工业株式会社.中国,中华人民共和国国家知识产权局.
    [34] 可乐丽股份有限公司.聚酰胺组合物.中国,中国专利代理(香港)有限公司,CN 1220289A,1999:1-23
    [35] 德国BASF公司.具有高结晶度的部分芳族共聚酰胺模塑料.中国,中华人民共和国国家知识产权局,CN 1136055,1996:1-16
    [36] 埃勒夫阿托化学有限公司.聚酰胺制备方法.中国,中华人民共和国国家知识产权局,CN 1051779C,2000:1-19
    [37] Wunderlich, B. "Macromolecular Physics", Academic Press: New York, 1973, Vol.1
    [38] Bassett, D. C. "Principles of Polymer Morphology", Cambridge University Press: Cambridge, 1981, 165
    [39] Woodward, A. E."Atlas of Polymer Morphology", Hanser: munich, 1988
    [40] Starkweather, H.W., Brooks, R.E., Effect of spherulites on the mechanical properties of nylon 66, J. Appl. Polym. Sci., 1959, 1: 236-239
    [41] Kohan, M. I., Nylon Plastics handbook, Munich, Vienna, New York: Hanser/Gardner, 1995, 110
    [42] Geil, P. H., Nylon single crystals, J. Polym. Sci., 1960, 44: 449-458
    [43] Geil, P. H., Polymer Single Crystals, Wiley-Interscience: New York, 1963
    [44] Magill, J. H:, Formation of spherulites in polyamide melts: Part Ⅲ. Even-even polyamides, J. Polym. Sci. Part A-2: Polyrn.Phys., 1966, 4: 243-265
    [45] Khoury, F., The formation of negatively birefringent spherulites in polyhexamethylene adipamide (nylon 66), J. Polym. Sci., 1958, 33: 389-403
    [46] Magill, J. H., Formation of spherulites in polyamide melts: Part Ⅲ. Even-even polyamides, J. Polym. Sci. PartA2, 1966, 4: 243-265
    [47] Blundell, D. J., On the interpretation of multiple melting peaks in poly(ether ether ketone), Polymer, 1987, 28: 2248-2251
    [48] Fouginies, C., Dammen, P., Dosiere, M., Time-resolved SAXS, WAXS, and DSC study of melting of poly(aryl ether ketone)(PEEK) annealed from the amorphous state, Micromolecules, 1997, 30: 1392-1399
    [49] Lovinger, A.J., Chua, J. O., Gryte, C.C., Studies on theαandβforms of isotactic polypropylene by crystallization in a temperature gradient, J. Polym. Sci. Polym. Phys. Ed., 1977, 15: 64-656
    [50] Kim, H. G., Mandekern, L., Multiple melting transitions in natural rubber, J. Polym. Sci. Polym. Phys. Ed., 1972, 10: 1125~1133
    [51] Edwards, B. C., The nature of multiple melting transitions in cis-polyisoprene, J. Polym. Sci. P, olym. Phys. Ed., 1975, 13: 1387-1405
    [52] Bassett, D. C., Olley, R. H., On crystallization phenomena in PEEK, Polymer, 1988, 29: 1745-1754
    [53] 卜海山,胡家聪,赵勤国,马仲文,于同隐.聚对苯二甲酸乙二酯的熔融双峰与形态.高分子通讯,1985,6:191-196
    [54] Wang, G. M., Yan, D. Y., Bu, H. S., Crystallization and melting of nylon 610, Chin. J. Polym. Sci., 1998,16: 241-252
    [55] White, T. R., Nature, 1953,175: 895-899
    [56] Ke, B., Sisko, A. W., Differential thermal analysis of high polymers. Ⅲ. Polyamides, J. Polym. Sci., 1961, 50: 87-98
    [57] Hybart, F. J., Platt, J. D., The melting of 66 nylon: Observations by differential thermal analysis, J. Appl. Polym. Sci., 1967, 11: 1449-1460
    [58] Hirami, M., Dependence of the long period of nylon 6 on annealing temperature, Makromol. Chem., 1967, 105: 296-299
    [59] Bell, J. P., Dumbleton, J. H., Relation between melting behavior and physical structure in polymers, J. Polym. Sci. PartA-2, 1969, 7: 1033-1057
    [60] Bell, J. P., Takayuki, M., Relations between dynamic mechanical properties and melting behavior of nylon 66 and poly(ethylene terephthalate), J. Polym. Sci. PartA-2, 1969, 7: 1059-1073
    [61] Bell, J. P., Slade, P. E., Dumbleton, J.H., Multiple melting in nylon 66, J. Polym. Sci. PartA-2, 1968, 6: 1773-1781
    [62] Sweet, G. E., Bell, J. P., Multiple endotherm melting behavior in relation to polymer morphology, J. Polym. Sci. PartA-2, 1972, 10: 1273-1283
    [63] Todoki, M., Kawaguchi, T., Origin of double melting peaks in drawn nylon 6 yarns, J. Polym. Sci. PartA-2, 1977, 15: 1067-1075
    [64] Illers, K. H., Haberkorn, H., Scbmelzverhalten, structure and characteristric of 6-polyamid, Makromol. Chem., 1971, 142: 31-67
    [65] Ceccorulli, G., Manescalchi, F., Pizzoli, M., Thermal behaviour of poly[imino(1-oxooctamethylene)], nylon 8, Makromol. Chem., 1975, 176: 1163-1171
    [66] Xenopoulos, A., Wunderlich, B., Thermodynamic properties of liquid and semicrystalline linear aliphatic polyamides, J. Polym. Sci.PartB, Polym. Phys., 1990, 28: 2271-2290
    [67] Franco, L., Puiggali, J., Structural data and thermal studies on nylon-12,10, J. Polym. Sci. Polym. Part B: Polym. Phys., 1995, 33: 2065-2073
    [68] Ramesh, C., Keller, A., Eltink, S. J. E. A., Polymer, 1994, 35: 5300-5307
    [69] 黄如注.PPA树脂的生产与应用.化工新型材料,1994,22(6):14-17
    [70] 赵育.新型耐热聚酰胺PA9T.四川化工与腐蚀控制,1999,2(5):16-22
    [71] 翟羽伸.从新型聚酰胺树脂PA9T的开发看树脂品种牌号的创新.化工新型材料,1999,27(1):14-16
    [72] Poppe, Wassily,Chen,Yu T,Paschke,Edward E. Filled composition comprising crystalline copolyamide from terephthalic acid isophthalic acid and hexamethylene diamine. The United States, US 4863991, 1989: 1-13
    [73] Hewel, Manfred, Dalla T, Hans.Copolyamides with long-chain polyamide units. The United States, US 5700900,1997: 1-13
    [74] Ogo,Yoshimasa,Murakami,Hidetatsu, Oouchi,Kunihiro,sudou,masaru,Amimoto, Yoshikatsu,Omori,Satoshi,Nozaki,Masahiro.Semiaromatic polyamides,processes for preparing the same and composition containing the same. The United States, US 5849826,1998: 1-45
    [75] Barthelemy, Pascal. Crystallized semiaromatic polyamides having high Tg and Tm less than 290 degree C. from hindered aromatic diamine and branched chain aliphatic diamine. The United States, US 4937322,1990: 1-9
    [76] Funston G,Lum and Earl F,Richmond,Calif.Process for separating hexamethylene diamond salts of isophthalic and terephthalic acids. The United States, US 2742496,1956: 1-3
    [77] Epstein,Bennett N,Pagilagan,Rolando U.Toughened polyamide blends. The United States, US 4410661,1983: 1-13
    [78] 张国胜,李勇进,颜德岳.新型聚酰胺214,414,614,814,1014和1214的合成与表征.化学学报,2002,60(11):2078-2082
    [79] 马德柱,何平笙,徐种德,周漪琴.高聚物的结构与性能,北京:科学出版社(第二版.),2000,188
    [80] Gordon, G. A., Glass transition in nylons, J. Polym. Sci.Part A-2, 1971,9: 1693-1702
    [81] Wang, G. M., Yan, D. Y., Bu, H. S., Crystallization and melting of nylon 610, Chin. J. Polym. Sci., 1998,16: 241-252
    [82] Bell, J. P., Dumbleton, J. H., Relation between melting behavior and physical structure in polymers, J. Polym. Sci. PartA-2, 1969, 7: 1033-1057
    [83] 金滟,陈东霖.聚酰胺610的多重熔融行为及其平衡热力学参数.应用化学.1987,4(5):25-30
    [84] 朱诚身,莫志深,杨桂萍,李红云.等温熔体结晶聚酰胺1010的熔融.高分子材料科学与工程,1992,5:90-94
    [85] Yeh, J.T., Runt, J., Multiple melting in annealed poly (butylene terephthalate), J. Polym. Sci. Polym. PartB: Phys., 1989, 27: 1543-1550
    [86] 马德柱,何平笙等,高聚物的结构与性能,北京:科学出版社(第二版),2000,130-133
    [87] Supaphol, P., Spruiell, J. E., Thermal properties and isothermal crystallization of syndiotactic polypropylenes: differential scanning calorimetry and overall crystallization kinetics, J. Appl. Polym. Sci., 2000, 75: 44-59
    [88] Wunderlich B. Macromolecular physics, crystal melting, Vol. 3. New york: Academic Press, 1980: 374-375
    [89] Flynn J H, Pummer W J, Smith L E. Molecular Degradation in amid-based dendrimers. Polym Prepr, 1977, 18: 757-760
    [90] Nam J D, Seferis J C. Generalized composite deqradation kinetics for polymeric systems under isothermal and nonisothermal condition. J Polym Sci, Part B: Polym Phys, 1992, 30: 455-463
    [91] Dharwadkar S R, Phadnis A B, Chandrasekharaiah M S, Karkhanavala M D. J Therm Anal 1980, 18: 185-191
    [92] Day M, Coon.ey J D, Wiles D M. The thermal stability ofpoly(aryl-ther-ketone) as assessed by thermogravimetry. J Appl Polym Sci, 1989, 38: 323-337
    [93] Li X G, Huang M R. Polym Degrad Stab, 1999, 64: 81-89
    [94] Huang M R, Li X G. Thermal degradation of cellulose and cellulose esters. J Appl Polym Sci, 1998, 68: 293-304
    [95] Nunez I F, Fraga M R, Nunez M, Villanueva M. Thermogravimetric study of the decomposition process of the system BADGE(n=0)/1,2 DCH. Polymer, 2000, 41: 4635-4641
    [96] Kim S W, Chao Y S, Shim M J. Thermal degradation kinetics of PE by the Kissinger equation. Mater Chem Phys, 1998, 52(1): 94-97
    [97] Bonnet E, White R L. Species-specific isoconversion effective activation energies derived by thermogravimetry-mass spectrometry. Thermochimica Acta, 1998, 311(1): 81-86
    [98] Mu P, Wang.R F, Zhao L. Studies on the non-isothermal kinetics of thermal decomposition process of the complex of europium p-methylbenzoate with 2,2'-dipridine. Thermochimica Acta, 1997,296(1): 129-134
    [99] Herrera M, Matuschek G, Kettrup A. Main products and kinetics of the thermal degradation ofpolyamides. Chemosphere, 2001, 42: 601-607
    [100] 吕世光.聚合物的稳定化.北京:轻工业出版社(第一版),1986,182
    [101] 栗原福次.吴三硕译.塑料的老化(Plastics Aging).北京:国防出版社(第一版),1977,253
    [102] 殷敬华,莫志深.现代高分子物理学(上册).北京:科学出版社(第一版),2001,101-123
    [103] Ozawa T. Kinetics of non-isothermal crystallization. Polymer, 1971, 12: 150-158
    [104] Caze C, Devaux E, Crespy A, Cavrot J P. A new method to determine the Avrami exponent by DSC studies of non-isothermal crystallization from the molten state. Polymer,1997,38 (3): 497-502
    [105] Jeziorny A. Parameters characterizing the kinetics of the non-isothermal crystallization of poly(ethylene terephthalate) determined by DSC. Polymer, 1978, 19: 1142-1144
    [106] Liu T X, Mo Z S, Zhang H F, Nonisothermal crystallization behavior of a novel poly(aryl ether ketone): PEDEKMK. J Appl Polym Sci, 1998, 67: 815-821
    [107] Liu S Y, Yu Y N, Zhang Y C, Mo Z S. Isothermal and no isothermal crystallization kinetics of nylon-11. J Appl Polym Sci, 1998, 70: 2371-2380
    [108] Dutta A. A Method to obtain avrami parameters directly from non-isothermal crystallization date. Polym Commun, 1990, 31: 451-462
    [109] T Ozawa.Kinetics of non2isothermal crystallization.Polymer, 1971 ,12: 150-158
    [110] A Jeziorny.Parameters characterizing the kinetics of the non-isothermal crystallization of poly(ethylene terephthalate)determined by DSC.Polymer. 1978, 19:1142-1144
    [111] L Mandelkem.Crystallization of Polym. New York:Mcgraw2Hill, 1964: 254.
    [112] 刘结平,莫志深.聚合物结晶动力学.高分子通报,1991,(4):199-207.
    [113] Ziabicki A. Appl Polym Symp, 1967, 6: 1
    [114] Lee K H, Kim S C. Reaction-induced crystallization kinetics during the anionic polymerization of ε-caprolatam. Polym Eng Sci. 1988, 28: 13-19
    [115] Malkin A Y, Beghishev V P, Keapin I A. A Ya malkin macrokinetics of polymer crystallization. Polymer, 1983, 24: 81-84
    [116] Zhang Z. Chin J Polym Sci, 1994, 12: 256
    [117] Fava R A. Methods of experimental physics; polymers, Part B: crystal structure and morphology, vol.16B, New York: Academic Press Inc(First Press), 1980, 99
    [118] Liu S Y, Yu Y N, Zhang Y C, H F, Mo Z S. Isothermal and nonisothermal crystallization kinetics of nylon-11. J Appl Polym Sci, 1998, 70: 2371-2380
    [119] 薛小芙,杨宝泉,李红云,莫志深.聚酰胺1010非等温结晶动力学.高分子学报,1993,5:589-593
    [120] Zhang Q X, Mo Z S. Isothermal and nonisothermal crystallization kinetics of nylon 66. Chin. J Polym Sci, 2001, 19: 237-246
    [121] Kissinger H E. J. Res. Natl. Stand(U. S.), 1956, 57: 217
    [122] 朱诚身,李修道,王经武,李华光,蒲帅天,聚酰胺1010异常光性球品的研究.高分子材料科学与工程,1992,3:61-64
    [123] 朱诚身,李修道,李华光,杨桂萍,聚酰胺1010等温结晶球晶形态与生 成条件研究.高分子学报,1992,4:457-462
    [124] 北京大学化学系高分子教研室编,高分子物理实验,北京:北京大学出版社(第一版),1983,27
    [125] 《聚合物形态学原理》[英]D.C.巴西特著,北京:科学出版社;
    [126] 何曼君,陈维孝,董西侠编,高分子物理,上海:复旦大学出版社(第一版),1990,50

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700