姬塬地区长8油层组砂岩中自生高岭石对储层发育的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文选取鄂尔多斯盆地姬塬地区长8油层组储层砂岩中的自生高岭石作为研究对象,以中石油长庆油田勘探开发研究院与成都理工大学沉积地质研究院合作的科研项目《姬塬华庆地区延长组第8油层组储层粘土矿物研究》为依托,通过对所选取样品的岩石学特征分析,结合岩石薄片的显微镜观察、扫描电镜、全岩X衍射定量分析等多种研究手段,探讨了姬塬地区长8油层组储层砂岩中自生高岭石的含量、赋存方式、分布规律等各种特征、形成机制以及它对储层发育的影响,取得了以下的一些相关认识:
     根据对岩石学特征和岩石薄片镜下的研究分析得出,岩屑长石砂岩和长石岩屑砂岩是研究区长8油层组储层砂岩的主要岩石类型,岩石骨架组分中34.71%的长石碎屑含量是一个显著的特征,岩石具有较低的成分成熟度和较高的结构成熟度,碳酸盐矿物是含量最多且分布最广的自生成岩矿物,自生高岭
     石在含量和分布规律上具有区域性。自生高岭石在砂岩中的平均含量为1.59%,主要分布在姬塬西部区域的长81小层中,其中自生高岭石的平均含量为2.60%;在赋存方式方面,自生高岭石常以充填在残余的原始粒间孔和长石溶孔等次生孔隙中的形式产出,伴随有自生高岭石晶间孔隙的形成。
     自生高岭石含量、赋存方式、分布规律等各种特征的特殊性是由它的形成机制造成的,由于姬塬西部区域更靠近长7烃源岩沉积中心附近,有机酸的向下运动对临近长8油层组储层砂岩的侵蚀造成了自生高岭石含量和分布在研究区中区域性的差异;有机酸对岩石中长石等不稳定硅酸盐矿物的溶解,是自生高岭石沉淀的主要成因。
     在孔隙构成方面,以残余粒间孔为主的原生孔隙是储集空间的主要部分,次生孔隙(主要为长石溶孔、岩屑溶孔、晶间孔隙以及粒间溶孔等)也占有着较多的储集空间,其中,姬塬西部长81小层中的次生孔隙和长82小层中的原生孔隙相对于其他区域含量较多;在物性特征方面,储层砂岩的孔隙度平均值为7.29%,渗透率平均值为0.38×10~(-3)μm~2,得出姬塬地区长8油层组砂岩储层属于低孔隙度特低渗透率致密型储层。
     自生高岭石一方面在沉淀过程中占据了储集空间,另一方面,自生高岭石晶间孔隙可以扩大部分储集空间,因此需要定量地研究它对储层发育的影响。它对原生孔隙的发育有不利的影响,两者的相关系数为-0.27,但有利于次生孔隙的发育,相关系数为+0.2,总体上自生高岭石对储层孔隙的发育上是保持性的作用;在储层物性方面的影响上,作用不很明显,自生高岭石造成孔隙度和渗透率的降低程度是很有限的。
Based on the scientific research task of“The research on Clay minerals of Chang 8 oil-bearing Formation in Jiyuan-Huaqing area”,and by analyzing the characteristics of rock in chang 8 oil-bearing formation sandstone of Jiyuan area,combining the optical microscopy、XRD、SEM analyses on core samples and other research methods. This thesis mainly discusses the characteristics of authigenic kaolinite,such as its content、occurrence、distribution、formation and the influence of authigenic kaolinite on the reserivor development in chang 8 oil-bearing formation sandstone of Jiyuan area. this thesis gives some conclusions in the following:
     Based on the description of well cores,the identification of the thin section and the grain size analysis,it shows that the reservoir rock type are dominantly the lithic arkose and feldspathic lithic sandstone in Jiyuan area,34.71% of the average content of feldspar is a significant feature in the rock matrix,which is characterized by low composition maturity and high textural maturity. Carbonate is the most major authigenic minerals in the study area,the authigenic chlorite and authigenic kaolinite only can be found in some area .
     The average content of authigenic kaolinite is 1.59% in chang 8 oil-bearing formation sandstone of Jiyuan area,it mainly distributes in chang-81 sub-oil-bearing formation of the western region in the study area,in which its average content is 2.60%;Authigenic kaolinite often occurs in the original intergranular pore and secondary porosity(such as feldspar dissolution porosity),at the same time,intergranular pore of authigenic kaolinite appears.
     The particularity of the various features of authigenic kaolinite is caused by its formation mechanism.Because the western of Jiyuan area is closer to the centre of hydrocarbon source rocks of chang 7 oil bearing formation,then the downward movement of organic acids causes the dissolution of many feldspars and the precipitation of authigenic kaolinite,moreover,it also causes all the kinds of characteristics of authigenic kaolinite.
     In the composition of pore of chang 8 oil-bearing formation sandstone in Jiyuan area,the original intergranular pore is the main part of the reservoir space,secondary porosity(feldspar dissolution porosity,debris dissolved pore and intergranular dissolution pores,etc)also accounts for part of the reservoir space. On the other hand,it also finds that the secondary porosity in chang-81 sub-oil-bearing formation of the western region in the study area is more than other area,and the content of the original pore in chang-82 sub-oil-bearing formation of the western region is the most one;Research in reservoir properties,the average porosity of sandstone is 11.66% and the average permeability is 0.38×10~(-3)μm~2,in which we can see that it is ultra-low porosity and low permeability reservoir in chang 8 oil-bearing formation sandstone of Jiyuan area.
     On one hand,authigenic kaolinite occupies the reservoir space in its formation process. On the other hand,intergranular pore of authigenic kaolinite can expand part of the reservoir space. Therefore,quantitative research required in the study of authigenic kaolinite,it is harm to the development of primary porosity,and their correlation coefficient is -0.27,at the same time,authigenic kaolinite conducives to the development of secondary porosity,the correlation coefficient is +0.2. All in all,authigenic kaolinite takes the retention diagenesis in the the development of pore of the study area;Authigenic kaolinite in the study area on the impact of reservoir properties is not obvious,the decrease of porosity and permeability caused by authigenic kaolinite is very limited.
引文
[1] Richard H. Worden,Sadoon Morad. Clay Mineral in Sandstones [M]. Blackwell publishing, 2003: 3-41.
    [2] Neasham J W. The morphology of dispersed clay in sandstone reservoirs and its effect on sandstone shaliness,pore space and fluid flow properties[C]. SPE6858,1977.
    [3] Ehrenberg S N. Preservation of anomalously high porosiry indeeply buried sandstones by grain-coating chlorite:Examples from the Norwegian Continenta shelf [J]. AAPG Bulletin,1993,77:1260-1286.
    [4] Baker J C,Hacord P J,Martin K R,et al. Diagenesis and petrophysics of the Early Permian Moogooloo sandstone,southern Camarvon Basin,Western Australia[J]. AAPG Bulletin,2000,84(2):250-265.
    [5] Lanson B,Beaufort D,Berger G,et al. Authigenic kaolin and illitic minerals during burial diagenesis of sandstones:a review[J].Clay Minerals,2002,37:1-22.
    [6] Berger G,Lacharpagne J C,Vedle B,et al. Kinetic constraints on illitization reactions and the effects of organic diagenesis in sandstone/shale sequences[J].Applied Geochemistry,1997,12:23-35.
    [7] Thyne1 G,Boudreau B P,Ramm M,et al. Simulation of potassium feldspar dissolution and illitization in the Statfjord Formation,North Sea[J].AAPG Bulletin,2001,85:621-635.
    [8] Surdam R C,Boese S W,Crossey L J. 1984,The chemistry of secondary porosity. AAPG Memoir,37: 127–149
    [9] Surdam R C,Crossey L J,Hagen E S,Heasler H P. 1989,Organic–inorganic and sandstone diagenesis. AAPG Bulletin,73: 1–23
    [10] Surdam.R C,L. J. Crossey, 1987, Integrated diagenetic modeling;a process-oriented approach for clastic systems: Annual Review of Earth and Planetary Sciences,v.15,p.141-170.
    [11] Bjorlykke,K. 1983,Diagenetic reactions in sandstones,in A. Parker, and BW Sellwood,eds. Sediment diagenesis: Reading,UK,Reidel Publication Company,p. 169-213.
    [12] Ehrenberg S N.Preservation of anomalously high porosiry indeeply buried sandstones by grain-coating chlorite:Examples from the Norwegian Continenta shelf[J].AAPG Bulletin,1993,77:1260-1286.
    [13] Souza R S,Ros L F,Morad S. Dolomite diagenesis and porosity Preservation in lithic reservoirs:Carmópolis Member,Sergipe-Alagoas Basin,Northeastern Brazil[J]. AAPG Bulletin:1995,79(5):725-748.
    [14]李德生.重新认识鄂尔多斯盆地油气地质学[J].石油勘探与开发,2004,31(6):1-7.
    [15]任磊夫,陈芸箐.从粘土矿物的转变讨论沉积成岩到变质过程中的阶段划分[J].石油与天然气地质,1984,5(4): 325-334.
    [16]任磊夫.试论粘土矿物转化过渡结构[J].沉积学报, 1988, 6(1): 80-87.
    [17]赵杏媛,王行信,张有瑜等.中国含油气盆地粘土矿物[M].武汉:中国地质大学出版社,1995.
    [18]徐同台,王行信,张有瑜等.中国含油气盆地粘土矿物[M].北京:石油工业出版社,2003.
    [19]邸世祥等.中国碎屑岩储集层的孔隙结构[M].西安:西北大学出版社,1991.
    [20]黄思静,谢连文,张萌等.中国三叠系陆相砂岩中自生绿泥石的形成机制及其与储层孔隙保存的关系[J].成都理工大学学报(自然科学版),2004,31(3):273-281.
    [21]刘林玉,曲志浩,孙卫等.新疆鄯善油田碎屑岩中的粘土矿物特征[J].西北大学(自然科学版),1998,28(5):443-446.
    [22]黄思静,武文慧,刘洁等.大气水在碎屑岩次生孔隙形成中的作用—以鄂尔多斯盆地三叠系延长组为例[J].地球科学—中国地质大学学报,2003,28(4): 419-424.
    [23]黄思静,孙伟,黄培培等.鄂尔多斯盆地东部太原组碎屑岩中自生伊利石形成机制及其对储层形成的影响[J].矿物岩石学报,2009,12(4): 25-32.
    [24]邹春艳,罗蓉,李子荣等.电镜扫描在碎屑岩储层粘土矿物研究中的应用[J].天然气勘探与开发,2005,28(4): 4-8.
    [25]赖兴运,于炳松,陈军元等.碎屑岩骨架颗粒溶解的热力学条件及其在克拉2气田的应用[J].中国科学:D辑,2004,34(1):45-53.
    [26]黄思静,毛晓冬,张萌等.鄂尔多斯盆地东部太原组砂岩次生孔隙形成机理研究[R].成都理工大学,2007a.
    [27]黄思静,杨俊杰,张文正,黄月明,刘桂霞.不同温度条件下乙酸对长石溶蚀过程的实验研究.沉积学报,1995,13(1): 7–17.
    [28]史基安,晋慧娟,薛莲花.长石砂岩中长石溶解作用发育机理及其影响因素分析.沉积学报,1994,12(3): 65–75.
    [29]黄思静,石和,林金辉等.鄂尔多斯盆地中南部延长组主要油层组有利储集体特征及其展布研究[J].成都理工大学,长庆油田公司勘探开发研究院,内部资料,成都理工大学档案馆.
    [30]黄思静,毛小东,张萌等.姬塬华庆地区延长组第8油层组储层粘土矿物研究[J].成都理工大学,长庆油田公司勘探开发研究院,内部资料,成都理工大学档案馆.
    [31]孙伟.姬塬华庆地区长8油层组砂岩中自生矿物特征及对储层物性的影响[D].成都理工大学学位论文,2010
    [32]贺艳祥.2010.姬塬华庆地区长8油层组砂岩储层中粘土矿物对储集层产能的影响[D].成都理工大学学位论文,2010
    [33]王昌勇.鄂尔多斯盆地西南缘构造演化与长8~长6油层组沉积响应—以姬塬地区为例[D].成都:成都理工大学,2009,12-20.
    [34]陈全红,李文厚,郭艳琴等.鄂尔多斯盆地南部延长组浊积岩体系及油气勘探意义[J].地质学报,2006,80 (5) :656 - 663.
    [35]王昌勇,郑荣才,李忠权等:鄂尔多斯盆地姬塬油田长8油层组岩性油藏特征[J] .地质科技情报,2010,29 (3) :69 - 74.
    [36]刘宝珺,1980.沉积岩石学[M].北京:地质出版社.
    [37]曾允孚,夏文杰.沉积岩石学[M].北京:地质出版社,1984.
    [38]史基安,王金鹏,毛明陆等.鄂尔多斯盆地西峰油田三叠系延长组长6—8段储层砂岩成岩作用研究[J].沉积学报,2003,21(3):372~380.
    [39]付伟,赵俊兴,刘丽丽.姬塬油田马家山地区长4+5油层组储层特征与评价研究[J].天然气地球科学,2009,20(4):531-537.
    [40]朱世全.鄂尔多斯盆地姬塬地区长2油层组储层发育的沉积成岩机制[D].成都理工大学,2006.
    [41]贺艳祥,黄思静等.鄂尔多斯盆地姬塬地区上三叠统延长组长8油层组成岩作用研究[J].岩性油气藏,2010,22(2):42-47.
    [42]黄思静,黄可可,冯文立等.成岩过程中长石、高岭石、伊利石之间的物质交换与次生孔隙的形成:来自鄂尔多斯盆地上古生界和川西凹陷三叠系须家河组的研究[J].地球化学,2009,38(5):498-506.
    [43]黄可可,黄思静等.长石溶解过程的热力学计算及其在碎屑岩储层研究中的意义[J].地质通报,2009,28(4):474-482.
    [44]贺艳祥,张伟等.鄂尔多斯盆地姬塬地区长8油层组砂岩中长石的溶解作用对储层物性的影响[J].天然气地球科学,2010,21(3):482-488.
    [45]长庆石油地质志编写组.中国石油地质志(卷12)—长庆油田.北京:石油工业出版社,1992:1—46;62—69
    [46]付万军等.粘土矿物成因及对砂岩储集性能的影响[J].古地理学报,2000,2 (3):59-67.
    [47]付金华,魏新善等.鄂尔多斯盆地天然气勘探形势与发展前景[J].石油学报,2006,27(6):26-28.
    [48]何自新,贺静等.《鄂尔多斯盆地中生界储层图册》[M].石油工业出版社,2004
    [49]韩玉林,王成玉等.姬塬地区长8油层组浅水三角洲沉积特征[J].沉积学报,2009,27(6):26-28
    [50]李元昊,刘池洋等.鄂尔多斯盆地西北部上三叠统延长组长8油层组浅水三角洲沉积特征及湖岸控砂[J].古地理学报,2009,11(3):266-274
    [51]罗静兰,李忠心等.鄂尔多斯盆地西南部上三叠统延长组长8、长6油层组的沉积体系与物源方向[J].地质通报,2008,27(1):101-111
    [52]罗顺社,银晓等.鄂尔多斯盆地姬塬地区延长组长8沉积相研究[J].石油天然气学报,2008,30(4):5-9
    [53]刘涛,黄可可等.鄂尔多斯盆地姬塬地区长2油层组砂岩储层特征的研究[J].四川地质学报,待刊.
    [54]王峰,王多云等.陕甘宁盆地姬塬地区三叠系延长组三角洲前缘的微相组合及特征[J].沉积学报,2005,23(2):218-224
    [55]杨华,魏新善等.鄂尔多斯盆地多旋回叠合盆地演化和天然气富集[J].中国石油勘探,2006,1:17-24.
    [56]杨华.鄂尔多斯盆地三叠系延长组沉积体系及含油性研究[D].成都理工大学学位论文,2004:4-61.
    [57]杨俊杰.鄂尔多斯盆地构造演化与油气分布规律[M].北京石油工业出版社,2002:104-108.
    [58]郑荣才,柳梅青.鄂尔多斯盆地长6油层组古盐度研究[J].石油与天然气地质,1999, 20(1):20-25.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700