基于光纤光栅传感原理的桥梁索力测试方法研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近些年来,由光纤光栅构成的传感网络已经应用于许多大型结构的安全监测。大跨桥梁结构健康监测是应用光纤光栅传感网络最活跃的领域。光纤光栅传感网络系统埋入结构中可形成智能结构。光纤光栅传感器的精度非常高,具有很好的动态响应特性,可用于应力、应变、温度、振动等多种参数的测量,是智能材料系统和结构中最具应用前景的光纤传感器之一。大跨桥梁结构中,斜拉索的索力监测一直是桥梁结构健康监测系统的重要组成部分;而广泛采用的预应力混凝土类桥梁结构中,目前还无法实现对预应力索受力的直接监测。了解结构施工、营运过程中缆索内部钢丝受力状况及预应力体系是否安全,可靠一直是设计、施工和科研部门所关注的课题。
     光纤Bragg光栅(FBG)传感器除具有普通光纤传感器重量轻,耐腐蚀,抗电磁干扰,使用安全可靠等优点外,还具有探头尺寸小,波长调制,抗干扰能力强,集传感与传输于一体,具有较强的复用能力,易于构成传感网络,测量对象广泛,易于实现多参数同步传感测量等独特优点。对于索力实时监测国内外虽然有诸多研究,但总的来说还没有解决其根本技术难点,少有实用报道,尤其对处于高应力工作状态下的桥梁预应力钢束,体外索及缆索钢丝应变均还无法开展直接监测。为进一步发挥FBG传感技术的优势特点,研究基于FBG传感原理(以下均将“基于FBG传感原理”简称为“基于FBG”)的缆索监测新技术,完成基于FBG的预应力损失监测,实现基于FBG的索内钢丝应力值及分布状态监测,寻找从连续采集的索力数据中有效分析提取有意义监测信息的数据处理方法,本文进行了如下几个方面的研究工作:
     (一)既有基于FBG的桥梁索力测试方法比较研究
     1.指出了以纤维增强材料为封装体的智能筋目前还缺乏工程实例支撑的应用现状。介绍了更为成熟的基于频率法,压力传感原理,差动传感原理的光纤光栅索力传感监测系统的技术特点,测试原理及在代表性工程实例中的应用情况。
     2.从工程应用的角度,就适用桥型、单点费用、测量方式、温度补偿、更换操作及测试信号几个指标对既有基于FBG传感原理的索力监测方法进行了归纳对比。基于提出的各类光纤光栅索力传感器比较指标,使用模糊一致矩阵,结合具体工程,提出了一种更为客观的传感器选型方法。
     (二)基于FBG的预应力损失监测研究
     1.分析了基于FBG的预应力损失监测技术难点,提出了高应力工作状态的监测策略,及适用于新建桥梁及既有旧桥加固时对于预应力索的监测思路。
     2.设计了适用于新建桥梁预应力监测用FBG传感器的原型,通过试验分析验证了设计思路的可行性,并指出了实际应用中还应深入考虑的相关问题。
     3.通过一具体桥梁体外索加固监测实例,给出了基于FBG对体外索施工及运营阶段预应力值可采取的监测方式。
     (三)基于FBG的智能斜拉索结构研究
     1.结合平行钢丝斜拉索的生产工艺流程及平行钢丝模型张拉试验得到的相关结论,设计了智能斜拉索结构的组成方案。
     2.针对斜拉索的高应力工作环境,分析了对于传感器可采取的FBG预松弛方法。开发了一种能良好传递受力,测试斜拉索钢丝应变的微型应变传感器。通过对高应力工作状态下应变传感器的工作条件进行模型等效,解决了其温度补偿问题。
     3.针对平行钢丝斜拉索的生产工艺特点,分析了智能斜拉索传感器的保护措施,可能引起失效的原因及避免对策。
     (四)基于FBG索力测试方法的索内断丝监测研究
     1.说明了斜拉索断丝的危害性,由某一数值算例分析了斜拉索不同断丝方式,断丝程度下结构线型,索力及应力的响应规律。比较了既有斜拉索内断丝监测的手段,方法及特点。
     2.提出了基于FBG索力测试方法的断丝监测策略。联合斜拉索的整体模型以及钢丝为单元的局部模型,构建了对应于部分断丝模式的以斜拉索索力值(平均应力),智能斜拉索采集钢丝应力值为输入参量的模式识别样本库。基于BP的模式识别方法验证了提出的监测策略能够实现断丝区域定位及2%断丝程度内的监测要求,且在小噪声干扰下识别方法仍能发挥一定作用。
     (五)基于EMD法的索力数据趋势提取研究
     指出了可利用EMD法对连续采集的索力监测数据进行基于IMF分量的平均趋势及高幅值脉冲信号的提取分离。
In recent years, sensing networks based on fiber optical grating have been widely used in a great deal of large structures satety monitoring. Long span bridges health monitoring is one of the most active domains for the application of sensing networks based on fiber optical grating. Embedding sensing networks system that based on fiber optical grating in structures can form smart structures. The fiber optical grating sensor which can be used to measure stress, strain, temperature, vibration and other structural parameters has high test precision and good dynamic response and its application perspective is so flourishing in fiber optical sensors for smart material systems and structures. For long-span bridge structures, cable force monitoring is always the most important component of bridge structural health monitoring system. For the prestressed concrete bridge structures which have been widely used, the direct monitoring means for prestressed cable is still vacancy at present. Therefore, tearing the mechanical condition of steel wires inside the cable and the security of structural prestressing system usually become the common attention focus of design engineer, construction personnel and scientific research departments.
     In addition to some advantages possessed by common fiber optical sensor, namely, light weight, corrosion-resistant, anti-electromagnetic interference, safety and reliable in use and so on, fiber optical bragg grating (FBG) sensor has some unique advantages, namely, small probe size, wavelength modulation, good anti-interference ability, integration of sense and transmission, good multiplexed ability, easy to constitute a sensor network, wide range testing parameters and easy to implement many parameters simultaneous monitoring. Although a good many research work about cable force real-time monitoring have been carried out in the world at present, generally speaking, the radical technical difficulties about cable force testing haven't been solved and the practical engineering application reports were also rare. For the structures which bear high stress, especially such as prestressed reinforcement, external cable in bridge and steel wires in bridge cable, the direct strain testing means is still a challenge. In order to further exert the advantages of FBG sensing technology, study new testing methods which based on FBG principle (in the following text , "FBG-based" was used as the abbreviation for "based on FBG principle") for cable, achieve the FBG-based prestressing loss monitoring, implement the FBG-based distributed condition monitoring for steel wires stress values and search an effective data processing method for extracting meaningful monitoring information from the continuous collecting cable force data, this paper carried out the following research work:
     (i) Contrast study on existing bridge cable force measure methods based on FBG
     1. The status application of smart tendon that encapsuled by FRP which lacked the real engineering support was pointed out. More matured cable force sensing monitoring systems based on fiber optical grating involving frequency measure principle, pressure sensing principle and differential sensing principle were introduced. Also the corresponding technology trait, structure form and engineering application effects were presented.
     2. From the angle of engineering application, some index relative to the aforementioned cable force testing methods, namely, adaptation object, unit price, measure manner, temperature compensation, alterability and testing signal, were summarized and compared. Aiming at a real engineering and proposed relatively index about existing cable force sensor based on fiber optical grating that mentioned in this paper and, a more objective method for type decision-making of sensor was elicited by using fuzzy consistent matrix.
     (ii) Study the prestressing loss monitoring method based on FBG
     1. According to the analysis about the technical difficulties of prestressing loss monitoring based on FBG, the high strain monitoring strategy and the FBG-based monitoring ideas for prestressed cables in newly-built bridges and exsiting old bridges strengthening were elicited.
     2. The FBG sensor prototype which can be applied for prestressing loss monitoring in newly-built bridges was designed. Experiment analysis results verified the validity of proposed design thought and related problems in practical application which should be further taken into accout were pointed out.
     3. Based on a concrete bridge external cable strengthen engineering example, the FBG-based monitoring means for prestressing value which was adapt to construction and operation stage was proposed.
     (iii) Study the smart stay cable structure based on FBG
     1. Combining the fabricating arts and crafts flow of parallel wires cable of cable-stayed bridges with several conclusions derived from the parallel wires model tension experiment, the configuration scheme of smart stay cable was designed.
     2. Aiming at the high stress work condition of stay cable, some FBG pre-relaxed methods for sensor were put forward. A new micro strain sensor was designed, which ensured the validity to transfer steel wire stress and its mensurability as stay cable force testing means. According to the equivalent simulation of strain sensor's high stress work condition, temperature compensation of the strain sensor was solved.
     3. Based on the character of fabricating arts and crafts of parallel wire stay cable, protection measures, possible disabled reasons and avoidance strategies of sensor structure used in the smart stay cable were analyzed.
     (iv) Study the broken wires monitoring based on FBG cable force testing methods
     1. The fatalness of broken wires inside the stay cable was illuminated. By using a certain numerical model, structural deformation, displacement, cable force and stress distribution were analyzed under different cases which composed by various of broken wires number and damage extent. The character and monitoring means of different broken wires inspection methods were compared.
     2. The strategy for broken wires monitoring which based on FBG cable force testing methods was proposed. Associating the whole model of stay cable with the local model based on steel wires, several broken wires samples were established, which using stay cable force (average cable stress), steel wires stress derived from smart stay cable as input parameters. Using the BP pattern recognition method, the mentioned monitoring strategy can recognize the broken wires location and meet the 2% degree requirement for monitoring broken wires, which still can exert its function under small noise disturbance.
     (v) Study the trend extraction of cable force data based on EMD
     The function of extracting average trend and high amplitude pulse from the original continuous acquisition cable force data based on IMFs which were decomposed by using EMD method was elicited.
引文
[1]欧进萍.重大工程结构的累积损伤与安全评定[R].走向21世纪的中国力学-中国科协第9次青年科学家论坛报告文集.北京:清华大学出版社,1996.
    [2]Wang M L,Heo G,Satpathi D.Health monitoring system for large structural systems[J].Smart Materials and Structures,1998,7(5):606-616.
    [3]Rafiq M I,Chryssanthopoulos M,Onoufriou T.Improvement in performance prediction of corroding concrete structures using health monitoring systems[C].EUROCORR 2005:European Corrosion Congress,Lisbon,Portugal,2005
    [4]Aktan E,Chase S,Inman D,et al.Monitoring and managing the health of infrastructure systems[C].Proceedings of SPIE-The International Society for Optical Engineering,Health Monitoring and Management of Civil Infrastructure Systems,Newport Beach,CA,2001.
    [5]Aktan A E,Helmicki A J,Hunt V J.Issues in health monitoring for intelligent infrastructure [J].Smart Materials and Structures,1998,7(5)..674-692.
    [6]李爱群,缪长青,李兆霞等.润扬长江公路大桥结构健康监测系统研究[J].东南大学学报,2003,33(5):544-548.
    [7]Housner G W,Bergman L A,Caughey T K et al.Structural Control:Past,Present,and Future [J].Journal of Engineering Mechanics,1997,123(2):897-971.
    [8]姜德生,Richard O.Claus著.智能材料、器件、结构与应用[M].武汉:武汉工业大学出版社,2000.
    [9]SOHN H,FARRAR C R,HEMEZ F,et al.A Review of Structural Health Monitoring Literature:1996-2001,Los Alamos National Laboratory Report,LA-13976-MS,2003.
    [10]朱绍玮,张宇峰,樊可清等.江阴大桥结构健康监测系统升级改造及初步数据分析[J].公路,2007,4:69-72.
    [11]谢峻,王国亮,郊晓华.大跨度预应力混凝土箱梁桥长期下挠问题的研究现状[J].公路交通科技,2007,24(1):47-50.
    [12]张启伟,周艳.桥梁健康监测技术的适用性[J].中国公路学报,2006,19(6):54-58.
    [13]lntemet reference:http://www.micro-optics,org/
    [14]Internet reference:http://www.geokon.com.cn/
    [15]Internet reference.,http://www.pioptics.com/
    [16]Intemet reference.,http://www.synetoptics.com/
    [17]Internet reference:http://www.tider.com.cn/cn/index.asp
    [18]孙宗光,倪一清,高赞明等.基于斜拉索振动测量与神经网络技术的斜拉桥损伤位置识别方法[J].工程力学,2003,20(3):26-30.
    [19]孙宗光,高赞明,倪一清.基于神经网络的桥梁损伤位置识别[J].工程力学,2004, 21(1):42-47.
    [20]孙宗光,钟阳,刘春泽等.斜拉桥损伤识别的模态柔度指标分析[J].公路交通科技,2006,23(11):48-59.
    [21]孙宗光,高赞明,倪一清等.斜拉桥桥面结构损伤位置识别的指标比较[J].工程力学,2003,20(1):27-31.
    [22]蔡键等.斜拉桥索力检测方法的探索[J].西安公路交通大学学报,1997,17:376-379.
    [23]孙汝蛟,孙利民,孙智.FBG传感技术在大型桥梁健康监测中的应用[J].2008,36(2):149-154.
    [24]吴康雄,刘克明,杨金喜.基于频率法的索力测量系统[J].中国公路学报,2006,19(2):62-65.
    [25]林志宏,徐郁峰.频率法测量斜拉桥索力的关键技术[J].中外公路,2003,23(5):1-4.
    [26]Chen ZL,Wang M L,Sumitro S.A new magnetoelastic stress/corrosion sensor for cables in cable-stayed bridges using measurement of anhysteretic curve[A].2~(nd) Workshop on ATUEDM [C].Kyoto,2000:11-14.
    [27]Wang M L,Lloyd G M,Hovorka O.Development of a remote coil magneto-elastic stress sensor for steel cables[A].Health Monito ring and Management of Civil Infrastructure Systems [C].Newport Beach CA..SPIE,2001,4337,122-128.
    [28]郝超,裴岷山,强士中.斜拉桥索力测试新方法-磁通量法[J].公路,2000,11:30-31.
    [29]龙跃,邓年春,朱万旭等.磁通量传感器及其在桥梁监测中的应用[J].预应力技术,2007,2:3-6.
    [30]张东生,郭丹,罗裴.基于匹配滤波解调的光纤光栅振动传感器研究[J].传感技术学报,2007,20(2):311-313.
    [31]刘胜春,姜德生,李盛.新型光纤光栅振动传感器测试斜拉索索力[J].武汉理工大学学报,2006,28(8):110-112.
    [32]张东生,李微,郭丹.基于光纤光栅振动传感器的桥梁索力实时监测[J].传感技术学报,2007,20(12):2720-2723.
    [33]Jiang De-sheng,Li Sheng.Design and research structural health monitoring system for an existing bridge based on optical fiber sensing technology[C].The Second International Conference on Structural Condition Assessment,Monitoring and Improvement 19-21November,2007,Changsha,China 2007,Vol.Ⅱ:959-965.
    [34]姜德生,郝义昶,刘胜春.光纤Bragg光栅测力环在系杆拱桥中的应用[J].仪表技术与传感器,2006,2:43-44.
    [35]南秋明,姜德生,梁磊.光纤光栅测力环的应用[J].华中科技大学学报(自然科学版),2006,34(9):63-65.
    [36]高宗余.武汉天兴洲公铁两用长江大桥总体设计[J].桥梁建设,2007,1:5-9.
    [37]秦顺全.武汉天兴洲公铁两用长江大桥关键技术研究[J].工程力学,2008,25(增刊Ⅱ): 99-105.
    [38]Federal Highway Administration.1996 Research and Technology Program Highlights[R].Washington D.C.,1996.
    [39]Kersey A D,Davis M A,Berkoff T Aet al.Progress Towards the Development of Practical Fibre Bragg Grating Instrumentation Systems,SPIE,1996,2839:40-63.
    [40]Nellen P M,Bronnimann R,Frank A et al.Structurally Embedded Fiber Bragg Gratings:Civil Engineering Application,SPIE,1999,3860:44-54.
    [41]Fiebele P.Fiber Bragg Grating Strain Sensors:Present and Future Applications in Smart Structures[J].Optics and Photonics News,1998,9:33-37.
    [42]KERSEY ALAN D.A review of Recent Developments in Fiber Optic Sensor Technology[J].Optical Fiber Technology,1996,2(3):291-317.
    [43]LEE BYOUNGHO.Review of the Present Status of Optical Fiber Sensors[J].Optical Fiber Technology,2003,9(2):57-79.
    [44]JACKSON DA,LOBO RI EIROA B,REEKIE L,et al.Simple Multiplexing Scheme for a Fiber Optic Grating Sensor Network[J].Optic Letters,1993,18(14):1192-1194.
    [45]OTHONOSA,KALLI K.Fiber Bragg Grating- Fundamentals and Applications in Telecommunications and Sensing[J].Boston:Artech House,1999.
    [46]KERSEY A D,BERKOFF T A.Dual Wavelength Fiber Interferometer with Wavelength Selection via Fiber Bragg Grating Elements[J].Electronic Letters,1992,28(13):1215-1216.
    [47]KERSEY A D.Multiplexed Fiber Bragg Grating Strain-sensor System with a Fiber Fabry-Perot Wavelength Filter[J].Optic Letters,1993,18(16):1370.
    [48]NING Y N,MELDRUM A,SHI W J,et al.Bragg Grating Sensing Instrument Using a Tunable Febry Perot Filter to Detect Wavelength Variations[J].Measurement Science &Technology,1998,9(6):599-606.
    [49]Qin L,Wei Z X,Wang Q Y,et al.[J].Optical Materials,2000,14:239-242.
    [50]张伟刚,赵启大,开桂云等.基于弹性梁的光纤光栅波长调谐原理及技术[J].半导体光电,2001,22(5):299-303.
    [51]黄山,赵华凤,俞涛等.光纤光栅温度补偿桥式结构[J].半导体光电,2003,24(6):439-440.
    [52]俞钢,何赛灵.一种新型的光纤光栅封装装置[J].光子学报,2004,3(3):291-293.
    [53]黄勇林,李杰,开桂云等.光纤光栅的温度补偿[J].光学学报,2003,23(6):677-679.
    [54]易本顺,胡瑞敏,朱子碧等.磁致伸缩调制型光纤Bragg光栅的温度补偿方法[J].中国激光,2002,29(12):1085-1088.
    [55]关柏鸥,Tam H Y,Ho S L等.用一根光纤光栅实现温度与应变的同时测量[J].光学学报,2000,20(6):827-830.
    [56]董兴法,付圣贵,姜莉等.用于结构损伤诊断的实用型光纤光栅传感器研究[J].光子学报,2004,33(1):28-30.
    [57]刘永红,阮迎澜,江山等.温度不灵敏光纤光栅[J].中国激光,1997,24(10):895-898.
    [58]赵雪峰,田石柱,周智等.钢片封装光纤光栅监测混凝土应变试验研究[J].光电子.激光,2003,14(2):171-174.
    [59]王跃,张伟刚,杨翔鹏等.光纤布拉格光栅的半金属管封装及挠度实验研究[J].传感技术学报,2002,3:203-207.
    [60]余有龙,关柏鸥,董孝义等.免受温度影响的光纤光栅位移传感器[J].光学学报,2000,20(3):400-404.
    [61]郭团,乔学光,贾振安等.基于光纤Bragg光栅反射波带宽展宽的压力传感研究[J].光子学报,2004,33(1):288-290.
    [62]梁磊,姜德生,罗裴等.光纤Bragg光栅在结构健康监测中的实验研究[J].山东理工大学学报,2003,17(3):4-7.
    [63]耿淑伟,余有龙.光纤光栅时分复用传感系统[J].哈尔滨工业大学学报,2002,34(2):204-206.
    [64]邓年春,欧进萍,周智等.一种新型平行钢丝智能拉索[J].公路交通科技,2007,24(3):82-85.
    [65]欧进萍,周智.纤维增强塑料-光纤光栅复合筋[P].中国专利:CN1484456A,2004.
    [66]邓年春,周智,龙跃等.光纤光栅冷铸镦头锚拉索及其在桥梁中应用[J].预应力技术,2007,3:3-7.
    [67]张嵩.分布式网络化桥梁结构安全监测系统研究[J].武汉理工大学学报,2007,29(11):115-118.
    [68]武汉理工光科股份有限公司.晴川桥系杆换索施工索力现场监测测试误差分析报告[R].武汉:武汉理工光科股份有限公司,2004.
    [69]宋雨.文晖大桥健康监测与评估管理系统主要问题研究[D]:[博士学位论文].杭州:浙江大学,2003.
    [70]王俊杰,姜德生,梁宇飞.差动式光纤Bragg光栅士压力计及其温度特性的研究[J].光电子·激光,2007,18(4):389-391.
    [71]王俊杰,付晓红,姜德生.差动式光纤光栅位移计及其温度特性的研究[J].武汉理工大学学报,2007,29(12):112-115.
    [72]桥梁索力长期远程实时监测新技术研究与应用科学技术成果鉴定证书[R].湖北省科技厅,2006.
    [73]刘胜春.光纤光栅智能材料与桥梁健康检测系统研究[D]:[博士学位论文].武汉:武汉理工大学,2006.
    [74]姜德生,李盛,刘胜春.光纤光栅传感系统在桥梁重载车识别中的应用[J].中外公路,2007,27(3):153-155.
    [75]王应军.大型斜拉桥长期健康监测系统的关键技术研究[D]:[博士学位论文].武汉:武汉理工大学,2006.
    [76]武汉理工光科股份有限公司.武汉长江二桥长期健康监测及数字化管养系统报告[R].武汉:武汉理工光科股份有限公_司,2006.
    [77]吕跃进.基于模糊一致矩阵的模糊层次分析法的排序[J].模糊系统与数学,2002,16(2):79-85.
    [78]柯红军,李德慧,李晓宝.减震器对斜拉索索力检测的影响[J].中外公路,2008,3:103-105.
    [79]JTG D62-2004,中华人民共和国交通部.公路钢筋混凝土及预应力混凝土桥涵设计规范[S].北京:人民交通出版社,2004.
    [80]李冬生,邓年春,周智等.拱桥吊杆的光纤光栅监测与健康诊断[J].光电子.激光,2007,18(1):81-84.
    [81]陈礼彪.下白石特大桥竖向预应力钢筋施工工艺与测试[J].公路,2003,(9):21-23.
    [82]刘永前,张彦兵,王新敏.后张梁管道摩阻损失测试技术与数据处理[J].中国安全科学学报,2005,15(1):104-107.
    [83]郭红霄,张学民,王卫承等.85m长钢绞线束张拉施工技术[J].铁道标准设计,2001,21(7):5-6,10.
    [84]欧进萍,周智,武湛君等.黑龙江呼兰河大桥的光纤光栅智能监测技术[J].土木工程学报,2004,37(1):45-49,64.
    [85]朱瑛.预应力锚索在张拉锚同时受力均匀性的测试及分析[J].陕西水力发电,1994,10(1):38-43.
    [86]刘晓明.多转角长束预应力钢绞线应力测试与结构补强[J].施工技术,2001,30(7):22-24.
    [87]姜德生,梁磊,南秋明等.新型光纤Bragg光栅锚索预应力监测系统[J].武汉理工大学学报,2003,25(7):15-17.
    [88]Nellen P M.Fiber optical Bragg grating sensors embedded in CFRP wires[C].Proceedings of SPIE,1999,(3670):440-449.
    [89]GA Washer,R E Green,R B Pond,et al.Velocity Constants for Ultrasonic Stress Measurement in Prestressing Tendons[J].Res Nondestr Eval.,2002,(14):81-94.
    [90]刘铁根,江俊峰,李欣等.光纤光栅在预应力钢绞线应力测量中的应用[J].光电子.激光,2005,16(10):1235-1238.
    [91]JTG/T J22-2008,中华人民共和国交通运输部.公路桥梁加固设计规范[S].北京:人民交通出版社,2008.
    [92]朱正伟,刘东燕,彭文轩.体外预应力技术在桥梁加固中应用的思考[J].重庆建筑大学学报,2005,27(2):46-50.
    [93]CJ3058-1996,中华人民共和国建设部.塑料护套半平行钢丝拉索[S].北京:中国标准出版社,1996.
    [94]绍旭东主编.桥梁设计百问[M].北京:人民交通出版社,2003.
    [95]陆剑锋,单继安等.平行钢丝缆索使用寿命的研究[C].中国公路学会桥梁和结构工程分会2004年全国桥梁学术会议,中国昆明,2004:513-518.
    [96]林元培.斜拉桥[M].北京:人民交通出版社,1994.
    [97]刘士林,梁智涛等主编.斜拉桥[M].北京:人民交通出版社,2002.
    [98]M H Faber,S.Engelud,R.Rackwitz.Aspects of parallel wire cable reliability[J].Structural Safety,2003,25:201-225.
    [99]许俊,史家钧.济南黄河公路大桥主桥换索过程的索力监测[J].同济大学学报,1998,26(4):471-475.
    [100]何祖发.斜拉桥钢索的腐蚀防护[J].材料保护,2002,35(2):54-55.
    [101]向雅娟.斜拉桥大直径斜拉索的疲劳强度[J].世界桥梁,1994(1):25-33.
    [102]苏达根,韩大建,谭哲东等.斜拉桥拉索钢丝腐蚀失效研究[J].华南理工大学学报,1996,24(8):108-112.
    [103]王仲生.无损检测诊断现场实用技术[M].北京:机械工业出版社,2002.
    [104]Bligh.R.P.,Nakirekanti.S.Bray.D.E.,et al.Evaluation of NDE techniques for detecting grout defects in cable stays[J].Materials Evaluation,1994,52(4):508-514.
    [105]李国强,李杰.工程结构动力检测理论与应用[M].北京:科学出版社,2004.
    [106]GB/T 18365-2001,中华人民共和国国家质量监督检验检疫总局.斜拉桥热挤压聚乙烯高强钢丝拉索技术条件[S].北京:中国标准出版社,1996.
    [107]潘立泉,党志杰.新型冷铸锚填料的研究及其应用[J].桥梁建设,1999,4:46-48.
    [108]杨秉武,余三耀,彭汉宗.武汉长江二桥斜拉索制造[J].桥梁建设,1995,3:58-63.
    [109]Takena K,Miki C,Shimokawa H,Sakamoto K.Fatigue Resistance of Large-Diameter Cable for Cable-Stayed Bridges[J].Journal of Structural Engineering,1992,118(3):701-715.
    [110]JTG/T D65-01-2007,中华人民共和国交通部.公路斜拉桥设计细则[S].北京:人民交通出版社,2007.
    [111]信思金,柴伟.光纤Bragg光栅温度传感器封装方法研究[J].传感器技术,2004,23(4):10-12.
    [112]张清华,李乔,唐亮.基于损伤敏感指标的斜拉桥结构损伤定位研究[J].工程力学,2008,25(5):163-169.
    [113]湖北鄂东长江公路大桥结构安全综合管理系统实施大纲[R].成都西南交大科技园管理有限责任公司,2008,5.
    [114]CJJ99-2003 J281-2003,中华人民共和国建设部.城市桥梁养护技术规范[S].北京:中国建筑工业出版社,2003.
    [115]黄绍桥,郭良友.斜拉索的检查与维修[J].世界桥梁,2008,1(增刊):80-83.
    [116]朱大奇,史慧编著.人工神经网络原理及应用[M].北京:科学出版社,2006.
    [117]姜绍飞著.基于神经网络的结构优化与损伤检测[M].北京:科学出版社,2002.
    [118]郭健,顾正维等.基于小波分析的桥梁健康监测方法[J].工程力学,2006,23(2): 129-135.
    [119]孙增寿,韩建刚,任伟新.基于小波分析的结构损伤检测研究进展[J].地震工程与工程振动,2005,25(2):93-99.
    [120]任伟新,韩建刚,孙增寿著.小波分析在土木工程中的应用[M].北京:中国铁道出版社,2006.
    [121]J.N.Yang,Y.Lei,S.Lin,N.Huang.Hilbert-Huang Based Approach for Structural Damage Detection[J].Journal of engineering mechanics,Vol.130,NO.1,2004:85-95.
    [122]樊海涛,何益斌,周绪红.基于Hilbert-Huang变换的结构损伤诊断方法研究[J].建筑结构学报,2006,27(6):114-122.
    [123]石春香,罗奇峰,施卫星.基于Hilbert-Huang变换方法的结构损伤诊断[J].同济大学学报(自然科学版),2005,33(1):16-20.
    [124]李书进,虞晖,瞿伟廉.基于Hilbert-Huang变换的结构损伤诊断[J].武汉理工大学学报(自然科学版),2004,26(8):44-47.
    [125]Norden Huang,Kang Huang.基于希尔伯特-黄变换的铁路桥梁结构健康监测[J].中国铁道科学,2006,27(1):1-7.
    [126]Norden E Huang.The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J].Proc.R.Soc.Lond.A(1998)454,903-995.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700