淀粉的机械活化及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
淀粉是一种多晶高聚物,其颗粒中一部分分子排列成疏松的非晶区,另一部分分子则排列成高度有序的结晶区,结晶结构主要是由淀粉分子通过氢键连接,结晶区约占颗粒的25%~50%。淀粉分子的这种结构特点,限制了淀粉的使用范围,如淀粉结晶区分子排列紧密,水及化学试剂等不易触及结晶区内的分子,导致淀粉的糊化温度高、化学反应活性低等;淀粉的相对分子量大及众多的羟基彼此以氢键缔合成紧密的网络结构,导致淀粉糊粘度过大、流动性差。因此,研究如何改变淀粉颗粒结构、结晶区超分子结构以及减少淀粉结晶区的方法来改善淀粉的物理化学性质、提高淀粉的反应活性已成为一项极其重要的研究课题。本文采用自制的搅拌磨对淀粉进行机械活化。主要进行了如下几方面的研究:
     (1)采用X-射线衍射仪(XRD)、差示扫描量热仪(DSC)、扫描电子显微镜(SEM)、粒度分析仪及红外光谱(FTIR)对活化淀粉进行表征分析,用化学分析方法测定活化淀粉的直链淀粉含量,分别研究木薯、玉米淀粉在机械活化过程中其结晶结构、热特性、颗粒形貌、粒度分布、分子基团及直链淀粉含量变化的特征及规律,并根据测试结果对淀粉的机械活化过程机理进行分析讨论。
     (2)通过考察机械活化对木薯、玉米淀粉的冷水溶解度、流变特性、透明度及冻融稳定性的影响来研究机械活化对淀粉理化性质的影响。
     (3)以抗性淀粉含量为评价指标,通过考察活化时间、储存时间、淀粉糊浓度、糊化温度及储存温度对抗性淀粉形成的影响来研究机械活化对淀粉分子重结晶能力的影响。
     (4)采用不同活化时间的淀粉为原料、醋酸酐为乙酰化试剂、甲磺酸为催化剂、醋酸为反应介质制备乙酰化淀粉,并以其取代度为评价指标,通过研究机械活化对乙酰化反应取代度及活化能的影响规律来探讨机械活化对淀粉化学反应活性的影响。用红外光谱对产物的结构进行表征。
     (5)以不同活化时间的淀粉为原料、α-淀粉酶为液化试剂,以液化水解产物的葡萄糖值(Dextrose Equivalent,DE)为评价指标,通过研究机械活化时间、糊化温度、反应时间、反应温度、淀粉糊浓度、淀粉酶用量、pH值对DE值的影响规律来探讨机械活化对淀粉酶解反应活性的影响。
     通过上述的研究,根据实验结果和理论分析,得到如下主要结论:
     (1)在机械活化过程中木薯与玉米淀粉的结晶结构受到破坏,结晶度降低,最终由多晶态转变成非晶态;淀粉的颗粒形貌从不规整的大颗粒结构向片状细小颗粒结构演变,得到由众多细小颗粒团聚而成的聚集体,粉体界面模糊;两种淀粉的糊化温度、糊化吸热焓随活化时间的增加而逐渐降低,最终糊化相变吸热峰消失;直链淀粉含量随着活化时间的延长而增加;红外光谱分析表明淀粉在活化过程中并没有新的基团产生。
     (2)机械活化能显著提高木薯与玉米淀粉的冷水溶解度和淀粉糊的透明度,降低淀粉糊的冻融稳定性;木薯和玉米原淀粉及其活化淀粉糊均呈现假塑性流体特征,符合幂定律。活化时间越长,淀粉糊的表观粘度就越低,越趋近牛顿流体,具有很好的流动性,并能显著地降低两种淀粉糊的剪切稀化现象和触变性;由于和木薯淀粉相比,玉米淀粉的颗粒小、内部结构排列紧密,直链淀粉含量高,氢键作用力强,其结晶结构不易崩溃,因此活化玉米淀粉的冷水溶解度、淀粉糊的透明度及冻融稳定性均比相应的活化木薯淀粉低。
     (3)淀粉经机械活化后由于其分子链发生断裂,分子量变小,聚合度降低,粘度下降,直链淀粉含量提高,从而加强了淀粉分子重结晶的能力,抗性淀粉含量增加;但过度的降解会使直链淀粉的聚合度过低,淀粉链太短,淀粉分子易于扩散而不利于老化结晶。在相同条件下,由活化玉米淀粉所制备的抗性淀粉含量比活化木薯淀粉的高,说明直链淀粉含量对抗性淀粉的形成有很大的影响。其它的影响因素如淀粉糊浓度、糊化温度、储存温度等对抗性淀粉的形成也有较大的影响,但它们对淀粉糊重结晶能力的影响程度受到机械活化时间的制约,活化时间越长,对它们的依赖性越低。抗性淀粉的XRD分析表明,抗性淀粉的晶型结构不同于原淀粉,属于B型结构。
     (4)在实验条件下,木薯原淀粉及活化0.25、1.0h淀粉乙酰化反应的表观活化能分别为60.95、48.03、22.98 kJ·mol~(-1),玉米原淀粉及活化0.25、1.0h淀粉乙酰化反应的表观活化能分别为66.21、51.92、25.06 kJ·mol~(-1),表明机械活化对木薯、玉米淀粉的乙酰化反应有显著的强化作用,反应活性提高,乙酰化反应对反应温度的依赖性降低。虽然其它的影响因素如催化剂用量、醋酸酐用量对淀粉的乙酰化反应也有较大的影响,但它们的影响规律受到活化时间的制约,活化时间越长,酯化反应对它们的依赖性越低。红外光谱分析表明,乙酰化淀粉和原淀粉及活化淀粉的结构差异随着取代度的增加而增大;乙酰化反应过程也能破坏淀粉的结晶结构,降低淀粉的结晶度。
     (5)机械活化能显著提高淀粉的酶解反应活性,酶解反应速度加快。虽然其它的影响因素如糊化温度、反应温度、底物浓度、淀粉酶用量等对淀粉的酶解反应也有较大的影响,但它们的影响规律受到活化时间的制约,活化时间越长,酶解反应对它们的依赖性越低。
Starch is a morphologically complex polymer substance, consisting of loose amorphousregions that are interspersed with highly regular crystalline regions, resulting from the formationof hydrogen bonds between the starch molecules. The crystalline composition consists of around25~50% of the starch granules. The scope of starch application is both enhanced and limited byits unique molecular structure. For instance, the compact arrangements of molecules in thecrystalline regions inhibit water or chemical reagents from making contact with the molecules inthe crystalline region. As a result, the gelatinization temperature is higher and chemical reactivityof starch is decreased. Meanwhile, the relative large molecular weight and the extensive networkformed by hydrogen bonds lead to high gelatinization temperature and lower fluidity. For manypurposes, the market prefers starch with less extensive crystalline regions, resulting in improvedphysico-chemical properties and increased reactivity for planned applications. Therefore, there isgreat interest in methods to modify the structure in the crystalline region, or decrease the size ofcrystalline regions. In this thesis, cassava and maize starch were mechanically activated with acustomized stirring-type ball mill. The key researchful contents are as follows:
     (1)The effects of mechanical activation on crystal structure, thermal properties, functionalgroups, granular morphology, size distribution and amylose content of cassava and maize starchwere investigated respectively by using granularity analysis, scanning electron microscopy,X-ray diffractometry, Fourier transform infrared spectroscopy and differential scanningcalorimetry, the amylose content were mensurated with chemical method. The mechanism ofmodification process of starch by mechanical activation was also discussed.
     (2)The mechanical activation effects on physicochemical properties of cassava and maizestarch were investigated by analyzing the influence of mechanical activation on cold-watersolubility, rheological characteristics, transparency and freeze-thaw stabilization.
     (3) Using the resistant starch (RS) content as an evaluating parameter, the mechanicalactivation effects on recrystallization of cassava and maize starch were investigated by analyzingthe influence of activation time, storage time, starch paste concentration, gelatinization andstorage temperature on the RS formation.
     (4) Using acetic anhydride as esterification reagent, methanesulfonic acid (MSA) as catalystand acetic acid as reaction medium, acetylated starch was synthesized from starch with differentactivation time. Moreover, using the degree of substitution (DS) as an evaluating parameter, themechanical activation effects on chemical reaction activity of starch were investigated byanalyzing the influence of mechanical activation on DS and apparent activation energy (E_a). Thestructures of acetylated starch with different DS were further characterized by using FTIR.
     (5) Using starch with different activation time as crude materials,α-amylase asliquefaction reagent, and dextrose equivalent (DE) as an evaluating parameter, the mechanicalactivation effects on enzymolysis reactivity of starch were investigated by analyzing theinfluence of activation time, gelatinization temperature, reaction time, reaction temperature,substrate concentration, amylase amount and pH value on DE.
     The following main conclusions can be drawn on the basis of the experimental results andtheoretical analysis.
     (1) The crystal structure of cassava and maize starch could be destroyed by mechanicalactivation, the crystallinity decreased from polycrystalline to amorphous. When subjected tomechanical activation, the starch granules shape were fractured, and agglomerating into largermore amorphous particles, congregates consisting of tiny granules, structural change fromirregular agglomerates to layered grains. The gelatinization temperature decreased withincreasing of activation time and the phase transition peak disappeared gradually. The amylosecontent increased with increasing of activation time. FTIR showed no new functional groupsproduced during the mechanical activation process.
     (2) The mechanical activation was evidenced to cause change of physicochemical propertiesof cassava and maize starch: cold-water solubility and transparency increased, freeze-thawstabilization reduced. All activated starch samples with pseudoplastic characteristics in accordingto the power law, starch solution in a tendency to Newton fluid. The apparent viscosity,thixotropy and shear-thinning nature of the starch pastes decreased with increasing of activation time. The cassava starch showed greater cold-water solubility, transparency and freeze-thawstabilization than maize starch under similar activation treatments, the different might beattributed to differences of size, amylose content and fragility of granules, the cassava starch aresize larger, amylose content lower and more fragile than maize starch.
     (3) Mechanical activation could cause degradation of starch molecules, the degree ofpolymerization (DP) and viscosity decreased and amylose content increased. As a result, mildmechanical activation treatment was proved to be in favor of the recrystallization of starchmolecule and the RS content increased evidently. RS content from activated maize starch werehigher than activated cassava starch under same experimental conditions, showed amylosecontent was one of important factors that affect yields of RS. Moreover, it was also found thatother affecting factors, such as starch paste concentration, gelatinization and storage temperaturehad a certain influence on RS formation and were closely related to activation time. XRDshowed that the structure of RS is B pattern.
     (4) Under the experimental conditions, the Ea of esterification from 60.95 and 66.21kJ·mol~(-1) for non-activated cassava and maize starch to 48.03 and 51.92 kJ·mol~(-1) (activation time0.25h), 22.98 and 25.06 kJ·mol~(-1) (activation time 1.0h) for activated cassava and maize starch,respectively. The results showed that the mechanical activation pretreatment obviously enhancedenzymolysis reactivity of starch, and the dependence of esterification on reaction temperature,catalyst and acetic anhydride concentration decreased with increasing of activation time. FTIRshowed that the structural difference of between acetylated starch, native starch and activatedstarch increased with increasing of DS. The crystal structure of starch could be also destroyedduring acetylation process.
     (5) Mechanical activation obviously enhanced the enzymolysis reactivity of starch. Otheraffecting factors, such as gelatinization temperature, reaction temperature, substrateconcentration and amylase amount had a certain influence on enzymolysis and were closelyrelated to activation time. Moreover, the dependence of enzymolysis on these affecting factorsdecreased with increasing of activation time.
引文
[1] 张燕萍.变性淀粉制造应用[M].北京:化学工业出版社,2001.34-35,59-71
    [2] 张力田.变性淀粉[M].华南理工大学出版社,1999.18-19
    [3] Xin Q, Richard F T, Colin E S, et al. Molecular basis of the gelatinisation and swelling characteristics of waxy barley starches grown in the same location during the same season. Part Ⅱ. crystallinity and gelatinisation characteristics[J]. Journal of Cereal Science, 2004, 39(1): 57-66
    [4] Richard F T, John K, Xin Q. Starch—composition, fine structure and architecture [J]. Journal of Cereal Science, 2004, 39(2): 151-165
    [5] Daniel J G, Brigitte B, Paul M B. Microscopy of starch: evidence of a new level of granule organization [J]. Carbohydrate Polymers, 1997, 32(3-4): 177-191
    [6] Christopher G O. Towards an understanding of starch granule structure and hydrolysis [J]. Trends in Food Science & Technology, 1997, 8:375-382
    [7] 张本山,张友全,杨连生.玉米、木薯及马铃薯淀粉颗粒微晶结构及性质的研究[J].食品科学.2001,22(2):11-14
    [8] 张本山,张友全,曾新安.预糊化玉米淀粉亚微晶结构及性质研究[J].郑州工程学院学报,2001,21(4):23-26
    [9] Sarko A, Wu H C H. The crystal structures of A-, B-and C-polymorphs of amylose and starch [J]. Starch/Starke, 1978, 30: 73-78.
    [10] 刘亚伟.玉米淀粉生产及转化技术[M].北京:化学工业出版社,2003.150-151
    [11] Chen J, Jane J. Preparation of granular cold-water-soluble starches by alcoholic-alkaline treatment [J]. Cereal Chemistry, 1994, 71 (2): 618-622
    [12] Singh J, Singh N. Studies on the morphological and rheological properties of granular cold water soluble corn and potato starches [J]. Food Hydrocolloids, 2003,17(1): 63-72
    [13] Roberts S A, Cameron R E. The effects of concentration and sodium hydroxide on the rheological properties of potato starch gelatinization [J]. Carbohydrate Polymers, 2002, 50(2): 133-143
    [14] Tako M, Hizukuri S. Gelatinization mechanism of potato starch [J]. Carbohydrate Polymers, 2002, 48(4): 397-401
    [15] 何小维,黄强,罗发兴,等.超声处理后的玉米淀粉与环氧丙烷的反应机理[J].华南理工大学学报(自然科学版),2005,33(8):91-94
    [16] Shogren R L. Modification of maize starch by thermal processing in glacial acetic acid [J]. Carbohydrate Polymers, 2000, 43 (4): 309-315
    [17] Cao Y M, Qing X S, Sun J, Zhou F M, Lin S A. Graft copolymerization of acrylamide onto carboxymethyl starch [J]. European Polymer Journal, 2002, 38 (9): 1921-1924
    [18] Achremowicz B, Gumul D, Piasek A B, Tomasik P, Haberko K. Air oxidation of potato starch over Cu(Ⅱ) catalyst [J]. Carbohydrate Polymers, 2000, 42 (1): 45-50
    [19] 顾正彪,吴加根.淀粉丙烯腈接枝共聚物及其皂化物的颗粒结构特性[J].无锡轻工大学学报,1999,18(1):21-25
    [20] 杨铭铎,曲敏,李元瑞.氧化玉米淀粉磷酸酯的研究(Ⅱ)——基本性质的探讨[J].中国粮油学报,2001,16(5):50-54
    [21] 吕生华,马建中.降解淀粉/DMDAAC-AM接枝共聚物复鞣剂的合成及应用[J].精细化工,2003,20(9):561-563
    [22] Mostafa K M. Graft polymerization of methacrylic acid on starch and hydrolyzed starches [J]. Polymer Degradation and Stability, 1995, 50 (2): 189-194
    [23] Shogren R L. Rapid preparation of starch esters by high temperature/pressure reaction [J]. Carbohydrate Polymers, 2003, 52 (3): 319-326
    [24] Singh N, Chawla D, Singh J. Influence of acetic anhydride on physicochemical, morphological and thermal properties of corn and potato starch [J]. Food Chemistry, 2004, 86 (4): 601-608
    [25] 刘粼.酶-化学复合法制备醋酸酯淀粉[J].食品科学,1999,(1):37-39
    [26] Xu Y X, Dzenis Y. Hanna M A. Water solubility, thermal characteristics and biodegradability of extruded starch acetate foams [J]. Industrial Crops and Products, 2005, 21 (3): 361-368
    [27] 孙秀萍,于九皋,刘延奇.不同淀粉的酸解历程及性质研究[J].精细化工,2004,21(3):202-205
    [28] 沈建福,吴晓琴,叶立扬,等.马铃薯酸解淀粉的研究[J].浙江农业大学学报,1997,23(3):297-300
    [29] Wang Y J, Truong V D, Wang L F. Structures and rheological properties of com starch as affected by acid hydrolysis [J]. Carbohydrate Polymers, 2003, 52 (3): 327-333
    [30] Lin J H, Lee S Y, Chang Y H. Effect of acid-alcohol treatment on the molecular structure and physicochemical properties of maize and potato starches [J]. Carbohydrate Polymers, 2003, 53 (4): 475-482
    [31] Singh V, Ali S Z. Acid degradation of starch. The effect of acid and starch type [J]. Carbohydrate Polymers, 2000, 41 (2): 191-195
    [32] George F F, Frederick C F, Randal L S. Graft polymerization of acrylonitrile onto spherocrystals formed from jet cooked cornstarch. Carbohydrate Polymers, 2004, 56 (1): 77-84
    [33] 张干伟,童群义.淀粉来源及预处理方式对淀粉接枝共聚聚反应的影响[J].无锡轻工大学学报,2004,23(6):23-26
    [34] 李兆丰,顾正彪.酸解氧化淀粉与醋酸乙烯酯的接枝共聚反应研究(Ⅰ)[J].食品与生物技术学报,2005,24(5):11-15
    [35] Moatafa K M. Synthesis of poly (acrylamide)-starch and hydrolyzed starch graft copolymers as a size base material for cotton textiles [J]. Polymer Degradation and Stability, 1997, 55 (2): 125-130
    [36] 顾正彪,李兆丰,洪雁.引发剂对淀粉接枝共聚反应影响的研究[J].中国粮油学报,2006,21(1):33-36
    [37] 刘亚伟,张杰.酸解-水热处理对甘薯抗性淀粉形成的影响研究[J].食品科学,2003,24(6):41-45
    [38] Chung H J, Jeong H Y, Lim S T. Effects of acid hydrolysis and defatting on crystallinity and pasting properties of freeze-thawed high amylose corn starch [J]. Carbohydrate Polymers, 2003, 54(4): 449-455
    [39] Atichokudomchai N, Varavinit S, Chinachoti P. A study of annealing and freeze-stability of acid-modified tapioca starches by differential scanning calorimetry (DSC) [J]. Starch, 2002, 54(11): 343-349
    [40] 秦海丽,顾正彪.颗粒状冷水可溶木薯淀粉性质的研究[J].食品与发酵工业,2005,31(2):38-41
    [41] 卢玉栋,吴宗华.糊化条件对淀粉溶解度及性能的影响[J].中国造纸学报,2003,18(1):94-96
    [42] 阮少兰,刘亚伟,阮竞兰,等.颗粒冷水可溶淀粉制备技术研究[J].中国粮油学报,2005,20(4):29-33
    [43] 王霆,宋冶,郑秀丽,等.羧甲基玉米淀粉合成新工艺[J].东北林业大学学报,2005,33(4):113-114
    [44] Tijsen C J, Voncken R M, Beenackers A A C M. Design of a continuous process for the production of highly substituted granular carboxymethyl starch [J]. Chemical Engineering Science, 2001, 56(2): 411-418
    [45] 刘晓婷,董海洲.碱催化干法制备阳离子淀粉的研究[J].中国粮油学报,2004,19(3):38-41
    [46] Pal S, Mal D, Singh R P. Cationic starch: an effective flocculating agent [J]. Carbohydrate Polymers 2005, 59 (4): 417-423
    [47] 具本植,张淑芬,杨锦宗.氨基甲酰乙基淀粉的半干法制备[J].现代化工,2003,23(8):22-24
    [48] 崔中敏.玉米淀粉氧化反应机理探讨[J].山东建筑工程学院学报,1997,12(3):113-117
    [49] 陈彦逍,胡爱琳,王公应.催化氧化制备氧化淀粉[J].中国粮油学报,2005,20(4):25-28
    [50] Li J H, Vasanthan T. Hypochlorite oxidation of field pea starch and its suitability for noodle making using an extrusion cooker [J]. Food Research International, 2003, 36(4): 381-386
    [51] Wang Y J, Wang L F. Physicochemical properties of common and waxy tom starches oxidized by different levels of sodium hypochlorite [J]. Carbohydrate Polymers, 2003, 52(3): 207-217
    [52] Olayide S L. Composition, physicochemical properties and retrogradation characteristics of native, oxidised, acetylated and acid-thinned new cocoyam (xanthosoma sagittifolium) starch [J]. Food Chemistry, 2004, 87(2): 205-218
    [53] Kuakpetoon D, Wang Y J. Structural characteristics and physicochemical properties of oxidized corn starches varying in amylose content[J]. Carbohydrate Research, 2006, 341(11): 1896-1915
    [54] 赵军宁,杨宗邃,马建中,等.淀粉氧化降解条件与淀粉/丙烯酸类单体接枝共聚反应的关系[J].中国皮革,2004,33(21):13-16
    [55] 赵军宁,杨宗邃,鲍艳,等.氧化降解淀粉-乙烯基类单体接枝共聚反应的研究[J].中国皮革,2005,34(5):16-19
    [56] 吕生华,马建中,吕庆强,等.降解淀粉与乙烯基类单体接枝聚合物的合成及应用[J].精细化工,2001,18(5):281-283
    [57] 张本山,梁勇,高大维,等.高交联非晶颗粒态玉米淀粉制备方法研究[J].精细化工,2002,19(3):173-176,182
    [58] 梁勇,张本山,杨连生,等.非晶颗粒态玉米淀粉的结构特征[J].高分子材料科学与工程,2004,20(4):177-180
    [59] 梁勇,张本山,杨连生,等.非晶颗粒态木薯淀粉化学反应活性研究[J].郑州工程学院学报,2004,25(1):9-13
    [60] 梁勇,张本山,杨连生,等.非晶颗粒态玉米淀粉的化学反应活性研究[J].食品科技,2004,(7):11-13,23
    [61] 梁勇,张本山,杨连生,等.非晶颗粒态玉米淀粉的微生物降解特性[J].高分子材料科学与工程,2004,20(6):127-130
    [62] 梁勇,张本山,杨连生,等.非晶颗粒态玉米淀粉不同条件下酶降解活性研究[J].商丘师范学院学报,2005,21(5):96-101
    [63] Tako M, Hizukuri S. Gelatinization mechanism of potato starch [J]. Carbohydrate Polymers, 2002, 48(4): 397-401
    [64] Karapantsios T D, Sakonidou E P, Raphaelides S N. Water dispersion kinetics during starch gelatinization [J]. Carbohydrate Polymers, 2002, 49(4): 479-490
    [65] 熊善柏,赵思明,姚霓,等.稻米淀粉糊化进程研究[J].粮食与饲料工业,2001,(5):14-16
    [66] Liu H S, Yu L, Xie F W, et al. Gelatinization of cornstarch with different amylose/amylopectin content [J]. Carbohydrate Polymers, 2006, 65(4): 357-363
    [67] 李明达,周永元.淀粉的物理化学状态对淀粉接枝高吸水树脂吸水性能的影响[J].东华大学学报(自然科学版),2002,28(5):52-55
    [68] 潘松汉,王贞,黎国康,等.淀粉糊化对淀粉——丙烯酰胺接枝共聚的影响[J].精细化工,1993,10(4):56-60
    [69] Athawale V D, Lele V. Syntheses and characterisation of graft copolymers of maize starch and methacrylonitrile [J]. Carbohydrate Polymers, 2000, 41 (4): 407-416
    [70] Choi W M, Jung I D, Kwon S K, et al. Syntheses and photobiodegradable properties of graft copolymers of vinyl ketones and starch [J]. Polymer Degradation and Stability, 1998, 61(1): 15-20
    [71] 罗志刚,高群玉.湿热处理改性淀粉的研究进展[J]_中国粮油学报,2006,21(1):47-50,54
    [72] Gunaratne A, Hoover R. Effect of heat-moisture treatment on the structure and physicochemical properties of tuber and root starches [J]. Carbohydrate Polymers, 2002, 49(4): 425-437
    [73] Hoover R, Manuel H. The Effect of heat-moisture treatment on the structure and physicochemical properties of normal Maize, waxy maize, dull waxy maize and amylomaize V starches [J]. Journal of Cereal Science, 1996, 23(2): 153-162
    [74] Lim S T, Chang E H, Chung H J. Thermal transition characteristics of heat-moisture treated corn and potato starches [J]. Carbohydrate Polymers, 2001, 46(2): 107-115
    [75] Colladdo L S, Corke H. Heat-moisture treatment effects on sweet potato starches differing in amylose content [J]. Food Chemistry, 1999, 65(3) 339-346
    [76] Adebowale K O, Lawal O S. Microstructure, physicochemical properties and retrogradation behaviour of mucuna bean (Mucuna pruriens) starch on heat moisture treatments [J]. Food Hydrocolloids, 2003, 17(3): 265-272
    [77] Hoover R, Manuel H. Effect of heat-moisture treatment on the structure and physicochemical properties of legume starches [J]. Food Research International, 1996, 29(8): 731-750
    [78] Yakaya T, Sano C, Nishinari K. Thermal studies on the gelatinisation and retrogradation of heat-moisture treated starch [J]. Carbohydrate Polymers, 2000, 41 (1): 97-100
    [79] 罗志刚,高群玉,杨连生.湿热处理对淀粉分子结构的影响[J].食品科技,2004,(7):14-16,20
    [80] 罗志刚,高群玉,杨连生.湿热处理对淀粉性质的影响[J].食品科学,2005,26(2):50-54
    [81] 徐忠,缪铭,王鹏,等.湿热处理对不同淀粉颗粒结构及性质的影响[J].哈尔滨商业大学学报(自然科学版),2005,21(5):649-653
    [82] 杨光,丁霄霖.压热处理对抗性淀粉形成的影响[J].中国粮油学报,2001,16(3):45-47
    [83] 陈玲,李琳,李晓玺,等.抗消化淀粉及其制备方法和应用[P].中国:CN1546678,2004.11.17
    [84] Sang Y, Seib P A. Resistant starches from amylose mutants of corn by simultaneous heat-moisture treatment and phosphorylation [J]. Carbohydrate. Polymers, 2006, 63(2): 167-175
    [85] 郇延军.蒸煮挤压过程中淀粉的变化[J].无锡轻工大学学报,1997,16(4):45-47
    [86] 丁霄霖,汤坚.玉米淀粉的挤出研究(Ⅰ)——淀粉聚合物的降解及其表征[J].无锡轻工业学院学报,1990,9(3):1-11
    [87] 丁霄霖,汤坚.玉米淀粉的挤出研究——淀粉在挤压过程中降解机理的研究(Ⅱ_a)[J].无锡轻工业学院学报,1992,11(2):95-103
    [88] 丁霄霖,汤坚.玉米淀粉的挤出研究——淀粉在挤压过程中降解机理的研究(Ⅱ_b)[J].无锡轻工业学院学报,1994,13(1):1-9
    [89] 丁霄霖,汤坚.玉米淀粉的挤出研究(Ⅲ)——淀粉在挤压过程中的降解动力学[J].无锡轻工大学学报,1996,15(2):95-101
    [90] Valle G D, Boche Y, Colonna P, et al. The extrusion behaviour of potato starch [J]. Carbohydrate Polymers, 1995, 28(3): 255-264
    [91] Alves R M L, Grossmann M V E, Silva R S S F. Gelling properties of extruded yam (dioscorea alata) starch [J]. Food Chemistry, 1999, 67(2): 123-127
    [92] Cheyne A, Barnes J, Wilson D I. Extrusion behaviour of cohesive potato starch pastes: I. Rheological characterization [J]. Journal of Food Engineering, 2005, 66(1): 1-12
    [93] Cheyne A, Barnes J, Gedney S, et al. Extrusion behaviour of cohesive potato starch pastes: Ⅱ. Microstructure-process interactions [J]. Journal of Food Engineering, 2005, 66(1): 13-24
    [94] Van Soest J J G, Benes K, De Wit D, et al. The influence of starch molecular mass on the properties of extruded thermoplastic starch [J]. Polymer, 1996, 37(16): 3543-3552
    [95] Wing R E, Willett J L. Water soluble oxidized starches by peroxide reactive extrusion [J]. Industrial Crops and Products, 1997, 7(1): 45-52
    [96] Miladinov V D, Hanna M A. Starch esterification by reactive extrusion [J]. Industrial Crops and Products, 2000, 11(1): 51-57
    [97] Nabeshima E H, Grossmann M V E. Functional properties pregelatinized and cross-lined cassava starch obtained by extrusion with sodium trimetaphosphate [J]. Carbohydrate Polymers, 2001, 45(4): 347-353
    [98] Esan M, Brummer T M, Meuser F. Chemical and processing aspects of the production of cationic starch using extrusion cooking [J]. Starch, 1996, 48:131-136
    [99] Carr M E, Kim S, Yoon K J, et al. Graft polymerization of cationic methacrylate, acrylamide, and acrylonitrile monomers onto starch by reactive extrusion [J]. Cereal Chemistry, 1992, 69(1): 70-75
    [100] Kerf M D, Mondelaers W, Lahorte P, et al. Characterisation and disintegration properties of irradiated starch [J]. International Journal of Pharmaceutics, 2001,221 (1-2): 69-76
    [101] Kang I J, Byun M W, Yook H S, et al. Production of modified starches by gamma irradiation [J]. Radiation Physics and Chemistry, 1999, 54(4): 425-430
    [102] Wu D X, Shu Q Y, Wang Z H, et al. Effect of gamma irradiation on starch viscosity and physicochemical properties of different rice [J]. Radiation Physics and Chemistry, 2002, 65(1): 79-86
    [103] Sirisoontaralak P, Noomhorm A. Changes to physicochemical properties and aroma of irradiated rice [J]. Journal of Stored Products Research, 2006, 42(3): 264-276
    [104] Abu J O, Duodu K G, Minnaar A. Effect of c-irradiation on some physicochemical and thermal properties of cowpea (Vigna unguiculata L. Walp) starch [J]. Food Chemistry, 2006, 95(3): 386-393
    [105] Bertolini A C, Mestres C, Colonna P, et al. Free radical formation in UV- and gamma-irradiated cassava starch [J]. Carbohydrate Polymers, 2001, 44(3): 269-271
    [106] 陈金周,黄灵阁,郑丙利,等.γ辐射玉米淀粉-MMA固相接枝的研究[J].高分子材料科学与工程,2005,2 1(5):286-288,292
    [107] 杨波,赵榆林,刘烨.淀粉和丙烯酰胺的辐照接枝共聚反应研究[J].高分子材料科学与工程,2001,17(6):64-66,70
    [108] Abdel-Aal S E, Dad Y H, Dessouki A M. Use of rice straw and radiation-modified maize starch/acrylonitrile in the treatment of wastewater [J]. Journal of Hazardous Materials, 2006, B129 (1-3): 204-215
    [109] Lee J S, Kumar R N, Rozman H D, et al. Pasting, swelling and solubility properties of UV initiated starch-graft-poly (AA) [J]. Food Chemistry, 2005, 91(2): 203-211
    [110] Palav T, Seetharaman K. Mechanism of starch gelatinization and polymer leaching during microwave heating [J]. Carbohydrate Polymers, 2006, 65(3): 364-370
    [111] Lewandowicz G, Jankowski T, Fornal J. Effect of microwave radiation on physico-chemical properties and structure of cereal starches [J]. Carbohydrate Polymers, 2000, 42(2): 193-199
    [112] Anderson A K, Guraya H S. Effects of microwave heat-moisture treatment on properties of waxy and non-waxy rice starches [J]. Food Chemistry, 2006, 97(2): 318-323
    [113] Lewandowicz G, Fornal J, Walkowski A. Effect of microwave radiation on physico-chemical properties and structure of potato and tapioca starches [J]. Carbohydrate Polymers, 1997, 34(4): 213-220
    [114] 徐昆,宋春雷,张文德,等.微波法合成淀粉接枝丙烯酸盐类高吸水性树脂的研究[J].功能高分子学报,2004,17(3):473-478
    [115] Biswas A, Shogren R L, Kim S, et al. Rapid preparation of starch maleate half-esters [J]. Carbohydrate Polymers, 2006, 64(3): 484-487
    [116] 陈均志,张海平,庞家武.微波干法制取低取代度阳离子淀粉的研究[J].造纸化学品,2004,(5):20-23
    [117] 刘钟栋.微波条件下小麦羧甲基淀粉的制备及结构分析研究[J].化学反应工程与工艺,1998,14(3):243-250
    [118] 全易,夏天喜,王蕴华,等.H_2O_2固相氧化法合成氧化淀粉及微波催化[J].江苏工业学院学报,2003,15(3):12-14
    [119] 陈均志,张海平,刘希夷.微波处理法玉米淀粉抗酶性的研究[J].食品工业科技,2005,(4):86-88
    [120] 夏立新,李坤兰,曹国英,等.微波辐射技术在淀粉水解制葡萄糖反应中的研究[J].化学世界,2000,(7):352-355
    [121] Kardos N, Luche J L. Sonochemistry of carbohydrate compounds [J]. Carbohydrate Research, 2001, 332(2): 115-131
    [122] Liu H, Bao J U, Du Y M, et al. Effect of ultrasonic treatment on the biochemphysical properties of chitosan [J]. Carbohydrate Polymers, 2006, 64(4): 553-559
    [123] Renata C B, Bozena R, Salah L, et al. Degradation of chitosan and starch by 360-kHz ultrasound [J]. Carbohydrate Polymers, 2005, 60(2): 175-184
    [124] Mason T J, Paniwnyk L, Lorimer J P, et al. Uses of ultrasound in food technology [J]. Ultrasonics Sonochemistry, 1996, 3(3): 253-260
    [125] 李坚斌,李琳,陈玲,等.超声波处理下马铃薯淀粉糊的流变学特性[J].华南理工大学学报(自然科学版),2006,34(3):90-94
    [126] 耿予欢,张本山,高大维.超声波影响异麦芽低聚糖生产的研究[J].食品工业科技,1999,20(1):14-16
    [127] 高大维,陈满香,梁竑,等.超声波催化糖化酶水解淀粉的初步研究[J].华南理工大学学报(自然科学版),1994,22(1):70-74
    [128] 丁金龙,孙远明.机械力化学及其在生物材料中应用展望[J].食品与机械,2003,(4):4-6
    [129] Baldwin P M, Adler J, Davies M C, et al. Starch damage part 1: Characterization of granule damage in ball-milled potato starch study by SEM [J]. Starch, 1995, 47:247-251
    [130] 胡飞,陈玲,李琳.马铃薯淀粉颗粒在微细化过程中结晶结构的变化[J].精细化工,2002,19(2):114-117
    [131] 丁金龙,孙远明,杨幼慧,等.魔芋粉湿法微粉碎机械力化学效应研究[J].食品与发酵工业,2003,29(10):11-14
    [132] 胡飞,陈玲,李琳,等.微细化马铃薯淀粉的颗粒显微结构和粒度变化研究[J].化学工程,2001,29(4):22-24,31
    [133] Stark J R, Yin X S. The effect of physical damage on large and small barley starch granules [J]. Starch, 1986,38:369-373.
    [134] 任广跃,毛志怀,李栋,等.微细化木薯淀粉糊特性研究[J].中国农业大学学报,2006,11(2):88-92
    [135] 胡飞,陈玲.微细化马铃薯淀粉的理化性质[J].无锡轻工业大学学报,2002,21(5):452-455
    [136] 胡飞,陈玲,李琳,等.微细化马铃薯淀粉流变学特性的研究[J].中国粮油学报,2003,18(2):61-63
    [137] Ever A D. Production and measurement of starch damage in flour [J]. Starch, 1998, 40:309-311
    [138] 陈玲,胡飞..机械力化学效应对马铃薯淀粉消化性能和抗酶解性的影响[J].食品科学,2001,22(18):15-18
    [139] 吴俊,谢笔钧.微细化淀粉在热塑性生物降解塑料中的应用研究[J].精细化工,2002,19(7):418-420
    [140] 吴俊,张志华,谢笔钧.热塑性微细化淀粉的制备及其结构性能研究[J].农业工程学报,2004,20(5):86-88
    [141] Zhang T, Oates C G. Relationship between α-amylase degradation and physico-chemical properties of sweet potato starches [J]. Food Chemistry, 1999, 65(2): 157-163
    [142] Zhou Y, Hoover R, Liu Q. Relationship between α-amylase degradation and the structure and physicochemical properties of legume starches [J]. Carbohydrate Polymers, 2004, 57(3): 299-317
    [143] Zhan X, Wang D, Bean S R, et al. Ethanol production from supercritical-fluid-extrusion cooked sorghum [J]. Industrial Crops and Products, 2006, 23(3): 304-310
    [144] Julius P, Nicholas H L. Glucose Syrup production from Indonesian palm and cassava starch [J]. Food Research International, 1995, 28(4): 379-385
    [145] 任便利,陈均志,叶林宇.酶-化学法制取氧化淀粉[J].粮食与饲料工业,2005,(11):21-22
    [146] 蹇华丽,高群玉,梁世中.抗性淀粉的酶法研制[J].食品与发酵工业,28(5):6-9
    [147] Boldyrev V V. Mechanical activation of solid and its application to technology [J]. Journal de Chimie Physique, 1986, 83(11-12): 821-829.
    [148] Chen Y, Hwang T, Marsh M, et al. Study on mechanism of mechanical activation [J]. Materials Science and Engineering, 1997, 226-228:95-98
    [149] 杨南如.机械力化学过程及效应(Ⅱ)机械力化学过程及应用[J].建筑材料学报,2000,3(2):93-97
    [150] Tromans D, Meech J A. Enhanced dissolution of minerals: stored energy, amorphism and mechanical activation [J]. Minerals Engineering, 2001, 14(11): 1359-1377
    [151] Achimovicova M, Balaz P. Influence of mechanical activation on selectivity of acid leaching of arsenopyrite [J]. Hydrometallurgy, 2005, 77(1-2): 3-7
    [152] Balaz P, Ebert I. Oxidative leaching of mechanically activated sphalerite [J]. Hydrometallurgy, 1991,27(2):141-150
    [153] 黄祖强,黎铉海,潘柳萍.机械活化对锌焙砂浸出的影响[J].矿产综合利用,2002,(3):25-29
    [154] 李洪桂,杨家红,赵中伟,等.黄铜矿的机械活化浸出[J].中南工业大学学报,1998,29(1):28-31
    [155] 刘今,龙志奇,巩前明,等.力化学对铝土矿溶出的作用[J].中南工业大学学报,1999,30(3):266-269
    [156] Berbermi V, Milanese C, Bruni G, et al. Mechanochemically assisted solid-state synthesis of lithium gallates (LiGa_5O_8 and LiGaO_2) [J]. Materials Chemistry and Physics, 2005, 91(1): 180-184
    [157] Kumar S, Bandopadhyay A, Alex T C, et al. Influence of mechanical activation on the synthesis and hydraulic activity of calcium dialuminate [J]. Ceramics International, 2006, 32(5): 555-560
    [158] 李希明,陈家镛.机械化学在资源和材料化工及环保中的应用[J].化工冶金,2000,21(4):443-448
    [159] Takacs L. Solid state reactions induced by ball milling [J]. Hyperfine Interactions, 1998, 111: 245-250
    [160] 刘雪东,卓震.机械化学法粉体表面改性技术的发展与应用[J].江苏石油化工学院学报,2002,14(4):32-35
    [161] 伟,邵磊,卢寿慈.机械力化学在高分子合成中的应用[J].化工新型材料,2000,28(2):10-13
    [162] 丁金龙,孙远明.机械力化学及其在生物材料中应用展望[J].食品与机械,2003,(4):4-6
    [1] Christopher G O. Towards an understanding of starch granule structure and hydrolysis. Trends in Food Science & Technology, 1997, 8:375-382
    [2] 杨光,丁霄霖.直链淀粉定量测定方法的研究[J].食品工业,2000,(4):40-41
    [3] 张本山,张友全,杨连生,等.玉米、木薯及马铃薯淀粉颗粒微晶结构及性质的研究[J].食品科学,2001,22(2):11-14
    [4] 刘亚伟.玉米淀粉生产及转化技术[M].北京:化学工业出版社,2003.150-151
    [5] Lai H M. Effects of hydrothermal treatment on the physicochemical properties of pregelatinized rice flour [J]. Food Chemistry, 2001, 72 (4): 455-463
    [6] 张燕萍.变性淀粉制造应用[M].北京:化学工业出版社,2001.49-50
    [7] 张本山,徐立宏,杨连生,等.淀粉微晶熔融性质的研究[J].郑州工程学院学报,2001,22(4):15-18
    [8] 胡飞,陈玲,李琳.马铃薯淀粉颗粒在微细化过程中结晶结构的变化[J].精细化工,2002,19(2):114-117
    [9] Gunaratne A, Hoover, R. Effect of heat-moisture treatment on the structure and physicochemical properties of tuber and root starches [J]. Carbohydrate Polymers, 2002, 49(4): 425-437
    [11] Bertolini A C, Mestres C, Colonna P, et al. Free radical formation in UV-and gamma-irradiated cassava starch [J]. Carbohydrate Polymers, 2001, 44(3): 269-271
    [12] Lewandowicz G, Jankowski T, Fornal J. Effect of microwave radiation on physico-chemical properties and structure of cereal starches. Carbohydrate Polymers, 2000, 42(2): 193-199
    [13] Renata C B, Bozena R, Salah L, et al. Degradation of chitosan and starch by 360-kHz ultrasound [J]. Carbohydrate Polymers, 2005, 60(2): 175-184
    [14] Lin J H, Lee S Y, Chang Y H. Effect of acid-alcohol treatment on the molecular structure and physicochemical properties of maize and potato starches [J]. Carbohydrate Polymers, 2003, 53(4): 475-482
    [15] Tamaki S, Hisamatsu M, Teranishi K. Structural change of maize starch granules by ball-mill treatment [J]. Starch, 1998, 50 (8): 342-348
    [16] 梁勇,张本山,杨连生,等.非晶颗粒态玉米淀粉制备方法[J].食品科技,2003,(4):12-15,22
    [17] 梁勇,张本山,杨连生,等.非晶颗粒态木薯淀粉微生物降解特性[J].无锡轻工大学学报,2005,24(1):15-18
    [18] Boldyrev V V, Pavlov S V, Goldberg E L. Interrelation between fine grinding and mechanical activation. International Journal of Mineral Processing, 1996, 44(45): 181-185
    [19] 郑水林.超细粉碎原理、工艺设备及应用[M].北京:中国建材工业出版社,1993.116-117
    [20] 梁勇.非晶颗粒态淀粉及其生物与化学反应活性研究[D].广州:华南理工大学,2002
    [21] 胡飞.马铃薯淀粉微细化及机械力化学改性的研究[D].广州:华南理工大学,2001
    [22] 罗志刚,高群玉,杨连生.湿热处理对淀粉分子结构的影响[J].食品科技,2004,(7):14-16,20
    [23] 刘亚伟,张杰.酸解-水热处理对甘薯抗性淀粉形成的影响研究[J].食品科学,2003,24(6):41-45
    [24] Singh V, Ali S Z. Acid degradation of starch. The effect of acid and starch type [J]. Carbohydrate Polymers, 2000, 41(2): 191-195
    [25] 武军,李和平.高分子物理及化学[M].北京:中国轻工业出版社,2001
    [26] 何本桥,张玉红,肖卫东,等.聚合物力化学理论及应用进展[J].高分子材料科学与工程,2001,17(1):25-29
    [27] 盖国胜,张云鹏.搅拌粉磨过程动力学模型研究[J].非金属矿,1994,(6):20-22
    [28] Schoene, R. Increasing the activating of the surface of crystals by bombardment with solid particles. Chemie Ingenieur Technik, 1969, 41:282-288
    [1] Gidley M J, Cooke D, Darke A H, et al. Molecular order and structure in enzyme-resistant retrograded starch [J]. Carbohydrate Polymers, 1995, 28(1): 23-31
    [2] Singh, J, Singh, N. Studies on the morphological and rheological properties of granular cold water soluble corn and potato starches [J]. Food Hydrocolloids, 2003, 17(1): 63-72
    [3] Lin J H, Lee S Y, Chang Y H. Effect of acid-alcohol treatment on the molecular structure and physicochemical properties of maize and potato starches [J]. Carbohydrate Polymers, 2003, 53(4): 475-482
    [4] 胡飞,陈玲.微细化马铃薯淀粉的理化性质[J].无锡轻工大学学报,2002,21(5):452-455
    [5] Morrison W R, Tester R F, Gidley M J. Properties of damaged starch granules. Ⅱ. Crystallinity, molecular order and gelatinisation of ball-milled starches [J]. Journal of Cereal Science, 1994, 19(3): 209-217
    [6] 宫慧慧.颗粒状冷水可溶性淀粉的醇解法制备及其特性研究[D].广州:华南理工大学,2003
    [7] 田植群.辐射对玉米淀粉理化性质和颗粒结构的影响[D].长春:吉林农业大学,2001
    [8] Pitchon E, O'Rourke J D, Joseph T H. Process of cooking or gelatinizing materials [P]. U S Patent: 4 280 851, 1981
    [9] Eastman J E, Moore C O. Cold water soluble granular starch for gelled food composition [P]. U S Patent: 4 465 702, 1984
    [10] Rajagopalan S, Seib P A. Granular cold-water-soluble starches prepared at atmospheric pressure [J]. Journal of Cereal Science, 1992,16(2): 13-28
    [11] Chen J, Jane J. Preparation of granular cold-water-soluble starches by alcoholic-alkaline treatment [J]. Cereal Chemistry, 1994,71 (6): 618-622
    [12] 秦海丽,顾正彪.酒精碱法制备颗粒状冷水可溶淀粉的研究进展[J].粮食与饲料工业,2005,(1):18-19
    [13] 严瑞碹.水溶性高分子[M].北京:化学工业出版社,1998.5-6
    [14] Anastasiades A, Thanou S, Loulis D, et al. Rheological and physical characterization of pregelatinized maize starches [J]. Journal of Food Engineering, 2002, 52 (1): 57-66
    [15] Roberts S A, Cameron R E. The effects of concentration and sodium hydroxide on the rheological properties of potato starch gelatinisation [J]. Carbohydrate Polymers, 2002, 50(2): 133-143
    [16] Rosalina Ⅰ, Bhattacharya M. Dynamic rheological measurements and analysis of starch gels [J]. Carbohydrate Polymers, 2002, 48(2): 191-202
    [17] 邹海魁,陈建峰,王国全,等.纳米CaCO3/PVC增塑糊体系触变性能研究[J].高校化学工程学报,2003,17(2):207-211
    [18] Stolt M, Stoforos N G, Taoukis P S, ea al. Evaluation and modelling of rheological properties of high pressure treated waxy maize starch dispersions [J]. Journal of Food Engineering, 1999, 40(4): 293-298
    [19] Marcottea M, Hoshahilia A R T, Ramaswamy H S. Rheological properties of selected hydrocolloids as a function of concentration and temperature [J]. Food Research International, 2001, 34 (8): 695-703
    [20] 杨化桂,张辉,古宏晨,等.剪切稀化悬浮体触变性的研究[J].高校化学工程学报,1999,13(6):506-510
    [21] Rao M A, Tattiyakul J. Granule size and rheological behavior of heated tapioca starch dispersions [J]. Carbohydrate Polymers, 1999, 38(2): 123-132
    [22] Josef L. Effect of starch structure on starch rheological properties [J]. Food Technology, 1992, (3): 82-87
    [23] 陈克复,卢晓红,金醇哲,等.食品流变学及其测定[M].北京:轻工业出版社,1989
    [24] 吴唯,徐种德,周达飞.反应性聚丙烯/三元乙丙橡胶共混物的流变性能研究[J].现代化工,2000,20(7):33-36
    [25] 武斌,戴干策.搅拌槽内粘稠物系的混合过程[J].高校化学工程学报,1997,11(2):143-149
    [26] Karim A A, Norziah M H, Seow C C. Methods for the Study of Starch Retrogradation [J]. Food Chemistry, 2000, 71(1): 9-36
    [27] 杜先锋,许时婴,王璋.淀粉糊的透明度及其影响因素的研究[J].农业工程学报,2002,18(1):129-132
    [28] 张燕萍.变性淀粉制造与应用[M].北京:化学工业出版社,2001.51-53
    [29] Atichokudomchai N, Varavinit S, Chinachoti P. A study of annealing and freeze-stability of acid-modified tapioca starches by differential scanning calorimetry (DSC) [J]. Starch, 2002, 54(11): 343-349
    [30] Chung H J, Jeong H Y, Lim S T. Effects of acid hydrolysis and defatting on crystallinity and pasting properties of freeze-thawed high amylose corn starch [J]. Carbohydrate Polymers, 2003, 54(4): 449-455
    [31] 刘亚伟,张杰.酸解—水热处理对甘薯抗性淀粉形成的影响研究[J].食品科学,2003,24(6):41-45
    [32] 杨光.抗性淀粉的理化性质、制备和应用的研究[D].无锡:无锡轻工业大学,2000
    [33] Juscelino T, Carmelo M, Edgar H, et al. Resistant starch formation does not parallel syneresis tendency in different starch gels. Food Chemistry, 2002, 76(4): 455-459.
    [34] 李妙莲.含淀粉质食品的冻融稳定性[J].食品工业科技,2004,25(7):141-142,105
    [35] Lee M H, Baek M H, Cha D Set al. Freeze-thaw stabilization of sweet potato starch gel by polysaccharide gums [J]. Food Hydrocolloids, 2002,16(4): 345-352
    [36] Chung H J, Jeong H Y, Lim S T. Effects of acid hydrolysis and defatting on crystallinity and pasting properties of freeze-thawed high amylose com starch [J]. Carbohydrate Polymers, 2003, 54(4): 449-455
    [37] Fredrisson H, Sliverio J, Andersson R, et al. The influence of amylose and amylopectin characteristics on gelatinization and retrogradation properties of different starches [J]. Carbohydrate Polymers, 1998, 35 (3-4): 119-134
    [1] Baghurst P A, Baghurst K J, Record S J. Dietary fiber, non-starch polysaccharides and resistant starch-a review [J]. Food Australia, 1996, 48(3): 3-35
    [2] 欧仕益,傅亮,黄才欢,等.难消化淀粉的功能及其食品中的应用[J].食品科学,2001,22(4):93-95
    [3] Haralampu S G. Resistant starch—a review of the physical properties and biological impact of RS3 [J]. Carbohydrate Polymers, 2000, 41(3): 285-292
    [4] Lorraine L N, Jill H. Resistant starch and 13-glucan levels in grain sorghum (Sorghum bicolor M.) are influenced by soaking and autoclaving [J]. Food Chemistry, 2003, 81(1): 113-118
    [5] 吴建平.抗消化淀粉的研究进展及其应用前景[J].食品与发酵工业,1998,25(2):66-70
    [6] 刘雪萍,蒋鸿芳,杨志强,等.一种新型膳食纤维—RS[J].精细与专用化学品,2003,(6):20-21.
    [7] 程永刚,李晓玺,姚汝华.抗性淀粉的制备及其功能[J].粮油加工与食品机械,2003,(1):55-57
    [8] Englyst H N, Hudson G J. The classification and measurement of dietary carbohydrates [J]. Food Chemistry, 1996, 57(1): 15-21
    [9] Wen Q B, Lorenz K J, Matin D J, et al. Carbohydrate digestibility and resistant starch of steamed bread [J]. Starch, 1996, 48(5): 180-185
    [10] Tovar J, Melito C, Herrera E, ea al. Resistant starch formation does not parallel syneresis tendency in different starch gels [J]. Food Chemistry, 2002, 76(4): 455-459
    [11] Namratha J, Asna U, Prasad N N. Effect of storage on resistant starch content of processed ready-to-eat foods [J]. Food Chemistry, 2002, 79(3): 395-400
    [12] Cui R, Oates C G. The effect of retrogradation on enzyme Susceptibility of sago starch [J]. Carbohydrate Polymers, 1997, 32(1): 65-72
    [13] Akerberg A, Liljeberg H, Bjorck I. Effects of amylose/amylopectin ratio and baking conditions on resistant starch formation and glycaemic indices [J]. Journal of Cereal Science, 1998, 28(1): 71-80
    [14] Sang Y, Seib P A. Resistant starches from amylose mutants of corn by simultaneous heat-moisture treatment and phosphorylation [J]. Carbohydrate Polymers, 2006, 63(2): 167-175
    [15] 衣杰荣,姚惠源.淀粉分子结构对形成抗性淀粉的影响[J].粮食与饲料工业,2001,(6):33-35
    [16] Eerlingen R C, Deceuninck M, Delcour J A. Enzyme-resistant starch Ⅱ. Influence of amylose chain length on resistant starch formation [J]. Cereal Chemistry, 1993, 70(3): 345-350
    [17] Eerlingen R C, Jacobs H, Delcour J A. Enzyme-resistant starch Ⅴ. Effects of retrogradation of waxy maize starch on enzyme susceptibility [J]. Cereal Chemistry, 1994, 71(4): 351-355
    [18] Morikawa K, Nishinari K. Effects of concentration dependence of retrogradation behaviour of dispersions for native and chemically modified potato starch [J]. Food Hydrocolloids, 2000, 14(4): 395-401
    [19] 丁文平,丁霄霖.温度对大米淀粉胶凝和回生影响的研究[J].粮食与饲料工业,2002,(12):32-34
    [20] Maruta I, Kurahashi Y, Takano R, et al. Enzymic digestibility of reduced-pressurized, heat-moisture treated starch [J]. Food Chemistry, 1998, 61 (1-2): 163-166
    [21] 杨光,丁霄霖.压热处理对抗性淀粉形成的影响[J].中国粮油学报,2001,16(3):45-47
    [22] 德特莱夫·施米德尔,巴贝尔·J·康尼格,吉塞拉·亚各巴希.制备抗性淀粉的方法[P].中国:CN1352652,2002.06.05
    [23] 陈玲,李琳,李晓玺,等.抗消化淀粉及其制备方法和应用[P].中国:CN1546678,2004.11.17
    [24] 陈均志,张海平,刘希夷.微波处理法玉米淀粉抗酶性的研究[J].食品工业科技,2005,26(4):86-88
    [25] Lewandowicz G, Fornal J, Walkowski A. Effect of microwave radiation on physico-chemical properties and structure of potato and tapioca starches [J]. Carbohydrate Polymers, 1997, 34(4): 213-220
    [26] 杨光.抗性淀粉的理化性质、制备和应用的研究[D].无锡:无锡轻工业大学,2000
    [27] Bailoni L, Mantovani R, Pagnin G, et al. Effects of physical treatments on the resistant starch content and in vitro organic matter digestibility of different cereals in horses [J]. Livestock Science, 2006, 100(1): 14-17
    [28] Faraj A, Vasanthan T, Hoover R. The effect of extrusion cooking on resistant starch formation in waxy and regular barley flours [J]. Food Research International, 2004, 37(5): 517-525
    [29] Kim J H, Tanhehco E J, Ng P K W. Effect of extrusion conditions on resistant starch formation from pastry wheat flour [J]. Food Chemistry, 2006, 99(4): 718-723
    [30] 丁文平,丁霄霖.普鲁兰酶和β-淀粉酶对大米支链淀粉回生影响的研究[J].中国粮油学报,2003,18(1):13-16
    [31] Gidley M J, Cooke D, Darke A H, et al. Molecular order and structure in enzyme-resistant retrograded starch [J]. Carbohydrate Polymers, 1995, 28(1): 23-31
    [32] Chung H J, Jeong H Y, Lira S Y. Effects of acid hydrolysis and defatting on crystallinity and pasting properties of freeze-thawed high amylose corn starch [J]. Carbohydrate Polymers, 2003, 54(4): 449-455
    [33] 刘亚伟,张杰.酸解-水热处理对甘薯抗性淀粉形成的影响研究[J].食品科学,2003,24(6):41-45
    [34] Atichokudomchai N, Varavinit S, Chinachoti P. A study of annealing and freeze-stability of acid-modified tapioca starches by differential scanning calorimetry (DSC) [J]. Starch, 2002, 54(11): 343-349
    [35] Fredriksson H, Bjorck I, Andersson R, ea al. Studies on α-amylase degradation of retrograded starch gels from waxy maize and high-amylopectin potato [J]. Carbohydrate Polymers, 2000, 43(1): 81-87
    [36] 蹇华丽,高群玉,梁世中.抗性淀粉的酶法研制[J].食品与发酵工业,2002,28(5):6-9
    [37] 李光磊,李新华,金锋.马铃薯抗性淀粉的制备条件分析[J].沈阳农业大学学报,2005,36(4):491—493
    [38] Fredrisson H, Sliverio J, Andersson R, et al. The influence of amylose and amylopeetin characteristics on gelatinization and retrogradation properties of different starches [J]. Carbohydrate Polymers, 1998, 35(3-4): 119-134
    [39] Donald B T. Strategies for the manufacture of resistant starch [J]. Trends in Food Science & Technology, 2000, 11(7): 245-253
    [40] Sievert D, Czuchajowska Z, Pomeranz Y. Enzyme-resistant starch Ⅲ. X-ray diffraction of autoclaved amylomaize Ⅶ starch and enzyme-resistant residues [J]. Cereal Chemistry, 1991, 68(1): 89-91
    [41] Jouppila K, Roos Y H. The physical state of amorphous corn starch and its impact on crystallization [J]. Carbohydrate Polymers, 1997, 32(2): 95-104
    [42] Silverio J, Fredriksson H, Andersson R, et al. The effect of temperature cycling on the amylopectin retrogradation of starches with different amylopectin unit-chain length distribution [J]. Carbohydrate Polymers, 2000, 42(2): 175-184
    [43] 衣杰荣,姚惠源.温度对抗性淀粉形成的影响[J].粮食与饲料工业,2001,(8):37-38
    [44] 赵凯,张守文,杨春华,等.绿豆抗性淀粉制备技术研究[J].食品工业科技,2005,26(2):121-123
    [45] Lee M H, Baek M H, Cha D S, et al. Freeze-thaw stabilization of sweet potato starch gel by polysaccharide gums [J]. Food Hydrocolloids, 2002, 16(4): 345-352
    [46] Fan J, Marks B P. Retrogradation kinetics of rice flour as influenced by cultivar [J]. Cereal Chemistry, 1998, 57(1): 153-155
    [47] Zhang W, Jackson D S. Retrogradation behavior of wheat starch gels with differing molecular profiles [J]. Journal of Food Science, 1992, 57(6): 1428-1432
    [48] Christopher G O. Towards an understanding of starch granule structure and hydrolysis. Trends in Food Science & Technology, 1997, 8:375-382
    [49] Eerlingen R C, Deceuninck M, Delcour J A. Enzyme-resistant starch Ⅰ. Quantitative and qualitative influence of incubation time and temperature of autoclaved starch on resistant starch formation [J]. Cereal Chemistry, 1993, 70(3): 339-344
    [50] 蹇华丽,高群玉,梁世中.抗性淀粉结晶性质的研究[J].食品科学,2003,24(7):44-47
    [1] Fringant C, Desbrieres J, Rinaudo M. Physical properties of acetylated starch-based materials: relation with their molecular characteristics [J]. Polymers, 1996, 37(13): 2663-2673
    [2] Guan J, Hanna M A. Functional properties of extruded foam composites of starch acetate and corn cob fiber [J]. Industrial Crops and Products, 2004,19(3): 255-269
    [3] 姜闻博,乔秀颖,唐忠柱,等.乙酰化淀粉的塑化和性能研究[J].高分子学报,2006,5(1):97-101
    [4] 朱颖先,王月,李瑶君,等.高取代度淀粉醋酸酯的制备[J].应用化学,2001,18(7):592-594
    [5] Kayode O A, Bamidele I O O, Esther K O, et al. Functional properties of native, physically and chemically modified breadfruit (Artocarpus artilis) starch [J]. Industrial Crops and Products, 2005, 21(3): 343-351
    [6] Guan J J, Hanna M A. Functional properties of extruded foam composites of starch acetate and corn cob fiber [J]. Industrial Crops and Products, 2004,19(3): 255-269
    [7] Christopher G O. Towards an understanding of starch granule structure and hydrolysis [J]. Trends in Food Science & Technology, 1997, 8:375-382
    [8] 张力田.变性淀粉[M].广州:华南理工大学出版社,1999.169-172
    [9] Singh N, Chawla D, Singh J. Influence of acetic anhydride on physicochemical, morphological and thermal properties of corn and potato starch [J]. Food Chemistry, 2004, 86 (4): 601-608
    [10] Xu Y X, Dzenis Y. Hanna M A. Water solubility, thermal characteristics and biodegradability of extruded starch acetate foams [J]. Industrial Crops and Products, 2005, 21 (3): 361-368
    [11] Miladinov V D, Hanna M A. Starch esterification by reactive extrusion [J]. Industrial Crops and Products, 2000, 11(1): 51-57
    [12] Lewandowicz G, Fornal J, Walkowski A, et al. Starch esters obtained by microwave radiation—structure and functionality [J]. Industrial Crops and Products, 2000, 11(2-3): 249-257
    [13] 刘粼.酶-化学复合法制备醋酸酯淀粉[J].食品科学,1999,(1):37-39
    [14] Elomaa M, Asplund T, Soininen P, et al. Determination of the degree of substitution of acetylated starch by hydrolysis, ~1H NMR and TGA/IR [J]. Carbohydrate Polymers, 2004, 57 (3): 261-267
    [15] Chen Y, Hwang T, Marsh M, et al. Study on mechanism of mechanical activation. Materials Science and Engineering, 1997, A226-228:95-98
    [16] Kleiv R A, Thornhill M. Mechanical activation of olivine [J]. Minerals Engineering, 2006, 19(4): 340-347
    [17] Boldyrev V V, Pavlov S V, Goldberg E L. Interrelation between fine grinding and mechanical activation. International Journal of Mineral Processing, 1996, 44(45): 181-185
    [18] Chen Z H, Schols H A, Voragen A G J. Differently sized granules from acetylated potato and sweet potato starches differ in the acetyl substitution pattern of their amylose populations [J]. Carbohydrate Polymers, 2004, 56(4): 219-226
    [19] Chen Z H, Huang J R, Suurs P, et al. Granule size affects the acetyl substitution on amylopectin populations in potato and sweet potato starches [J]. Carbohydrate Polymers, 2005, 62(4): 333-337
    [20] 张光华,王卓妮,朱军峰.氧化醋酸酯淀粉的制备及其在表面施胶中的应用[J].中国造纸,2006,25(3):15-18
    [21] 董琪,陈大俊.高直链淀粉的醋酸酯化反应动力学[J].化学世界,2004,(12):635-637
    [22] 赵若冬.尿素缓释膜材料高取代醋酸酯淀粉的研制[J].应用化工,2005,34(4):232-233,236
    [1] 张燕萍.变性淀粉制造与应用[M].北京:化学工业出版社,2001.61-63
    [2] 张力田.淀粉糖[M].北京:轻工业出版社,1986.115-119,152-157
    [3] Kondula Z, Liakopoulou-Kyriakides M. Hydrolysis of starches by the action of an α-amylase from Bacillus subtilis [J]. Process Biochemistry, 2004, 39(11): 1745-1749
    [4] 陈世忠,祁德福,王续强.喷射液化在酒精生产中的应用[J].酿酒,2002,19(1):62-64
    [5] 白冬梅,赵学明,胡宗定.玉米生粉发酵生产L-乳酸的研究[J].化学工程,2002,30(3):50-54
    [6] 朱平.酒精生产中的连续喷射液化技术[J].酿酒科技,2001,(5):86-87
    [7] 高振鹏,岳田利,袁亚宏,等.果糖生产技术和应用研究进展[J].西北农林科技大学学报(自然科学版),2003,31(增刊):187-190
    [8] 夏立新,李坤兰,曹国英,等.微波辐射技术在淀粉水解制葡萄糖反应中的研究[J].化学世界,2000,(7):352-355
    [9] 陆冬梅,杨连生.双酶协同水解微波改性木薯淀粉的动力学研究[J].精细化工,2004,21(10):768-771
    [10] Lewandowicz G, Jankowski T, Fornal J. Effect of microwave radiation on physico-chemical properties and structure of cereal starches [J]. Carbohydrate Polymer, 2000, 42(2): 193-199
    [11] Daryl D G, Michael M M. Liquefaction of starch by a single-screw extruder and post-extrusion static-mixer reactor [J]. Journal of Food Engineering, 1995, 24 (4): 529-542
    [12] Govindasamy S, Campanella O H, Oates C G. Enzymatic hydrolysis of sago starch in a Twin-screw extruder [J]. Journal of Food Engineering, 1997, 32(4): 403-426.
    [13] 梁勇,张本山,杨连生,等.非晶颗粒态木薯淀粉的结构及酶降解活性研究[J].食品工业科技,2004,25(9):49-51
    [14] 胡飞.粉体机械力化学与淀粉微细化发展概况[J].化学工业与工程,2003,20(6):372-376
    [15] 陈玲,叶建东,胡飞,等.利用粉磨机械力化学方法改性淀粉的方法[P].中国:CN200410015367.7.2005
    [16] Gorinstein S, Oates C G, Chang Sh M, et al. Enzymatic hydrolysis of sago starch [J]. Food Chemistry, 1994, 49(4): 411-417
    [17] Dilek K A, Belma O. -Amylase inactivation during corn starch hydrolysis process [J]. Process Biochemistry, 2004,39(12): 1877-1892
    [18] Zhou Y, Hoover R, Liu Q. Relationship between α-amylase degradation and the structure and physicochemical properties of legume starches [J]. Carbohydrate Polymers, 2004, 57(3): 299-317
    [19] Tester R F, Sommerville M D. Swelling and enzymatic hydrolysis of starch in low water systems [J]. Journal of Cereal Science, 2000, 33(2): 193-203
    [20] Bayramoglu G, Yilmaz M, Arica M Y. Immobilization of a thermostable α-amylase onto reactive membranes: kinetics characterization and application to continuous starch hydrolysis [J]. Food Chemistry, 2004, 84(4): 591-599
    [21] 梁勇,张本山,杨连生,等.非晶颗粒态马铃薯淀粉不同条件下的酶降解活性[J].精细化工,2004,21(1 0):763-767
    [22] 张惟杰.糖复合物生化研究技术[M].杭州:浙江大学出版社,1994.13-14
    [23] 张洪渊,万海清,刘克武,等.生物化学[M].北京:化学工业出版社,2002.81-104
    [24] Kunamneni A, Singh S. Response surface optimization of enzymatic hydrolysis of maize starch for higher glucose production [J]. Biochemical Engineering Journal, 2005, 27(2): 179-190
    [25] Tomas R L, Oliveira J C, McCarthy K L. Influence of operating conditions on the extent of enzymatic conversion of rice starch in wet extrusion [J]. Lebensm. -Wiss. u. -Technol., 1997, 30(1): 50-55
    [26] Van der Veen M E, Veelaert S, Van der Goot A J, et al. Starch hydrolysis under low water conditions: A conceptual process design [J]. Journal of Food Engineering, 2006, 75(2): 178-186
    [27] Sanjeev K S, Arshdeep K, Jugal K G. A solid state fermentation based bacterial α-amylase and fungal glucoamylase system and its suitability for the hydrolysis of wheat starch [J]. Process Biochemistry, 2003, 39(2): 185-192
    [28] Vesterinen E, Myllairinen P, Forssell P, et al. Structural properties in relation to oral digestibility of starch gels based on pure starch components and high amylose content [J]. Food Hydrocolloids, 2002, 16(2): 161-167
    [29] Planchot V, Colonna P, Buleon A. Enzymatic hydrolysis of α-glucan crystallites [J]. Carbohydrate Research, 1997, 298(4): 319-326
    [30] Zhang T, Oates C G. Relationship between α-amylase degradation and physico-chemical properties of sweet potato starches [J]. Food Chemistry, 1999, 65(2): 157-163
    [31] Frigard T, Andersson R, Aman P. Gradual enzymatic modification of barley and potato amylopectin [J]. Food Chemistry, 2002, 47(2): 169-179
    [32] Planchot V, Colonna P, Gallant D J, et al. Extensive degradation of native starch granules by Alpha-amylase from Aspergillus fumigatus [J]. Journal of Cereal Science, 1995, 21(2): 163-171
    [33] Hoover R, Zhou Y. In vitro and in vivo hydrolysis of legume starches by α-amylase and resistant starch formation in legumes-a review [J]. Carbohydrate Polymers, 2003, 54(4): 401-417
    [34] 姚卫蓉,姚惠源.多孔淀粉的形成过程[J].食品与生物技术学报,2005,24(3):94-97
    [35] 姚卫蓉,姚惠源.淀粉性质及预处理对多孔淀粉形成的影响[J].中国粮油学报,2005,20(5):51-56
    [36] 周建芹.木薯淀粉性质及多酶协同制取超高麦芽糖浆的研究[D].广州:华南理工大学,2001
    [37] 王华,韩金玉,钟穗生,等.双酶一步法水解马铃薯淀粉的动力学研究[J].高校化学工程学报,2001,15(5):446-452
    [38] 姚卫蓉,姚惠源.复合淀粉酶酶解生淀粉机理探讨[J].工业微生物,2005,35(4):15-18,24
    [39] Li J H, Vasanthan T, Hoover R, et al. Starch from hull-less barley: V. In-vitro susceptibility of waxy, normal, and high-amylose starches towards hydrolysis by alpha-amylases and amyloglucosidase [J]. Food Chemistry, 2004, 84(4): 621-632
    [40] Lina C, Rajni K, Ulla D, et al. A model study on Eudragit and polyethyleneimine as soluable carriers of α-amylase for repeated hydrolysis of starch [J]. Journal of Biotechnology, 1995, 42(1): 75-84

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700