广昆铁路有砟轨道连续梁桥施工控制方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
桥梁工程的实际应用中,桥型的选择通常视跨径而定。在40-150m的跨径范围内,连续梁桥的应用居于主要地位,分析其原因在于连续梁桥具有变形小、结构刚度好、成本低、施工进度快、受力合理、行车舒适等优点,这使得其在我国的公路和铁路建设中均得到广泛应用。由于连续梁通常采用悬臂浇筑法施工,在施工的过程中,需要经历多次的结构体系转换,这导致桥梁线形控制的难度比较高,因此,有必要对悬臂浇筑施工的连续梁桥进行施工控制,并对施工控制方法进行研究。
     本文以云南省广昆铁路工程禄丰双线特大桥(40+64+40)米连续梁桥为工程背景,针对该连续梁桥的特点,并结合现场的施工条件,提出了该连续梁的施工控制方案,详细的阐述了该连续梁的施工控制内容和方法,并对连续梁的线形、应力、温度进行了监控方法研究。
     本文基于有限元分析方法,以“桥梁博士”软件系统作为计算工具,进行了连续梁桥悬臂施工过程的模拟和仿真计算,采用自适应控制系统、预测控制系统两种系统相辅助的方法来控制连续梁桥的施工过程。通过采集的现场实测数据和理论计算结果的对比、修正,以达到桥梁施工控制之目的。
     在连续梁的整个施工过程中(从零号块的浇筑直至全桥成桥状态),通过施工控制的结果分析可知,桥梁结构的线形、应力均在设计允许的范围内,桥梁整体线形美观,施工控制效果较为理想。
In the practical application of the bridge engineering, the type of bridge is usually determined as the span. The span in the 40-150m scopes bridge, the application on the continuous beam bridge occupied the dominant position. The reason is that the continuous beam bridge has the advantages of small deformation, good stiffness, low cost, fast construction progress, reasonably stress, the driving comfortable and so on. So it is applied on highway and railway construction of our country. The structure of bridge complex, and need construct of repeated system transformation, and result of high difficulty in linear controlling, because the continuous beam cantilever construction. So it is necessary to construct control of cantilever construction of the continuous beam bridge, and research on the construct control method.
     The engineering background of this article is the (40+64+40)meter continuous beam of Lufeng double big bridge in Guangtong-Kunming railway Engineering in Yun Nan. According to the features of continuous beam and construction conditions, draw up the program of construction control. And research on construction control method on the linear, stress, and temperature of continuous beam.
     This article bases on the finite element method, and the "Doctor Bridge" software as a calculation tool, model simulation, and analysis, controlling the continuous beam construction, due to adaptive control system and predictive control system. By comparing the data of measured and theory, achieve the purpose of construction control.
     In the whole process of construction control of the continuous beam, the result of construction control is that the structure of bridge's linear, stress close to the design. And the overall linear of the bridge is beautiful, and reached the more desired effect.
引文
[1]吴昌期等.预应力混凝土梁桥施工[M].北京:人民交通出版社,1981.
    [2]张宝安.京沪高铁沧德特大桥连续梁施工与监控技术[D].中国地质大学(北京)硕士学位论文,2010.
    [3]徐君兰.大跨度桥梁施工控制[M].北京:人民交通出版社,2000.
    [4]张继尧,王昌将.悬臂浇筑预应力混凝土连续梁桥[M].北京:人民交通出版社,2005.
    [5]范立础.桥梁工程[M].北京:人民交通出版社,1996.
    [6]叶见曙.结构设计原理[M].北京:人民交通出版社,2004.
    [7]蒋英杰.大跨度预应力混凝土连续梁桥的施工控制方法[D].西南交通大学硕士学位论文,2010.
    [8]邵旭东.桥梁工程[M].北京:人民交通出版社,2004.
    [9]时娜.大跨度预应力混凝土连续梁桥施工监控技术研究[D].合肥工业大学硕士学位论文,2010.
    [10]徐岳等.预应力混凝土连续梁桥设计[M].北京:人民交通出版社,2000.3.
    [11]向中富.桥梁施工控制技术[M].北京:人民交通出版社,2001.5.
    [12]雷俊卿.桥梁悬臂施工与设计[M].北京:人民交通出版社,2000.4.
    [13]牛和恩.虎门大桥工程[M].北京:人民交通出版社,1998.4.
    [14]顾安邦,张永水.桥梁工程检测与控制[M].北京:机械工业出版社,2005.
    [15]王志明.儿种水平位移监测方法的分析和比较[J].上海建设科技,2008年,第5期.
    [16]曾喆昭.数值计算[M].北京:清华大学出版社,2005.
    [17]中世峰,孙灵芝.武宜运河大桥悬浇箱梁合拢段临时锁定分析[J].山东交通科技,2004,(6):11-13.
    [18]段正国,王之艺.悬灌连续箱梁中跨合拢的约束锁定方案[J].山西建筑,2000,(2):90-92.
    [19]董盛国.悬灌连续箱梁中跨合拢的约束锁定施工[J].铁道工程学报,1996,(3).
    [20]Bofang Zhu and Ping Xu. Thermal stresses in roller compacted concrete gravity dams[J]. Dam Engineering, Vol.6(3),1995.
    [21]刘建楼.预应力混凝土连续梁0#块与合拢段分析[D].长安大学硕士学位论文,2005.
    [22]王铁梦.工程结构裂缝控制[M].北京:中国铁道出版社.
    [23]叶见曙,阮静,钱培舒,贾琳.混凝土箱梁的水化热温度分析[J].桥梁建设,2000(4):7-9.
    [24]贺铁飞.多跨预应力混凝土连续梁桥施工控制关键问题研究[D].武汉理工大学硕士学位论文,2007.
    [25]葛耀君.分段施工桥梁分析与控制[M].北京:人民交通出版社,2003.
    [26]中国公路规划设计院JTGD62-2004,公路钢筋混凝土及预应力混凝土桥涵设计规范[S].北京:人民交通出版社,2004.
    [27]周救,宋一凡,赵小星.预应力混凝土桥梁悬臂浇筑的施工控制[J].长安大学学报,2005,(6)
    [28]王生俊.大型桥梁结构的施工监测与控制技术[J].公路,2002,(9)
    [29]朱德举,于哲.大跨度预应力混凝土连续梁桥高程控制[J].东北林业大学学报,2002,(6)
    [30]陈素君.高墩大跨度连续刚构桥的设计与施工监控[J].公路,2003,(3)
    [31]崔学武.连续梁桥施工控制方法[D].同济大学硕士学位论文,2007.
    [32]韩红春.大跨度预应力混凝土连续梁桥悬臂施工控制研究与实践[D].西南交通大学硕士学位论文,2007.
    [33]杨雅勋.PC连续刚桥施工控制技术研究与应用[D].长安大学硕十学位论文,2005.
    [34]王振波.混凝土温度损伤模型研究[D].河海大学博士学位论文,2001.
    [35]朱伯芳等.水工混凝土结构的温度应力与温度控制[M].北京:水利电力出版社,1976.
    [36]Santurjina. Thermal studies of concrete dams[J]. Dam Engineering, Vol.4(1),1993.
    [37]叶元鶱.丹江口和葛洲坝工程温度控制与裂缝问题[J].混凝土坝技术,1988.2.
    [38]刘俊起,苏思念.大体积混凝土温度裂缝控制[J].公路交通科技应用技术版,2008(7):151-154.
    [39]王润富,陈国荣.温度场和温度应力[M].北京:科学出版社,2005.
    [40]Kristek V. Theory of Box Girders[M]. New York:John Wiley & Sons,1979,44-46.
    [41]Podolny W J, M.J.M. Construction and Design of Prestressed Concrete Segmental Bridge[M]. New York:John Wiley & Sons,1982.
    [42]Ramondenc. P. Design and construction of structures for high-speed railway lines[C].3rd International Conference on Bridge Maintenance,2006,169~170.
    [43]Maeda.K, Otsuka.A, Takano.H. The Design and Construction of the Yokohama Bay Bridge[M]. Tokyo:Elsevier Science Publisher,1991,377~395.
    [44]Casas, J.R. Probability-based Stability Design in Cantilever Bridge Construction[J]. Structural Engineering Institue,1993,3(4):233~239.
    [45]Minchao Jin, Tiefei He, Changsheng Guan. The influence of temporary fixation to deflection control in construction of multi-span continuous beam bridge[R]. Proceedings of the 2nd International Conference on Modeling and Simulation,2009, (4):219~224.
    [46]Mathivat. The Cantilever Construction of Prestressed Concrete Bridge[M]. New York:John Wiley & Sons,1983.
    [47]Walter Podolny, Jean M.Muller. Construction and Design of Prestressing Concrete Segmental Bridges[M]. New York:John Wiley & Sons,1982.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700