嗜热菌的分离与一株高温放线菌新种的多相分类鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
嗜热菌是指能生活在50℃以上高温,最适生长温度在45~80℃以上的一类极端微生物。自从70年代Brock发现嗜热菌以来,日本、意大利、冰岛、美国等国家大力开发嗜热菌资源。我国各地分布着数量众多、生态环境各异的温泉及其他高温环境,具有丰富的嗜热菌资源。但从目前的相关报道看来,我国对于嗜热菌资源的研究开发还不是很多。
     本实验从云南腾冲的温泉淤泥和水样样品中分离到了18株嗜热菌,经过形态观察、生理生化特性和16S rDNA序列分析,除菌株LA5为放线菌外,其余都是Bacillus属或Geobacillus属的菌株。这些嗜热菌生长的最适温度为60~70℃。其中三株高温蛋白酶产生菌SB11、SB31和SC5,经初步鉴定都属于Geobacillus属,产高温蛋白酶的酶活力分别为35.6、26.1、26.6U/mL。虽然三菌株的最适生长温度为60℃,但其产生的蛋白酶的最适酶反应温度都在70℃以上,远高于一般动植物来源的蛋白酶。
     菌株LA5是一株高温放线菌。菌落乳黄色,呈放射状皱纹,形成黄色或白色的基质菌丝和孢子,孢子层较厚,没有气生菌丝,不产生可溶性色素。在LB、PDA、蛋白胨酪素培养基上生长良好,在甘油天冬酰胺、高氏一号、察氏、牛肉膏蛋白胨培养基上生长较差,在ISP4、淀粉酪素、甘油淀粉培养基上不生长。在光学、相差、电子显微镜下观察,发现基内菌丝上均有单个孢子,生长在不分支的孢子梗上。
     高温放线菌LA5可以发酵葡萄糖、果糖、木糖、纤维二糖,不能发酵阿拉伯糖、棉子糖、鼠李糖;V.P试验、M.R试验、苯丙氨酸脱氢酶试验、柠檬酸盐试验反应阳性,吲哚试验反应阴性;液化明胶,降解淀粉、酪素,不降解纤维素、果胶;能利用有机氮(酵母膏、牛肉膏、蛋白胨、尿素)和无机氮(硝酸铵、硫酸铵、氯化铵),利用乳糖、半乳糖最好,其他糖类(葡萄糖、蔗糖、果糖、木糖、麦芽糖)利用效果一般或较差;好氧;pH生长范围是6~10,最适pH是8.5;生长温度为50~75℃,最适生长温度为60~70℃;没有抗微生物活性物质的产生。
     高温放线菌LA5的化学组成为:细胞壁含有meso-DAP(Ⅲ型),但无特征性糖;主要的脂肪酸(≥10%)为iso-C_(17∶0)(27.66%)和C_(16∶0)(22.38%);醌的组成成分为MK-7(66.58%)和MK-8(H_2)(33.42%)。
     16S rDNA序列分析表明,菌株LA5属于Planifilum属;DNA G+C mol%为56.8mol%;菌株LA5与Planifilum属仅有的两个种Planifilum fulgidum 500275和Planifilum fimeticola HO165进行DNA-DNA杂交,同源性分别为43.6%、52.7%。
     综合高温放线菌LA5的形态学特征、生理生化特征、化学组成分析和基因型特性,确认高温放线菌LA5是属于Planifilum的一个新种,命名为Planifilum yunnanesis sp.nov.。
The extremophiles have unique genes, phisiological characteristics and metabolites compared with common microorganisms. Extremophiles are of interest to both basic and applied biology. Many extremophiles, in particular the hyperthermophiles, lie close to the "universal ancestor" of all extant life on Earth. This exciting realization has fueled much research on these organisms in order to understand the nature of primitive life forms, how the first cells "made a living" in Earth's early days, and how early organisms set the stage for the evolution of modem life forms. Many thermophiles have been isolated around the world. In China, there are many different hot springs in which thermophiles usually live. But less thermophiles have been found.
     18 thermophilic strains were reported here isolated from hotsprings in Yunnan. Based on the their configurations, physiological and biochemistry features, 16S rDNA sequence,most of them belong to the genus Geobacillus and Bacillus except the strain LA5. The optimum growth temperature of 18 strains were 60-75℃. Three protease-producing strains(beloned to Geobacillus)SBll, SB31 and SC5 were studied in more detail. The protease activities were 35.6, 26.1, 26.6 U/mL respectively. Although they grew best at 60℃, their protease activities were highest at 70℃, higher than those from animals and plants.
     Strain LA5 was a thermoactinomyces.Its colony was cream-yellow with radial winkles. The isolate grew aerobically at temperature of 50~70℃and at pH 6~10. The aerobic mycelia wasn't be observed. Single spores were produced along the substrate hypha. The strain LA5 utilized glucose, fructose, xylose, giutin, Casin and starch but not arabinose, raffinose, rhamnose, cellobiose, Hypoxanthine, Xanthine and L-Tyrosine. The strain LA5 could grow better on the following media: LB, PDA, Czapek and Starch-Casein,but weak on Glycerol-Asparagine and Gause's Synthetic meadium.
     Chemotaxonomical analysis revealed the presence of meso-diaminopimelic acid, alaline and glutamic acid, indicating that the cell call chemotype belonged to the typeⅢ. Whole-cell sugars were found to be glucose, ribose, without any diagnostic sugars. The major fatty acids were iso-C17:0 (27.66%) and C16:0 (22.38%) and the predominant menaquinone were MK-7( 66.58 % )和MK-8( H2 )( 33.42 % )which were quitely different from those type strains of five genera in the family'Thermoactinomycetaceae'.
     DNA G+C% of strain LA5 was 56.8 mol%, close to those of Planifilum fulgidum 500275T (60.0 mol%) and Planifilum fimeticola H0165T(60.3 mol%) but much higher than those of others in the family 'Thermoactinomycetaceae'.
     DNA Hybridization outcome demonstrated the presence of 52.7%, 43.6% homogeneity between LA5 and Planifilum fimeticola H0165T and Planifilum fulgidum 500275T respectively.
     On the basis of phenotypic properties and phylogeny, strain LA5 should be placed in the genus Planifilum as a member of a novel species for which we propose the name Planifilum yunnanensis sp. nov.
引文
1. Collins M D, Mackillop G C & Cross T. Menaquinone composition of members of the genus Thermoactinomyces. FEMS Microbiol Lett, 1982,13:151-153.
    
    2. Cross T, Davies F L & Walker P D. Thermoactinomyces vulgaris. I. Fine structure of the developing endospores. In Spore Research, 1971:175-187.
    3. Cross T & Goodfellow M. Taxonomy and classification of the actinomycetes. In Actinomycetales: Characteristics and Practical Importance, 1973 :11~112.
    4. Cross T, Walker P D & Gould G W. Thermophilic actinomycetes producing resistant endospores. Nature, 1968,220: 352-354.
    5. Cormier Y, Laviolett M. Encyclop die M dico-Chirurgicale. Paris: Elsevier, 1996.
    6. Colwell. Polyphasic taxonomy of the genus Vibrio: numerical taxonomy of Vibrio cholerae, Vibrio parahaemolyticus, and related Vibrio species. Journal of Bacteriology, 1970,104: 410-433.
    7. DJones & N.R.Krieg 著,陈文新译. 细菌分类-----V.血清学和化学分类. 微生物学通报, 1987,6:281-284.
    8. George M Garrlty, Julia A Bell & Tlmonthy G Liibum. Taxonomic outline of the prokaryotes Bergey's manual of systematic bacteriology (second edition). USA: New York Berlin Heidelberg, 2004.
    9. Hong-ying Hu, Koichi Fujie, Hiroki Nakagome, Kohei Urano & Arata Katayma. Quantitative analyses of the change in microbial diversity in a bioreactor for wastewater treatment based on respiratory quinines. Wat. Res. 1999, 33: 3263-3270.
    10. J Gregory Zeikus, Claire Vieille, Alexei Savchenko. Thermozymes: biotechnology and structure-function relationships. Extremophiles, 1998,3:179-183.
    11. Krasil'nikov N A & Agre N S. A new actinomycete genus -Actinobifida n. gen. yellow group -Actinobifida dichotomica n. sp. Mikrobiologiya, 1964,33: 935-943.
    12. Kroppenstedt R M. Fatty acid and menaquinone analysis of actinomycetes and related organisms. In Chemical Methods in Bacterial Systematics, 1985:173-199.
    13. Kouta Hatayama, Hirofumi Shoun, Yasuichi Ueda & Akira Nakamura. Planifilum fimeticola gen. nov., sp. nov. and Planifilum fulgidum sp. nov., novel members of the family 'Thermoactinomycetaceae' isolated from Compost. Int J Syst Evol Microbiol, 2005,55:1-4.
    14. Kurup V P, Barboriak J J, Fink J N. & Lechevalier M P. Thermoactinomyces candidus, a new pecies of thermophilic actinomycetes. Int J Syst Bacteriol, 1975,25: 150-154.
    15. Kurup V P, HolJick G E & Pagan E F. Thermoactinomyces intermedius, a new species of amylase negative thermophilic actinomycetes. Science - Ciencia Bol Cien Sur, 1980,7:104-108.
    16. Lacey J. Thermoactinomyces sacchari sp. nov., a thermophilic actinomycete causing bagassosis. J Gen Microbiol, 1971, 66: 327-338.
    17. Lacey J & Cross T. Genus Thermoactinomyces Tsiklinsky 1899. In Bergey's Manual of Systematic Bacteriology, 1989,4: 2574-2585.
    18. Lechevalier M P & Lechevalier H A. Chemical composition as a criterion in the classification of aerobic actinomycetes. Int J Syst Bacteriol, 1970, 20: 435-443.
    19. M Sadeghi, H Naderi-Manesh, M Zarrabi, B Ranjbar. Effective factors in thermostability of thermophilic proteins. Biophysical Chemistry, 2005,119: 254-268.
    20. Nonomura H & Ohara Y. Distribution of actinomycetes in soil. X. New genus and species of monosporic actinomycetes in soil. J Ferment Technol, 1971, 49: 895-903.
    21. Park Y H, Kim E, Yim D G, Kho Y H, Mheen TI & Goodfellow M. Supragenic classiy (?)Ecation of Thermoactinomyces vulgaris by nucleotide sequencing of 5S ribosomal RNA. Zentbl Bakteriol, 1993, 278: 469-478.
    22. Pepys J, Jenkins P A, Festenstein G N, Gregory P H, Lacey M E & Skinner F A. Farmer's lung: thermophilic actinomycetes as a source of farmer's lung hay' antigen. Lancet, 1963,2: 607-611.
    23. Rosvita E Milo, Fiona M Dufmer, Rudolf Muller. Thermozymes: biotechnology and structure-function relationships. Extremophiles, 1999, (3): 185-190.
    24. Stackebrandt E & Woese C R. Towards a phylogeny of the actinomycetes and related oganisms. Curr Microbiol, 1981, 5:197-202.
    25. Tseng M, Kudo T & Seino A. Identification of thermophilic actinomycetes isolated from mushroom compost in Taiwan. Bull JFCC, 1990, 6: 6-13.
    26. Tsilinsky P. On the thermophilic moulds. Ann Inst Pasteur, 1899,13: 500-505.
    27. Unsworth B A & Cross T. Thermophilic actinomycetes implicated in farmer's lung: numerical taxonomy of Thermoactinomyces species. In Microbiological Classification and Identification: 389-390. London: Academic Press, 1980.
    28. Vandamme P, Pot B, Gillis M, De Vos P, Kersters K & Swings J. Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiol Rev, 1996, 60: 407-438.
    29. Vogt G, Woell S, Argos P. Proteinthermalstability, hydrogen bondsandionpairs. J.Mol.Biol, 1997, 269: 631-643.
    30. Yoon J H, Kim I G, Shin Y K & Park Y H. Proposal of the genus Thermoactinomyces sensu stricto and three new genera, Laceyella, Thermoflavimicrobium and Seinonella, on the basis of phenotypic, phylogenetic and chemotaxonomic analyses. Int J Syst Evol Microbiol, 2005, 55: 395-400.
    31. Yoon J H & Park Y H. Phylogenetic analysis of the genus Thermoactinomyces based on 16S rDNA sequences. Int J Syst Evol Microbiol, 2000, 50: 1081-1086.
    32. Yoon Y H, Shin Y K & Park Y H. DNA-DNA relatedness among thermoactinomyces species: thermoactinomyces candidus as a synonym of thermoactinomyces vulgaris and thermoactinomyces thalpophilus as a synonym of thermoactinomyces sacchari. Int J Syst Evol Microbiol, 2000, 50: 1905~1908.
    33.白林泉,袁德军,胡传炯,梁蓉芳,周启,周平贞.利用氨基酸分子比鉴别放线菌胞壁类型的研究.微生物学通报,1997,24(1):9~13.
    34.迟桂荣.极端环境微生物的研究概况.德州学院学报,2001,17(2):74~76.
    35.戴玄,唐兵,陈向东,彭珍荣.产高温蛋白酶微生物菌种资源的研究.微生物学杂志,1997,17(3):25~29.
    36.邓敬石.高温嗜热菌浸出硫化矿的研究现状与展望.云南冶金,2005,34(1):21~24.
    37.
    38.段蓉芳,杜泽吉.DNA相对含量与抗辐射菌辐射抗性间的关系.苏州医学院学报,1999,19(5):495~497.
    39.高梦春,杨敏,邵兵,李红岩,胡建英.固相萃取-LC-MS定性分析微生物呼吸醌方法的建立.环境化学,2004,23(5):578~583.
    40.戈梅,陈代杰.关注微生物来源的新药开发.生命科学,2005,17(1):15~18.
    41.龚革,王修恒.九株嗜热产甲烷菌的特性.微生物学报,1997,37(5):378~384.
    42.韩如,陈美慈,闵航,赵宇华,马晓航.嗜热厌氧细菌Clostridium sp.EVA4菌株直接转化纤维素产生乙醇的研究.应用与环境生物学报,1999,5(suppl):170~174.
    43.和田恭尚.酶在洗涤剂中的应用现状及展望.日用化学工业,2005,35(1):30~35.
    44.何琳燕.硅酸盐细菌的分离、鉴定及基因标记的研究.2003
    45.何正国,李雅芹,周培瑾.极端嗜酸微生物.微生物通报,1999,26(6):452.
    46.胡青平,徐建国.耐高温蛋白酶菌株的筛选.生物技术,2005,15(5):20~21.
    47.华洋林,赵继伦,潘力.碱菌的特性及其应用前景.命的化学,2004,24(4):358~360.
    48.姜成林,徐丽华,许宗雄.放线菌分类学.昆明:云南大学出版社,1995,1:127~128.
    49.蒋凌月,李铭刚,李文军,崔晓龙,徐丽华,姜成林.细胞壁氨基酸的定量分析在放线菌分类中的应用研究.微生物学报,2001,41(3):270~277.
    50.驹行和男编(方爽译).微生物化学分类的实验方法.贵州:贵州人民出版社,1989
    51.郦惠燕,邵靖宇.嗜热菌的耐热分子机制.生命科学,2000,12(1):30~33.
    52.李文钧,田勇强,段若玲,徐丽华,张忠泽,姜成林.高温放线菌属两菌株的化学分类和分子 分类研究.西南农业学报,2002,15(4):65~70.
    53.李文钧,徐平,徐丽华,姜成林.极端环境中的放线菌资源.微生物学通报,2003,30(4):125~127.
    54.李文钧,张忠泽,姜成林.高温放线菌属分类研究进展.微生物学报,2002,42(6):759~763.
    55.李琇.新的生命形式—极端微生物.阴山学刊,2000,15(3):32~35.
    56.梁宠荣.嗜热蛋白热稳定机理研究进展.世界科技研究与发展,2004,26(3):75~80.
    57.林影等.极端酶及其工业应用.工业微生物,2000,30(2):51~53.
    58.林影,凌晨晖.海洋微生物极端酶的研究.海洋科学,1999,2:19~21.
    59.刘爱民.嗜盐菌的研究进展.安徽师范大学学报(自然科学版),2002,25(2):181~184.
    60.刘杰华,袁生,戴传超等.二十碳五烯酸等多不饱和脂肪酸高产菌的筛选.菌物系统,2000,19(3):407~409.
    61.刘升明,王淀佐,孙体昌,陈景河.微生物浸金的研究现状与展望.矿产综合利用,2004,6:24~27.
    62.刘志恒,姜成林.放线菌现代生物学与生物技术.北京:科学出版社,2004.
    63.刘志辉,蔡杏姗,竺澎波,关平,许婉华,吴龙章.应用气相色谱技术分析全细胞脂肪酸快速鉴定分枝干菌.中华结核和呼吸杂志,2005,28(6):403~406.
    64.卢柏松,王国力,黄培堂.嗜热与嗜常温微生物的蛋白质氨基酸组成比较.微生物学报,1998,38(1):20~25.
    65.吕福英,闵航,陈美慈,刘颖.一个高温厌氧直接转化纤维素为乙醇的高纯富集物.浙江大学学报(农业与生命科学版),2000,26(1):56~60.
    66.马挺,刘如林.嗜热菌耐热机理的研究进展.微生物学通报,2002,29(2):86~88.
    67.马延和.新的生命形式--极端微生物.微生物学通报,1999,26(1):封底.
    68.马瑛,张甲耀,夏盛林.嗜热微生物在废水处理中的应用.上海环境科学,1997,16(8):26~30.
    69.裴凌鹏,骆海朋.极端微生物浅谈.首都师范大学学报(自然科学版),2003,24(1):49~54.
    70.齐春梅,张小平,姚昕.嗜热微生物酶的嗜热机制及应用研究进展.微生物学杂志,2004,24 (4):39~42.
    71.冉翠香.细菌化学分类的化学物质.吕梁高等专科学校学报,2000,16(2):63~64.
    72.阮继生,刘志恒,梁丽糯等.放线菌研究及利用.北京:科学出版社,1990.
    73.任红妍.嗜热微生物.生物学通报,1995,30(3):18.
    74.石贤爱,李聪颖,林晖,孟春,郭养浩.嗜热布氏酸菌对梅州黄铜矿的生物浸出过程特性.过程工程学报,2005,5(3):332~336.
    75.石宣明,刘淑珍,黄玉碧.嗜热酶耐热机制的研究进展.科学技术与工程,2004,4(9):804~809
    76.孙瑞,吴琳.微生物分子分类方法的简述.郑州铁路职业技术学院学报,2004,16(2):58~60.
    77.唐冰,唐晓峰,彭珍荣.嗜冷菌研究进展.微生物学杂志,2002,22(1):51~53.
    78.唐景春,KATAYAMA Arata.醌类图谱分析在环境微生物生态测定中的应用.应用与环境生物学报,2004,10(4):530~536.
    79.唐雪明,王正祥,诸葛健.具有工业应用价值的高热稳定性极端酶.食品与发酵工业,2001,27(5):65~70.
    80.汪保江,邵宗泽.一株来自深海沉积物的低温、嗜压菌的分离鉴定.厦门大学学报(自然科学版),2005,44(增刊):175~179.
    81.汪天虹,侯运华.海洋极端微生物和极端酶分子生物学研究.生物技术,2004,9:7~10.
    82.王航,余若黔.极端嗜盐菌研究进展.四川食品与发酵,2002,2:9~12.
    83.王红妹.极端微生物的多样性及其应用.枣庄学院学报,2006,23(2):88~92.
    84.王平.测定放线菌菌体中氨基酸和单糖的快速方法——薄层层析法.228~231.
    85.吴军林,林炜铁,杨继国.嗜高温酶的研究及应用.广州食品工业科技,2002,19(1):60~62.
    86.谢小军.嗜热生命.博学,2004(4):57.
    87.辛明秀,周培瑾.低温微生物研究进展.微生物学报,1998,38(5):400~403.
    88.徐丽华,李文钧,崔晓龙,文孟良,李铭刚,李一青,姜成林,刘志恒.微生物资源研究值得重视.微生物学通报,2003,30(1):106~108.
    89.许燕滨,杨汝德,刘鸿,陈敏,温桂照.极端酶的稳定性及其在废水处理中的应用.化工环保,2001,21(1):21~24.
    90.叶亚新,黄勇,王金虎.分子生物学技术在环境生物多相分类中的应用.苏州科技学院学报(自然科学版),2004,21(4):46~52.
    91.余利岩,刘红宇,黄明玉,陈睦,朱海燕,张月琴.Actinobacteda分离株的多相分类学研究.2005,30(11):641~646.
    92.庾晋,周洁.生命起源的活化石:古细菌.生命科学,2003,7:20~23.
    93.张国赏,吴文鹃,潘仁瑞.气相色谱.质谱法检测细胞脂肪酸及其在细菌鉴定上的应用.合肥联合大学学报,2000,10(4):92~96.
    94.张洪勋,郝春博,白志辉.嗜酸菌研究进展.微生物学杂志,2006,26(2):68~72.
    95.张鸿雁,张宏礼,许殿才,吴晓华.嗜碱菌研究与应用.黑龙江八一农垦大学学报,2004,16(2):70~75.
    96.张彤,方汉平.微生物分子生态技术:16S rRNA/DNA方法.微生物学通报,2003,30(2):97~101.
    97.张永光,李文均,姜成林,张忠泽.嗜盐放线菌的研究进展.微生物学杂志,2002,22(4):45~47.
    98.张云峰,罗玉明,王新风.嗜热蛋白酶的研究与应用.淮阴师范学院学报(自然科学版),2003,2(3):245~249.
    99.赵庆祥,贤波.废水生物处理技术的研究动向.苏州科技学院学报(工程技术版),2003,16(2):4~8.
    100.周则勇.英美竞相开发极端微生物产品.中国化工,1998(5):58.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700