用户名: 密码: 验证码:
基于低碳经济的发电行业节能减排路径研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在全球气候变暖、能源短缺、污染日益严重的国际背景下,发展以低能耗、低排放为标志的低碳经济,实现可持续发展,正在成为世界各国经济发展的共同选择。低碳经济是中国面临的新选择、新机遇、新挑战,是改善生态环境、推动经济发展方式转变的发展模式。发电行业作为能源消耗量最多、CO2排放量最大的部门之一,其未来发展路径的正确与否直接影响到我国低碳经济的效果与成败。本文在前人研究基础上,对基于低碳经济的发电行业节能减排路径做了较为系统的研究:
     (1)历史数据是规划发电行业节能减排路径的基础。论文全面回顾了我国发电行业十年来发展概况、节能减排成果与存在的问题,分析了节能减排的潜力,明确了基于低碳经济的发电行业节能减排路径研究的现实起点。
     (2)电力需求预测是设计基于低碳经济的发电行业节能减排路径的前提条件。论文在对低碳经济背景下电力需求预测特点和影响因素分析的基础上,建立了基于蛙跳算法优化的回归分析、蛙跳改进支持向量机、改进灰色预测的组合预测模型,并利用该模型进行了实证分析,预测了2012年至2020年电力需求量,该预测是规划低碳经济下发电行业节能减排路径最重要的数据基础。
     (3)论文研究了低碳经济下发电行业节能减排的两条路径:低碳电源结构优化路径和化石能源发电低碳技术创新路径。其中第一条路径是解决发电行业低碳、节能减排的根本,因此对此路径做了重点研究。在对低碳电源结构规划原则分析的基础上,建立了基于多目标决策的低碳电源结构优化模型,并利用该模型进行了实证分析,量化分析了我国2012年至2020年发电行业优化后的电源结构、投入成本、二氧化碳减排贡献以及其它污染物减排等结果。第二条路径解决了化石能源发电的低碳和节能减排问题,分析了低碳创新技术的作用、发展障碍和发展规划,并分析了2012年至2020年开展各类创新技术的实施进度。
     (4)从行业监管角度研究了低碳经济下发电行业节能减排的评价体系,目标是为行业监管部门提供监督发电行业低碳、节能减排路径实现的程度和效果。构建了低碳经济下节能减排评价指标体系,建立了基于改进密切值法的综合评价模型,并利用该模型对华东区域的发电行业在2006年至2010年期间低碳、节能减排效果作了实证评价和研究。
     (5)提出了一系列保障发电行业实现低碳、节能减排的政策建议,为保障发电行业节能减排路径实现提供了宏观助力。
     论文在低碳经济理论、节能减排理论、产业发展理论的基础上,综合应用电力需求预测方法、多目标决策方法、综合效益评价方法,对低碳经济下发电行业节能减排进行了全面系统的研究。具体研究方法包括:文献综述研究方法、定量和定性相结合的方法、归纳和演绎相结合、重点性研究与系统性研究相结合、理论研究与实证分析相结合等。
     论文主要创新点如下:
     (1)建立了基于低碳经济的蛙跳算法优化的电力需求组合预测模型。该模型将单位GDP电耗作为影响因素引入模型,选择回归分析、蛙跳改进的支持向量机、改进灰色预测三种方法进行组合,并利用蛙跳算法优化组合权重。该模型更符合低碳发展、节能减排目标,预测精度更高,为低碳经济下发电行业节能减排路径规划奠定了良好的研究基础。
     (2)提出了基于低碳经济的发电行业节能减排的两条路径,分别为低碳电源结构优化路径和化石能源发电低碳技术创新路径。其中在电源结构优化研究中利用多目标决策方法对低碳电源结构进行优化分析,将C02排放量最少和总成本最低作为目标函数,以电力需求、备用容量、污染物排放、可再生能源最大装机容量为约束条件进行电源结构优化。该优化结果是既考虑CO2减排、又考虑成本效益的综合最优。
     (3)建立了低碳经济下发电行业节能减排效果的评价指标体系。该评价指标体系引入多个低碳、节能减排相关指标,并选用改进密切值法构建综合评价模型。
     (4)提出了保障基于低碳经济发电行业节能减排路径实现的政策建议。主要包括健全低碳经济下发电行业节能减排的法律法规体系、完善低碳经济下发电行业节能减排的经济政策、构建低碳经济下发电行业节能减排的市场机制、加强低碳经济下发电行业节能减排的监管工作四个方面。
     论文通过实证分析验证了设计的低碳经济下发电行业节能减排路径的理论研究是切实可行的,为我国规划发电行业提供了参考和借鉴,具有较好的理论价值和现实意义。
Under the International background of global warming, energy shortages and worsening pollution, the development of low-carbon economy with low power consumption and lower emissions to achieve sustainable development is becoming a common choice for the world economic development. Low-carbon economy is a new choices, new opportunities and new challenges for China to improve the ecological environment and to shift the economic development mode. As a department with the largest energy consumption and CO2emissions, the benign development of power generation industry directly impact on the effectiveness of low-carbon economy. On the basis of previous studies, this paper conducted a more systematic study on the path of energy conservation and emission reduction in power generation industry based on low-carbon economy:
     (1) Historical data is the fundation of planning the path on energy conservation and emission reduction in power generation industries, this paper took a comprehensive review of the achievements and existing problems of energy conservation and emission reduction in China's power industry during the past ten years, and developed an analysis of the potential of energy conservation and emission reduction in power generation industry, lastly determined a realistic starting point of planning the path on energy conservation and emission reduction in power generation industries based on low-carbon economy.
     (2) Power demand forecast is the prerequisite for designing the path on energy conversation and energy reduction in power generation industies under the context of low-carbon economy. After analyzed the characteristics and influencing factors of electricity demand forecast, this paper built a optimal combination forecasting model based on regression analysis, support vector machine improved by leapfrog, improved gray predictionand, then, adopted this model to predict the demand for electricity from2012to2020. The forecasting results were the most important data for planning the development of the power generation industry under the context of low-carbon economy, so as to realize energy conservation and emission reduction.
     (3) The thesis designed two paths on energy conservation and emission reduction in power generation industry based on low-carbon economy, which are the path of low-carbon power structure optimization and the path of low-carbon technology innovation of fossil energy power generation. The first path was mainly analyzed because it is the fundation to solve the problem of the lower carbon, energy conservation and emission reduction development of the power generation industry. Based on the analysis of planning principle for low-carbon power generation, this essay established an optimization model for low-carbon power generation structure by adopting the multi-objective decision-making method. Then an empirical analysis was carried out to quantitatively analyze the data, after the optimization from2012to2020, of power structure, input costs, contribution of CO2emissions and other pollutants emission reduction. The second path solved the problem of low-carbon technology and energy conservation methods of fossil energy power generation, discussed the function of low-carbon innovation, obstacles to development and development planning, and lastly analyzed the progress of the implementation of various innovative technologies from2012to2020.
     (4) From the perspective of the industry regulator, this parer reaserched the evaluation system of energy conservation and emission reduction in the power generation industry based on low-carbon economy, for the purpose of guaranteeing the work of energy conservation and emission reduction is effectively implemented in power generation industry. This chapter built an evaluation system based on low-carbon economy, and established a comprehensive evaluation model by improved osculating method. With this model, this paper conducted an empirical research analyzed the existing conditions of low-carbon, energy conservation and emission reduction development of power generation industry in eastern China region from the year2006to2010.
     (5) A series of policy recommendations were put forward to achieve a low-carbon and energy conversation development of power industry.
     On the basis of low-carbon economy theory, energy conservation and emission reduction theory, and industrial development theory, this paper carried out a comprehensive and systematic survey on the energy conservation and emission reduction through the integrated application of electricity demand forecasting methods, multi-objective decision-making technology, and comprehensive benefits evaluation method. Specific research methods included:literature review research methods, the combining of quantitative and qualitative method, inductive and deductive method, key research and systematic study, theoretical research and empirical analysis from2006to2010.
     The principle innovation points are show as follows:
     (1) Built the optimization combination forecasting model for power demand forecast based on the leapfrog algorithm and the context of low-carbon economy. As influencing factors, the power consumption per unit of GDP was introduced into the model. Also the regression analysis, support vector machines improved by leapfrog algorithm and improved gray prediction were combined to be the predict method, and use the leapfrog algorithm to optimize the weigh of the combination method. With a higher prediction accuracy, the model is more in line with the targets of low-carbon development, and lay a good basis for further study on energy saving and emission reduction in the power generation industry.
     (2) Designed two paths on energy conservation and emission reduction based on low-carbon economy, respectively the low-carbon power structure optimization path and the fossil energy low-carbon technology innovation path. On the view of the first path, multi-objective decision-making method was used to analyze the optimization of power structure based on low-carbon emission, among which, the minimum CO2emissions and the minimun total cost as the objective function, the electricity demand, spare capacity, pollutant emissions, the largest installed capacity of renewable energy as the constraints for power structure optimization. The optimization results considered the effect of CO2emission reduction as well as the cost-effectiveness.
     (3) Established an evaluation system of energy conservation and emission reduction in power generation industry. The evaluation system creatively introduced a series of relevant indexess on low carbon and energy conservation, and adopted the modified osculating value method to build a comprehensive evaluation model.
     (4) Put forward policy recommendations of path realization of energy conservation and emission reduction in power industry under the background of low-carbon economy, which mainly includes four aspects:perfecting legal laws and regulations, improving the economic policies, building the market mechanisms and strengthening the supervision work.
     Based on the empirical analysis, this article verified the the feasibility and effectiveness of the path on energy conservation and emission reduction in power generation industry under the background of low-carbon economy. It is of great practical significance and provides reference for planning the development of power generation industry.
引文
[1]路路,郭秀锐.电力行业低碳减排对策的研究进展[J].环境科学与技术,2010,33(12):355-360
    [2]魏一鸣,刘兰翠,范英等.中国能源报告(2008):碳排放研究[M].北京:科学出版社,2008
    [3]Unruh, G. C. Understanding Carbon Lock-in[J]. Energy Policy,2000,28(12): 817-830
    [4]黎倩雯,张德伟.破除碳依赖,转向低碳经济[J].中国电力企业管理,2009,(11):19-20
    [5]Unruh, G. C. Escaping Carbon Lock-in[J]. Energy Policy,2002,30(4):317-325
    [6]Unruh, G. C. Carrillo-Hermosilla, J. Globalizing Carbon Lock-in[J]. Energy Policy, 2006,34(10):1185-1197
    [7]Michael Grubb, Lucy Butler, Paul Twomey. Diversity and Security in UK Electricity Generation:The Influence of Low Carbon Objectives[J]. Energy Policy,2006, 34(18):4050-4062
    [8]Neil Strachan, Ramachandran, Kannan. Hybrid Modeling of Long-term Carbon Reduction Scenarios for the UK[J]. Energy Economics,2008,30(6):2947-2963
    [9]Kannan. Uncertainties in Key Low Carbon Power Generation Technologies-Implication for UK Decarbonisation Targets[J]. Applied Energy,2009, 86(10):1873-1886
    [10]A.S. Dagoumas, T.S. Barker. Pathways to a Low-carbon Economy for the UK with the Macro-econometric E3MG Model[J]. Energy Policy,2010,38(6):3067-3077
    [11]Foxon, T.J., Hammond, G.P., Pearson, P.J. Developing Transition Pathways for a Low Carbon Electricity System in the UK. Infrastructure Systems and Services: Building Networks for a Brighter Future (INFRA)[C].2008 First International Conference on,2008, (11):1-6
    [12]Lisnianski A, Leviting, Ben-Haim H, et al. Power System Structure Optimization Subject to Reliability Constraints[J]. Electric Power Systems Research,1996, (39):145-152
    [13]Pai Pingfeng, Hong Wei chiang. Support Vector Machines With Simulated Annealing Algorithms in Electricity Load Forecasting[J]. Energy Conversion and Management,2005, (46):2669-2688
    [14]Saber, A. Y., Venayagamoorthy, G. K., Efficient Utilization of Renewable Energy Source by Gridable Vehicles in Cyber-Physical Energy System[J]. IEEE Systems Journal,2010,4(3):285-294
    [15]Jayant Sathaye, Scott Murtishaw, Lynn Price, et al. Multiproject Baselines for Evaluation of Electric Power Projects[J]. Energy Policy,2004,32(11):1303-1317
    [16]Marshall Wise, James Dooley, Robert Dahowski, et.al. Modeling the Impacts of Climate Policy on the Deployment of Carbon Dioxide Capture and Geologic Storage Across Electric Power Regions in the United States[J]. International Journal of Greenhouse Gas Control,2007,1(2):261-270
    [17]A. Rose, B. Stevens, J. Edmonds and M. Wise. International Equity and Differentiation in Global Warming Policy[J]. Environmental and Resource Economics,1998, (12):25-51
    [18]Tamura, H., Kimura, T.. Evaluating the Effectiveness of Carbon Tax and Emissions Trading for Resolving Social Dilemma on Global Environment. Systems, Man and Cybernetics[C]. ISIC. International Conference,2007, (8):1746-1751
    [19]Anil Markandya, Ben G Armstrong, Simon Hales, et al. Public Health Benefits of Strategies to Reduce Greenhouse-gas Emissions:Low-carbon Electricity Generation The Lancet,2009, (12):2006-2015
    [20]Sonia Yeh, Daniel Sperling. Low Carbon Fuel Standards:Implementation Scenarios and Challenges[J]. Energy Policy,2010,38(11):6955-6965
    [21]Toshihiko Nakata, Diego Silva, Mikhail Rodionov. Application of Energy System Models for Designing a Low-carbon Society[J]. Progress in Energy and Combustion Science,2011,37(4):462-502
    [22]Patrik Soderholm, Roger Hildingsson, Bengt Johansson, et al. Governing the Transition to Low-carbon Futures:A critical survey of energy scenarios for 2050 Futures[J].2011,43(10):1105-1116
    [23]Viebahn P, Nitsch J, Fischedickl M, et al. Comparison of Carbon Capture and Storage with Renewable Energy Technologies Regarding Structural, Economic and Ecological Aspects in Germany[J]. International Journal of Greenhouse Gas Control, 2007,1(1):121-133
    [24]Boemare C, Quirion P, Sorrell S. The Evolution of Emission Trading in the EU: Tensions between National Trading Schemes and the Proposed EU Directive[J]. Climate Policy,2006,3(2):105-124
    [25]Alice Shiu, Pun-Lee Lam. Electricity Consumption and Economic Growth in China[J]. Energy Policy,2004, (32):47-54.
    [26]John A. Mathews. How Carbon Credits Could Drive the Emergence of Renewable Energies[J]. Energy Policy,2008,36(10):3633-3639
    [27]S. Giblin, A. Mcnabola. Modeling the Impacts of a Carbon Emission-differentiated Vehicle Tax System on CO2 Emissions Intensity from New Vehicle Purchases in Ireland[J]. Energy policy,2009,37(4):1404-1411
    [28]Asbjorn Torvanger, James Meadowcroft. The Political Economy of Technology Support:Making Decisions about Carbon Capture and Storage and Low Carbon Energy Technologies[J]. Global Environmental Change,2011, (5):303-312
    [29]A.J. Simon, Naluahi B. Kaahaaina, S. Julio Friedmann, et al. Systems Analysis and Cost Estimates for Large Scale Capture of Carbon Dioxide from Air[J]. Energy Procedia,2011, (4):2893-2900
    [30]James Nelson, Josiah Johnston, Ana Mileva, et al. High-resolution Modeling of the Western North American Power System Demonstrates Low-cost and Low-carbon Futures[J]. Energy Policy,2012, (3):1012-1017
    [31]Joao Lampreia, Maria Silvia, Muylaert de Araujo, et al. Analyses and Perspectives for Brazilian Low Carbon Technological Development in the Energy Sector[J]. Renewable and Sustainable Energy Reviews,2011,15(7):3432-3444
    [32]Wijayatunga, W.J.L.S. Fernando, R.M. Shrestha, et al. Economy Wide Emission Impacts of Carbon and Energy Tax in Electricity Supply Industry:A case study on Sri Lanka[J]. Energy Conversion and Management,2007,48(7):1975-1982
    [33]康重庆,陈启鑫,夏清.低碳电力技术的研究展望[J].电网技术,2009,33(2):127-132
    [34]路石俊,杨淑霞,林艳婷.低碳经济下电力行业发展研究[J].国家行政学院学报,2010,(02):46-50
    [35]黄海燕,雷磊,栾维新等.我国沿海地区风力发电发展与布局研究[J].海洋开发与管理,2010,27(1):95-98
    [36]蒋虹,张东明,林少平.低碳经济时代发电行业的发展形势与对策[J].环境污染与防治,2010,32(4):107-109
    [37]殷红军,郭永凯.低碳经济与发电企业发展[J].中国电力企业管理,2010,(6):30-31
    [38]高波,张国兴,郭菊娥.基于暂停期权的低碳发电项目投资决策研究——以秸秆发电项目为例[J].2010,25(6):50-54
    [39]王跃锦,薛松,朱晓丽.基于MILP-ANN方法的低碳智慧岛分布式发电管理模型[J].华东电力,2011,39(9):1414-1418
    [40]朱柯丁.节能减排环境下电网企业经营风险控制方法研究[D].北京:华北电力大学,2011
    [41]魏学好,周浩.中国火力发电行业减排污染物的环境价值标准估算[J].环境科学研究,2003(1):53-56
    [42]张旭,孙根年.中国电力工业环境学校曲线与节能减排潜力分析[J].哈尔滨工业大学学报(社会科学版),2008,10(4):89-95
    [43]Joshua M. Pearce, Paul J. Harris. Reducing Greenhouse Gas Emissions by Inducing Energy Conservation and Distributed Generation from Elimination of Electric Utility Customer Charges[J]. Energy Policy,2007,35(12):6514-6525
    [44]姜海洋.促进发电环节节能减排的煤电产业链合作优化模型[D].北京:华北电力大学,2010
    [45]姜海洋,谭忠富,胡庆辉等.用户侧虚拟电厂对发电产业节能减排影响分析[J].中国电力,2010,43(6):37-40
    [46]杨卓,毛应准.电力行业的节能减排与低碳经济[J]..中国环境管理干部学院学报,2010,20(1):1-4
    [47]Luc Bauwens, DenzilG. Fiebiq, Mark F.J. Steel. Estimating End-use Demand:A Bayesian Approach[J]. Journal of Business and Economic Statistics,1994, V12(2):221-231
    [48]Julian. I. Silk, Frederick L. Joutz. Short and Long-run Elasticities in US Residential Electricity Demand:a co-integration Approach[J]. Energy Economies,1997, 19(4):493-513
    [49]Abdul Razak F Al-Faris. The Demand for Electricity in the GCC Countries[J]. Energy Policy,2002,30(2):117-124
    [50]James W. Taylor. Density Forecasting for the Efficient Balancing of the Generation and Consumption of Electricity[J]. International Journal of Forecasting, 2006, (22):707-724
    [51]Erkan Erdogdu. Electricity Demand Analysis Using Cointegration and ARIMA Modeling:A Case Study of Turkey[J]. Energy Policy,2006,15(4):107-114
    [52]牛东晓,曹树华等.电力负荷预测技术及其应用[M].北京:中国电力出版社,2009
    [53]李媛媛,牛东晓.基于最优可信度的月度负荷综合最优灰色神经网络预测模型[J].电网技术,2005,29(5):16-19
    [54]赵海青,牛东晓.负荷预测的交叉式自适应优选组合预测模型[J].华北电力大学学报,2000,27(4):13-17
    [55]Kourosh Mohammadi, H. R, Eslami, Rene Kahawita. Parameter Estimation of an ARMA Model for River flow Forecasting Using Goal Programming[J]. Journal of Hydrology,2006,331(1-2):293-299
    [56]Celal Aksu, Jack Y. Narayan. Forecasting with Vector ARMA and State Space Methods[J]. International Journal of Forecasting,1991,7(1):17-30
    [57]牛东晓,陈志业,邢棉等.具有二重趋势性的季节型电力负荷预测组合优化灰色神经网络模型[J].中国电机工程学报,2002,22(1):29-32
    [58]Kyung-Bin Song, Young-Sik Baek, Dug Hun Hong, et al. Short-term Load Forecasting for the Holidays Using Fuzzy Liner Regression Method[J]. IEEE Transactions Power Systems,2005,20(1):96-101
    [59]Jiann-Fuh Chen, Wei-Ming Wang, Chao-Ming Huang. Analysis of an Adaptive Time-series Autoregressive Moving-average (ARMA) Model for Short-term Load Forecasting[J]. Electric Power Systems Research,1995,34(3):187-196
    [60]刘达,牛东晓,邢棉等.基于GARCH误差校正的遗传支持向量机日前电价预测[J].电力系统自动化,2007,31(11):31-34
    [61]牛东晓,赵磊,张博等.粒子群优化灰色模型在负荷预测中的应用[J].中国管理科学,2007,15(1):69-73
    [62]Bonnie K. Ray. Long-range Forecasting of IBM Product Revenues Using a Seasonal Fractionally Differenced ARMA Model[J]. International Journal of Forecasting,1993,9(2):255-269
    [63]Fong-Lin Chu. Forecasting Tourism Demand with ARMA-based Methods[J]. Tourism Management,2009,30(5):740-751
    [64]S. Sp. Pappas, L. Ekonomou, D. Ch. Karamousantas, et al. Electricity Demand Loads Modeling using Auto Regressive Moving Average (ARMA) Models[J]. Energy,2008,33(9):1353-1360
    [65]J. Nowicka-Zagrajek, R. Weron. Modeling Electricity Loads in California:ARMA Models with Hyperbolic Noise[J]. Signal Processing,2002,82(12):1903-1915
    [66]Senjuy, T., Mandal, P., Uezato, K., et al. Next Day Load Curve Forecasting Using Hybrid Correction Method[J]. IEEE Transactions Power Systems,2005, 20(1):102-109
    [67]杨莉.基于可持续发展的我国电源结构优化研究[D].黑龙江:哈尔滨工业大学,2010
    [68]汪拥军,孙东川.市场环境下我国电源结构调整研究[J].经济特区,2007(3):178-179
    [69]陈启鑫,康重庆,夏清等.电力行业低碳化的关键要素分析及其对电源规划的影响[J].电力系统自动化,2009,33(15):18-23
    [70]陈皓勇,王锡凡.电源规划JASP的改进算[J].电力系统自动化,2000,24(11):22-26
    [71]何朝阳,谢敏,陈金富.电源规划优化模型研究及软件开发的国内外概况[J].电工技术,2004,(12):148-150
    [72]冯凯,李远德,侯云鹤等.改进单亲遗传算法在电源规划中的应用[J].电网技术,2004,28(3):11-15
    [73]丁明,石雪梅.基于遗传算法的电力市场环境下电源规划的研究[J].中国电机工程学报,2006,26(11):43-49
    [74]施应玲,刘媛媛.基于环境约束的电源结构优化研究[J].中国电力,2009,42(9):16-19
    [75]傅毓维,杨莉.基于模糊模式识别法的我国电源结构优化评价[J].统计与决策,2010,(9):53-55
    [76]Luis M. Abadie, Jose M. Chamorro. European CO2 Prices and Carbon Capture Investments[J]. Energy Economics,2008, (30):2992-3015
    [77]Ekstrom Clas, Schwendig Frank, Biede Ole, et al. Techno-Economic Evaluations and Benchmarking of Pre-combustion CO2:Capture and Oxy-fuel Processes Developed in the European ENCAP Project[J]. Energy Procedia,2009, 1(1):4233-4240
    [78]Ishan Purohit, Pallav Purohit. Techno-economic Evaluation of Concentrating Solar Power Generation India[J]. Energy policy,2010, (02):3015-3029
    [79]谭忠富,侯建朝,姜海洋等.关于我国能源可持续利用的评价指标体系研究[J].电力技术经济,2007,(2):7-13
    [80]刘丽珍.火电行业清洁生产评价与体会[J].能源环境保护2011,25(1):62-64
    [81]任玉珑,刘宁,刘焕.面向协调发展的火电行业效率综合评价[J].2011,25(1):80-82
    [82]贾海娟,黄显昌,谢永平.火电行业清洁生产水平分析与评价——以M火电企业为例[J].能源环境保护,2010,24(2):54-57
    [83]陈启鑫,周天睿,康重庆等.节能发电调度的低碳化效益评估模型及其应用[J].电力系统自动化,2009,33(16):24-29
    [84]时洋.电力工业节能减排绩效评价研究[D].北京:华北电力大学,2011
    [85]何伟,秦宁,何玘霜等.节能减排绩效及其与经济效益协调性的监控和评估[J].环境科学学报,2010,30(7):1499-1509
    [86]李爱军.我国燃煤发电技术进步的节能减排效果分析[J].能源技术经济,2010,22(11):44-57
    [87]张坤民,潘家华,崔大鹏.低碳经济论[M].北京:中国环境科学出版社,2008
    [88]王岩,李武.低碳经济研究综述[J].内蒙古大学学报(哲学社会科学版),2010,42(3):27-33
    [89]孙萍.论中国发展低碳经济的必要性及挑战[J].现代商贸工业,2011,(22):16-17
    [90]范建华.低碳经济的理论内涵及体系构建研究[J].理论探索,2010,(2):122-123
    [91]庄贵阳.低碳经济引领世界经济发展方向[J].世界环境,2008,2(2):34-36
    [92]崔淑娜.低碳经济与可持续发展[J].经济师,2010,(6):34-35
    [93]雷铭.发电侧节能减排措施[J].中国电力企业管理,2007,(11):16-17
    [94]张君.数字解析我国发电企业节能减排工作[J].山西能源与节能,2009,(2):92
    [95]谢来辉.碳锁定、“解锁”与低碳经济之路[J].开放导报,2009,(5):8-14
    [96]迟远英.基于低碳经济视角的中国风电产业研究[D].吉林:吉林大学,2008
    [97]迟本坤.低碳经济视角下新能源CDM项目的国际合作问题研究[D].吉林:吉林大学,2011
    [98]胡兆光,单葆国等.中国电力需求展望——基于电力需求研究实验室模拟实验[M].北京:中国电力出版社,2010
    [99]胡兆光,单葆国等.中国电力供需模拟实验——基于智能工程的软件科学实验室[M].北京:中国电力出版社,2010
    [100]Syed M. Islam, Saleh M. A1-Alawi, Khaled A. Ellithy. Forecasting Monthly Electric Load and Energy for a Fast Growing Utility Using an Artificial Neural Network[J]. Electric Power Systems Research,1995,34(1):213-217
    [101]Che-Chiang Hsu, Chia-Yon Chen. Regional Load Forecasting in Taiwan-application of Artificial Neural Networks[J]. Energy Conversion and Management,2003,44 (12):1941-1949
    [102]Ping-Feng Pai, Wei-Chiang Hong, Forecasting Regional Electric Load Based on Recurrent Support Vector Machines with Genetic Algorithms[J]. Electric Power Systems Research,2005,74(3):417-425
    [103]Wei-Chiang Hong. Electric Load Forecasting by Support Vector Model[J]. Applied Mathematical Modeling,2009,33(5):2444-2454
    [104]牛东晓,谷志红,邢棉等.基于数据挖掘的SVM短期负荷预测方法研究[J].中国电机工程学报,2006,26(18):6-12
    [105]Chin-Tsai Lin, Shih-Yu Yang. Forecast of the Output Value of Taiwan's Opto-electronics Industry Using the Grey Forecasting Model[J]. Technological Forecasting and Social Change,2003,70(2):177-186.
    [106]Ruey-Chyn Tsaur. The Development of an Interval Grey Regression Model for Limited Time Series Forecasting[J]. Expert Systems with Applications,2010, 37(2):1200-1206
    [107]P. Zhou, B. W. Ang, K. L. Poh. A Trigonometric Grey Prediction Approach to Forecasting Electricity Demand[J]. Energy,2006,31(14):2839-2847
    [108]Yen-Tseng Hsu, Ming-Chung Liu, Jerome Yeh, Hui-Fen Hung. Forecasting the Turning Time of Stock Market Based on Markov-Fourier Grey Model[J]. Expert Systems with Applications,2009,36(4):8597-8603
    [109]Yong-Huang Lin, Pin-Chan Lee. Novel High-precision Grey Forecasting Model[J]. Automation in Construction,2007,16(6):771-777
    [110]Yong-Huang Lin, Pin-Chan Lee, Ta-Peng Chang. Adaptive and High-precision Grey Forecasting Model[J]. Expert Systems with Applications,2009, 36(6):9658-9662
    [111]宋之平,王加璇.我国节能减排进程的评价与比较[J].技术经济管理研究,2010,(3):117-121
    [112]孟辉.火电企业节能减排效果的综合评价指标体系研究[C].第十三届中国科协年会第7分会场,2011:46-52
    [113]姚晓艳,李媛,文琦.热电行业低碳经济评价指标体系研究[J].宁夏大学学报(自然科学版),2010,31(4):389-392
    [114]王彦彭.我国节能减排指标体系研究[J].煤炭经济研究,2009,(2):31-33
    [115]Chiung-Wen Hsu, Pao-Long Chang, Chih-Min Hsiung. Construction and Application of a Performance Assessment Model for Energy Conservation and Carbon Reduction Industries[J]. International Journal of Hydrogen Energy,2011, 36(9):14093-14102
    [116]Toshiyuki, Sueyoshi,2Mika Goto. Efficiency-based rank assessment for electric power generation industry:A Combined use of Data Envelopment Analysis(DEA) and DEA-Discriminant Analysis(DA)[J]. Energy Economics,2011,12(4): 1016-1026
    [117]A. Azadeha, S.F. Ghaderia, M. Anvaria,etc. Performance Assessment of Electric Power Ggenerations Using an Adaptive Neural Network Algorithm[J]. Energy Policy,2007,35(6):3155-3166
    [118]Nikolaos Floros, Andriana Vlaehou. Energy Demand and Energy-related CO2 Emissions in Greek Manufacturing:Assessing the Impact of a Carbon Tax[J]. Energy Economics,2005,27(3):387-413
    [119]Malte Schneider, Andreas Holzer, Volker H.etc. Understanding the CDM's Contribution to Technology Transfer[J]. Energy Policy,2008,36(8):2930-2938
    [120]Wytze vander Gaast, Katherine Begg, Alexandros Flamos. Promoting Sustainable Energy Technology Transfers to Developing Countries through the CDM[J]. Applied Energy,2009,86(2):230-236
    [121]Philipp Weiss, Thierry Lefevre, Dominik Most. Modeling the Impacts of CDM Incentives for the Thai Electricity Sector[J]. Energy policy,2008,36(3):1134-114
    [122]迟远英,王彦亮,牛东晓等.碳排放交易下的发电权置换优化模型[J].电网技术,2010,34(6):78-81
    [123]李莉.电力产业节能减排机制设计模型与方法研究[D].北京:华北电力大学,2011
    [124]庄彦,蒋莉萍,马莉.发电权交易和排污权交易的内涵、比较与相互关系[J].中国电力,2010,43(1):5-8
    [125]张世帅,张学松,王文等.发电权交易下的节能减排指标设计及应用分析[J].电网技术,2010,34(11):156-161
    [126]陈一萍.基于密切值法的节能减排评价研究[J].生态环境学报,2010,19(2):419-422
    [127]吴耀武,陈瑞,娄素华等.基于熵权的电网节能减排潜力多级模糊评价[J].华中科技大学学报(自然科学版),2010,38(11):115-118
    [128]王丽萍,史玉凤.重大工业工程项目节能减排评估指标体系的构建[J].2009,19(1): 18-21
    [129]黄少中.完善可再生能源电价政策的若干思考[EB/OL]. (2009-12-11).http://www.serc.gov.cn/jgyj/ztbg/200912/t20091211_12435.htm]
    [130]黄少中,胡军峰.发挥电价调节作用,促进电力行业节能减排[N].中国能源报,2011-07-25
    [131]薛睿.中国低碳经济发展的政策研究[D].北京:中共中央党校经济学部,2011
    [132]Baumol, W. J., Oates, W. E. The Theory of Environmental Policy[M].2nd ed. Cambridge:Cambridge University Press,1988:125-127
    [133]Nikolaos Floros, Andrian Vlachou. Energy Demand and Energy-Related CO2 Emissions in Greek Manufacturing:Assessing the Impact of a Carbon Tax[J]. Energy Economics,2005,27(3):387-413
    [134]Wiepke Wissema, Rob Dellink. Age Analysis of the Impact of a Carbon Energy Tax on the Irish Economy[J]. Ecological Economics,2007,61 (4):671-683
    [135]Chuanyi Lu, Qing Tong, Xuemei Liu. The Iimpacts of Carbon Tax and Complementary Policies on Chinese E conomy[J]. Energy policy,2010, 38(11):7278-7285
    [136]韩克勇.电力工业节能减排的财税政策研究[J].理论学刊,2009,(02):48-50
    [137]R.W. Bacon, J. Besant-Jones. Global Electric Power Reform, Privatization and Liberalization of the Electric Power generation industry in Developing Countries[J]. Annual Review of Energy and the Environment.2001,26:331-359

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700