电子电力变压器控制策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
一百多年来,作为电力系统应用最广泛的设备之一的电力变压器的工作原理、基本功能及其体积大和重量重等缺点一直没有发生变化。同时,在这一百多年的时间里,电力系统发生了深刻变化,大量非线性负荷的增长,迅速恶化了电力系统的供电品质;另一方面,用户对电能品质的要求却越来越高,从而使得电能质量问题成为了当前电力系统面临的亟待解决的重要问题。
     因此,如何克服常规电力变压器的缺点和从功能上对电力变压器进行革新,实现变压器技术的再一次飞跃,使其满足现代乃至未来电力系统的各种新要求,是一个很有价值的理论课题和实践课题。自20世纪以来,国内外学者都在积极探索研究新型电力变压器。
     电子电力变压器(Electronic Power Transformer,EPT)作为一种新型电力变压器,通过在常规电力变压器基础上,引入电力电子变换技术,使变压器的一次侧和二次侧电压或电流可以灵活控制,从而具备了解决现代电力系统面临的许多新问题的潜力。本文基于已有的研究基础,重点对配电系统电子电力变压器(EPT for distributionsystems,DEPT)的相关控制策略进行了研究。
     论文第一章对EPT的研究现状和发展状况进行了综述。第二章在分析EPT基本原理的基础上,对两大类EPT的实现原理进行了详细介绍。第三章提出了一种基于超级电容储能的EPT系统结构,给出了储能型EPT系统的控制策略,并构建了储能型EPT的试验研究系统;结果表明,所提系统能够补偿短时电压中断,提高供电可靠性。
     论文第四章对EPT并联及其控制进行了研究,归纳总结了EPT并联运行的六种方式,分析了EPT并联运行时需要解决的主要问题;对基于功率下垂控制理论的无互联线控制进行了仿真实现,结果表明,所提方案获得了比较好的有功功率、无功功率均分性能和良好的均流特性:构建了EPT与常规电力变压器并联的试验研究系统,提出将常规电力变压器二次侧电压作为EPT输出电压的参考基准电压以实现均流控制,结果表明,所提控制策略具有令人满意的均流效果,且能实现不同容量的EPT和常规电力变压器并联运行时的负荷合理分配。
     针对EPT在配电系统应用时所要实现的四个主要控制目标,为了提高系统的动态性能和抗扰动能力,论文第五章对DEPT线性最优控制策略进行了研究,建立了综合考虑其输入级、隔离级和输出级的DEPT简化数学模型,设计了基于最优控制理论的DEPT最优控制器。
     鉴于电子电力变压器实质上是带有开关器件的特殊非线性系统,论文第六章结合电子电力变压器非线性模型的特点,对DEPT非线性控制策略进行了研究,给出了多输入多输出非线性系统状态反馈精确线性化设计的基本原理和具体设计步骤,设计了基于微分几何理论和最优控制理论的DEPT非线性控制器。研究表明,设计的非线性控制器能在系统运行的大范围甚至全局实现系统的线性化,且很好的实现了DEPT的相关控制目标。
Since the past 100 years, transformers have been widely used as an extremely important electrical component in electric power system, and its working principle, primary functions and disadvantages such as volume large, weight heavy, etc., have not been changed. Meanwhile, the electric power system has changed significantly and deeply: the increase of nonlinear load has deteriorated the power quality, and the customers required the high quality power energy simultaneously. So, the power quality problem becomes an increasingly important issue.
     It is a valuable issue to reform the functions of transformer and overcome its deficiencies, and make it meet different requirements of modern and future electric power system. Therefore, since twenty century, some domestic and foreign scholars have explored the new type power transformer actively.
     Electronic power transformer (EPT) is an entirely new class of transformer which retains the basic functions of conventional transformer and extends additional functions. A significant additional advantage of EPT is that the magnitude and phase angle of voltage in both the primary side and the secondary side of EPT are controllable in real-time. Due to such properties, EPT can meet many new requirements of future electric power system. This dissertation devotes itself mainly to the research on the relative control strategy of EPT for distribution system (DEPT).
     In Chapter 1 and Chapter 2, the basic theory of EPT and state of the art in this field are introduced firstly. An EPT with supercapacitors energy storage system is proposed in Chapter 3, and the control strategy of the proposed system is given. Also, an experimental research system is built. Simulation and experimental results have verified that the proposed system can compensate voltage momentary interruptions, thereby improve power system reliability effectively.
     In Chapter 4, parallel operation and its control scheme of EPTs are explored, and six parallel system configurations are given. And a wireless control based on the well-known droop method is realized by simulation, and the simulation results show excellent power sharing and voltage regulation characteristic, a proper dynamic response. Also, the parallel operation of EPT and conventional transformer based on the idea that the secondary voltage of conventional transformer is selected as the reference voltage of EPT's output voltage is realized by simulation and experiment. Results show that the control strategy has good current-sharing regulation characteristic, and achieves reasonable load distribution in the proposed parallel system with different ratings.
     In view of the four objectives of DEPT, in order to enhance the dynamic performance and the disturbance rejecting capability of DEPT, a linear optimal control strategy of DEPT is presented in Chapter 5. And the mathematical model including the input stage, the isolation stage and the output stage of DEPT is built, and the optimal controller of DEPT based on the optimal control theory is designed.
     Considering that EPT is a special nonlinear system with some switch devices essentially, the nonlinear control of DEPT is studied in Chapter 6. And the basic principle and design method of multi-input multi-output nonlinear system state feedback exact linearization is proposed, and a nonlinear controller of DEPT based on the differential geometry and the optimal control theory is designed. Research results show that the proposed nonlinear controller can solve the nonlinearity problem of the model system completely in the whole operating range, and realize the relative control objectives of DEPT perfectly.
引文
[1] Nikola Tesla. System of electrical distribution [P]. US Patent, 381970, 1888.
    [2] Sandor Jeszenszky. History of transformers. IEEE Power Engineering Review,December, 1996, 9-12.
    [3] John W. Coltman. The transformer. IEEE Industry Applications Magazine, Jan/Feb,2002, 8-15.
    [4] J Rohan Lucas. Historical development of the transformer. Internet article, The Institution of Electrical Engineers, Sri Lanka Centre, Chairman's Lecture 2000/01, Internet site: http://elect.mrt.ac.lk/Transformer_history_2000.pdf
    [5] Edward Robert Ronan, JR. Application of power electronics to the distribution transformer: [PH D. Dissertation]. USA: University of Missouri-Rolla, 2000.
    [6] 朱桂萍,王树民.电能质量控制技术综述.电力系统自动化,2002,26(19):28-31.
    [7] 郑健超.电力前沿技术的现状和前景.中国电力,1999,32(10):9-14.
    [8] 何大愚.电力电子技术的进步与柔性交流输电技术的换代发展.电网技术,1999,23(10): 1-5.
    [9] 韩英铎,严干贵,姜齐荣,等.信息电力与FACTS及DFACTS技术.电力系统自动化,2000,24(10):1-7.
    [10] 陈坚.电力电子学.北京:高等教育出版社,2002.p350-377
    [11] 胡兆庆.基于VSC的HVDC控制及其动态特性研究:[博士论文].武汉:华中科技大学图书馆,2005.
    [12] 何大愚.柔性交流输电技术和用户电力技术的新进展.电力系统自动化,1999,23(6): 8-13.
    [13] 赵畹君.高压直流输电工程技术.北京:中国电力出版社,2004.p17
    [14] Ram Adapa. FACTS system studies. IEEE Power Engineering Review, December,2002, 17-22.
    [15] Task force of the FACTS working group. Proposed terms and definitions for flexible AC transmission system (FACTS). IEEE Transactions on Power Delivery, 12 (4):1848-1853.
    [16] Hingorani N G. Introducing custom power. IEEE Spectrum, 1995, 32 (6): 41-48.
    [17] 严干贵,姜齐荣,黄民聪.未来的用户电力技术.电力系统自动化,2002,26 (1): 62-69.
    [18] Hirofumi Akagi. New trends in active filters for power conditioning. IEEE Transactions on Industry Applications, 1996, 32 (6): 1312-1322.
    [19] Hideaki Fujita, Hirofumi Akagi. The unified power quality conditioner: The integration of series active filters and shunt active filters. IEEE Transactions on Power Electronics, 1998, 13 (2): 315-322.
    [20] Holger Wrede, Volker Staudt, Andreas Steimel. Design of an electronic power transformer. In: Proceedings of the 28~(th) IEEE/IES Annual Conference. 2002, 2:1380-1385.
    [21] Edward R. Ronan, Scott D. Sudhoff, Steven F. Glover. A power electronic-based distribution transformer. IEEE Transactions on Power Delivery, 2002, 17 (2):537-543.
    [22] Manjrekar M D, Kieferndorf R, Venkataramanan G. Power electronic transformers for utility applications. In: Proceedings of the 2000 IEEE-IAS Annual Meeting. 2000, 4: 2496-2502.
    [23] Brooks J L. Solid state transformer concept development. Naval Material Command, Civil Engineering Laboratory, Naval Construction Battalion Ctr., Port Hueneme, CA, 1980.
    [24] Harada K, Anan F, Yamasaki K, etal. Intelligent Transformer. In: Proceedings of the 1996 IEEE PESC. 1996, 1337-1341.
    [25] EPRI Report. Proof of the principle of the solid-state transformer the AC/AC switch mode regulator. EPRI TR- 105067, Research Project 8001-13, Final Report, August 1995.
    [26] Kang M, Enjeti P N, Pitel I J. Analysis and design of electronic transformers for electric power distribution system. IEEE Transactions on Power Electronics, 1999,14 (6): 1133-1141.
    [27] 方华亮,黄贻煜,范澍,等.配电系统电力电子变压器的研究.见:全国高等学校电力系统及其自动化专业第十八届学术年会论文集.武汉:海军工程大学,2002.1916-1922.
    [28] 赵剑锋.输出电压恒定的电力电子变压器仿真.电力系统自动化,2003,27(18):30-34.
    [29] Marchesoni M, Novaro R, Savio S. AC locomotive conversion systems without heavy transformers: Is it a practicable solution?. In: Proceedings of the 2002 IEEE International Symposium on Industrial Electronics. 2002, 4: 1172-1177.
    [30]邓卫华,张波,胡宗波.电力电子变压器电路拓扑与控制策略研究.电力系统自动化,2003,27(20):40-44.
    [31]毛承雄,范澍,王丹,等.电力电子变压器的理论及其应用(Ⅰ).高电压技术,2003,29(10):4-6.
    [32]毛承雄,范澍,黄贻煜,等.电力电子变压器的理论及其应用(Ⅱ).高电压技术,2003,29(12):1-3.
    [33]范澍,毛承雄,陈洛南.同步发电机-电力电子变压器组的最优协调控制.电网技术,2005,29(2):14-18.
    [34]曹解围,毛承雄,陆继明,范澍.电力电子变压器在改善电力系统动态特性中的应用.电力系统自动化设备,2005,25(4):65-68.
    [35]成建鹏,毛承雄,范澍,王丹.电子电力变压器原理和仿真研究.电力自动化设备,2004,24(12):23-25.
    [36]S. Fan, C. Mao, L. Chen. Optimal coordinated PET and generator excitation control for power systems. International Journal of Electrical Power & Energy Systems,2006, 28 (3):158-165.
    [37]毛承雄,陆继明,范澍,等.电力电子变压器.中国,发明专利,ZL02139030.4,2002.
    [38]黄贻煜,毛承雄,陆继明,等.电力电子变压器在输电系统中的控制策略研究.继电器,2004,32(6):35-39.
    [39]王丹.配电系统电子电力变压器:[博士论文].武汉:华中科技大学图书馆,2006.
    [40]L.Y. Yang, T.F. Zhao, J. Wang and A.Q. Huang. Design and Analysis of a 270kW Five-level DC/DC Converter for Solid State Transformer Using 10kV SiC Power Devices. In: Proceedings of the 2007 IEEE Power Electronics Specialists Conference. 2007, 245-251.
    [41]王丹,毛承雄,陆继明.自平衡电子电力变压器.中国电机工程学报,2007,27(6): 77-83.
    [42]D. Wang, C.X. Mao, J.M. Lu, S. Fan and F.Z. Peng. Theory and application of distribution electric power transformer. Electric Power Systems Research, 2007,77(3-4):219-226.
    [43]D. Wang, C.X. Mao and J.M. Lu. Model of electronic power transformer and its application to power system. IET Generation, Transmission & Distribution, 2007,1 (6): 887-895.
    [44]D. Wang, C.X. Mao and J.M. Lu. Coordinated control of EPT and generator excitation system for multidouble-circuit transmission-lines system . IEEE Transactions on Power Delivery, 2008, 23 (1): 371-379. [45] W. McMurray. Power converter circuits having a high-frequency link. U.S. Patent,3 517 300, June23, 1970.
    [46] Harada K, Sakamoto H, Syoyama M. Phase-controlled DC-AC converter with high frequency switching. IEEE Transactions on Power Electronics, 1988, 3 (4):406-411.
    [47] S. Srinivasan, G. Venkataramanan. Comparative evaluation of PWM AC-AC converters. In: Proceedings of the 26th IEEE Power Electronics Annual Specialists Conference. 1995, 1: 529-535.
    [48] G. Venkataramanan, B. K. Johnson, A. Sundaram. An AC-AC power converter for custom power applications. IEEE Transactions on Power Delivery, 1996, 11 (3):1666-1671.
    [49] 张崇巍,张兴.PWM 整流器及其控制.北京:机械工业出版社, 2003.
    [50] Bullard G L, Sierra-Alcazar H B, Lee H L, et al. Operating principles of the ultracapacitor. IEEE Transactions on Magnetics, 1989, 25: 102-106.
    [51] Moreno J, Ortuzar M, DixomJ. Energy management system for a hybrid electric vehicle using ultracapacitors and neural networks. IEEE Transactions on Industrial Electronics, 2006, 53 (2): 614-623.
    [52] Galkin L, Stepanov A, Laugis J. Outlook of usage of supercapacitors in uninterruptible power supplies. In: Proceedings of the 2006 IEEE International Baltic Electronics Conference. 2006, 1-4.
    [53] HingoraniNG. Introducing custom power. IEEE Spectrum, June 1995, 41-48.
    [54] Xi Z. P, Parkhideh B, Bahattacharya S. Improving distribution system performance with integrated STATCOM and supercapacitor energy storage system. In: Proceedings of the 2008 IEEE Power Electronics Specialists Conference. 2008,1390-1395.
    [55] CasadeiD, GrandiG, Rossi C. A supercapacitor-based power conditioning system for power quality improvement and uninterruptible power supply. In: Proceedings of the 2002 IEEE International Symposium on Industrial Electronics. 2002, 4:1247-1252.
    [56] Spath H, Becker L P. Short-time backup-power for mains-fed dc-links by double layer capacitors. In: Proceedings of the 35th Annual IEEE Power Electronics Specialists Conference. Aachen, Germany, 2004, 2475-2481.
    [57]]J.M.Guerrero, L.Garcia de Vicuna, J.Miret, et al. A nonlinear feed-forward control technique for single-phase UPS inverters. In: Proceedings of the 2002 IEEE IECON. 2002, 257-261.
    [58]Parikh R, Krishnan R. Modeling simulation and analysis of an uninterruptible power supply. In: Proceedings of the 1994 IEEE IECON. 1994, 1 (3): 485-490.
    [59]许实章.电机学(第3版).北京:机械工业出版社,1996.
    [60]陈叔涛,陈涑均.电力变压器的并联运行.北京:机械工业出版社,1984.
    [61]Takao Kawabata, Shigenori Higashino. Parallel operation of voltage source inverters. IEEE Transactions on Industry Applications, 1988, 24 (2): 281-287.
    [62]Jiann-Fuh Chen, Ching-Lung Chu. Combination voltage-controlled and current controlled PWM inverters for UPS parallel operation. IEEE Transactions on Power Electronics, 1995, 10 (5): 547-558.
    [63]邢岩,严仰光.一种实现瞬时均流的UPS冗余并联新方法.清华大学学报(自然科学版),2003,43(3):333-336.
    [64]姜桂宾,裴云庆,杨旭,等.SPWM逆变电源的无互联信号线并联控制技术.中国电机工程学报,2003,23(12):94-98.
    [65]J.M. Guerrero, L.G. Vicuna, J. Matas, et al. A wireless controller to enhance dynamic performance of parallel inverters in distributed generation systems. IEEE Transactions on Power Electronics, 2004, 19 (5): 1205-1213.
    [66]林新春,段善旭,康勇,等.UPS无互联线并联中基于解耦控制的下垂特性控制方案.中国电机工程学报,2003,23(12):117-122.
    [67]段善旭,刘邦银,康勇,等.基于分散逻辑的UPS逆变电源并联控制技术.电力电子技术,2004,38(2):56-58.
    [68]段善旭,康勇,陈坚.UPS模块化电源系统并联控制策略分析.电工技术杂志,2004,(1):43-46,50.
    [69]J.M. Guerrero, L.G. Vicuna, J. Matas, et al. Output impedance design for parallel connected UPS inverters. In: Proceedings of the 2004 IEEE ISIE Conference. 2004,1123-1128.
    [70]J.M. Guerrero, L.G. Vicuna, J. Matas, et al. Steady-state invariant-frequency control of parallel redundant uninterruptible power supplies. In: Proceedings of the 2002 IEEE IECON. 2002, 274-277.
    [71]P. Mataveli, F. Marafao. Repetitive-based control for selective harmonic compensation in active power filters. IEEE Transactions on Industrial Electronics,2004, 51(5):1018-1024.
    [72] E.A. Acoelho, P. Cabaleiro, P. F. Donoso. Small signal stability for single phase inverter connected to stiff AC system. In: Proceedings of the 1999 IEEE-IAS Annual Meeting. 1999, 2180-2187.
    [73] N.M. Abdel-Rahim, J.E. Quaicoe. Analysis and design of a multiple feedback loop control strategy for single-phase voltage-source UPS inverters. IEEE Transactions on Power Electronics, 1996, 11 (4): 532-541.
    [74] 丁毓山,高松.变压器最佳容量确定和经济运行.北京:中国水利电力出版社,1996.
    [75] 刘豹.现代控制理论.北京:机械工业出版社,1983.p272-292
    [76] 陆继明,毛承雄,范澍,等.同步发电机微机励磁控制.北京:中国电力出版社,2006.p26-36
    [77] C.X. Mao, K.S. Prakash, O.P. Malik, et al. Implementation and laboratory test results for an adaptive power system stabilizer based on linear optimal control. IEEE Transactions on Energy Conversion, 1990, 5 (4): 666-672.
    [78] S. Fukuda. LQ control of sinusoidal current PWM rectifiers. IEE Proceedings: Electric Power Applications, 1997, 144 (2): 95-100.
    [79] S. Fukuda, Y. Matsumoto, A. Sagawa. Optimal-regulator-based control of NPC boost rectifier for unity power factor and reduced neutral-point-potential variations. IEEE Transactions on Industrial Electronics, 1999, 46 (3): 527-533.
    [80] B. Kedjar, K. Al-Haddad. LQR with integral action for phase current control of constant switching frequency vienna rectifier. In: Proceedings of the 2006 IEEE ISIE. 2006, 1461-1466.
    [81] S.V.G Oliveira, I. Barbi, C.E. Marcussi. An average current-mode controlled three-phase step-up dc-dc converter with a three-phase high frequency transformer. In: Proceedings of the 36th Power Electronics Specialists Conference. 2005, 2623-2629.
    [82] 卢强,王仲鸿,韩英铎.输电系统最优控制.北京:科学出版社,1987.
    [83] 林海雪.现代电能质量的基本问题.电网技术,2001,25(10):5-12.
    [84] D.D Sabin, A. Sundaram. Power quality enhances reliability. IEEE Spectrum, February 1996, 34-41.
    [85] H. G Sarmiento, E. Estrada. A voltage sag study in an industry with adjustable speed drives. IEEE Industry Applications Magazine, January/February 1996, 16-19.
    [86] E. L. Owen. Power disturbance and quality: Light flicker voltage requirements. IEEE Industry Applications Magazine, January/February 1996, 20-27.
    [87]韩京清.反馈系统中的线性与非线性.控制与决策,1988,2:27-32.
    [88]A. Isidori. Nonlinear control systems, communications and control engineering series, 3rd Ed. Berlin, Germany: Springer-Verlag, 1995.
    [89]高为炳.非线性控制系统导论.北京:科学出版社,1988.p626-632
    [90]卢强,孙元章.电力系统非线性控制.北京:科学出版社,1993.
    [91]胡跃明.非线性控制系统理论与应用.北京:国防工业出版社,2002.p114-124
    [92]H.K. Khalil. Nonlinear systems. Beijing: Publishing House of Electronics Industry, 2007. p505-540
    [93]李啸骢.一种多指标非线性控制设计方法及其在电力系统中的应用:[博士论文].武汉:华中科技大学图书馆,2005.
    [94]A.W. Divelbiss, J.T. Wen. Nonholonomic motion planning in the presence of obstacles. IEEE Transactions on Robotics and Automation, 1997, 13(3):443-451.
    [95]I. Ha, S. Chong. Design of a CLOS Guidance law via feedback linearization. IEEE Transactions on Aerospace and Electronic Systems, 1992, 28, 51-63.
    [96]O. Akhrif, F.A. Okou, L.A. Dessaint. Application of a multivariable feedback linearization scheme for rotor angle stability and voltage regulation of power systems. IEEE Transactions on Power Systems, 1999, 14: 620-628.
    [97]H. Sira-Ramirez, R. Tarantino-Alvarado, O. Llanes-Santiago. Adaptive feedback stabilization in PWM-controlled dc-to-dc power supplies. International Journal of Control, 1993, 57 (3): 599-625.
    [98]D.C. Lee, G.M. Lee, K.D. Lee. Dc-bus voltage control of three-phase AC/DC PWM converters using feedback linearization. IEEE Transactions on Industrial Applications, 2000, 36 (3): 826-833.
    [99]T.S. Lee. Input-output linearization and zero-dynamics control of three-phase AC/DC voltage-source converters. IEEE Transactions on Power Electronics, 2003,18 (1): 11-22.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700