流媒体内容分发网络的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
流媒体内容分发网络是保障流媒体QoS的有效方法。流媒体传输和流媒体分发是流媒体内容分发网络的两部分功能,它们从不同的角度提高流媒体的QoS。流媒体传输是指采用特定的机制使流媒体服务器能够根据网络状态调节发送速率,保证用户观看的媒体质量尽可能高而且稳定;利用流媒体分发可以降低网络负载、避免主干网的拥塞,使用户的启动延迟更短、流媒体的质量更加稳定。本文从这两方面展开了研究,其主要贡献包括:
     (1)为了平滑连续帧的质量,提出了基于最高位平面的帧质量平滑机制(HBPFS)。
     (2)为了使连续GOP的质量保持稳定,在分析和研究MPEG-4 FGS流媒体位平面编码特征的基础上,根据FGS位平面R-D模型和HBPFS帧质量平滑机制得到GOP的位平面R-D模型,进而提出了GOP常质量带宽分配机制,实现了常质量GOP带宽分配的静态算法和动态算法。
     (3)为了在有丢包的Internet环境下获得平滑的质量,提出了GOP质量平滑、帧质量平滑的两阶段质量平滑机制以及FEC差错控制机制,进而提出了流媒体自适应传输系统。
     (4)针对GOP质量平滑,提出了三种GOP平滑机制,分别为基于总带宽的GOP平滑机制(BWGS)、基于增强层的GOP平滑机制(ELGS)和基于最高位平面的GOP平滑机制(HBPGS)。
     (5)针对分层编码的流媒体,结合流媒体预取提出了一种前缀优先的分层缓存策略。它能有效地降低用户的启动延迟,同时对系统的字节命中率和网络传输成本的影响较小。通过预取算法,代理服务器主动地从原始服务器预取内容,保证用户能够持续地获得服务,当条件不能满足时可以与用户进行QoS协商。
     (6)针对非分层编码的流媒体,提出了一种基于传输成本的流媒体缓存替换算法——基于传输成本的最小缓存效用(TCBSCU)算法,并将其统一到前缀优先的分层缓存策略中。TCBSCU能够针对各种传输调度方法对系统的传输成本进行优化,同时也降低了对原始服务器带宽的消耗。
     (7)为了提高流媒体缓存机制的有效性,在多代理服务器协作方面,提出了基于传输成本的流媒体代理服务器组(TCBSPG)的系统组织,并对系统的传输成本进行了性能优化,提出了基于缓存效用的缓存替换算法、基于联合缓存效用的缓存空间优化分配算法以及确定缓存内容分布的方法。
Streaming by content distribution network (CDN) is an effective way to guarantee quality of service (QoS) of streaming media. Streaming media transmission and streaming media distribution are two functional modules of streaming media CDN, which improve QoS of streaming media from different aspects. Streaming media can adapt to the variety of network by certain streaming media transmission mechanisms, assuring QoS perceived by users as high and stable as possible. Streaming media can be distributed to edge network by distribution schemes so as to reduce network payload, avoid backbone network congestion, shorten users’startup latency, and steady the QoS of streaming media. The paper covers these two aspects, and main contributions are:
     1. To smooth the quality of continuous frames, highest bit plane based frame quality smoothing (HBPFS) scheme is proposed.
     2. Based on analysis and study of the characteristics of MPEG-4 FGS bit plane encoding, a GOP bit plane rate-distortion (R-D) model is deduced according to the FGS bit plane R-D model and the HBPFS scheme. A constant GOP quality bandwidth allocation scheme is presented. Offline and online algorithms are provided to make the quality of continuous GOP constant.
     3. An adaptive transmission system for MPEG-4 FGS streaming media is put forward based on the combination of two-phase quality smoothing scheme proposed and error control scheme. The system adjusts the sending bandwidth of every frame using GOP quality smoothing scheme, frame quality smoothing scheme and FEC error control scheme, in order to guarantee stable quality of continuous GOPs and successive frames in a GOP in the unstable and lossy Internet.
     4. With regard to the GOP quality smoothing scheme, three GOP quality smoothing strategies are brought forward, which are bandwidth based GOP quality smoothing (BWGS), enhancement layer based GOP quality smoothing (ELGS) and the highest bit plane based GOP quality smoothing (HBPGS) respectively.
     5. A prefix preferential layered caching strategy with prefetching algorithm is proposed for layered scalable coded streaming media. It can reduce users’startup lantency effectively with little effect on the byte hit ratio and network transmission cost of the whole system.
引文
[3Tnet] 高性能宽带信息网(3Tnet)专项课题指南,www.863.org.cn.
    [AEV01] J. M. Almeida, D. L. Eager, and M. K. Vernon. A hybrid caching strategy for streaming media files. Proc. Multimedia Computing and Networking (MMCN’01), San Jose, CA., Jan. 2001.
    [AOELS96] A. Albanese, J. BlOmer, J. Edmonds, M. Luby, and M. Sudan. Priority encoding transmission. IEEE Trans. on Information Theory, vol. 42, no. 6, pp. 1737-1744, Nov. 1996.
    [AS00] S. Acharya and B. C. Smith. Middleman: A video caching proxy server. Proc. NOSSDAV’00, June 2000.
    [AWY96a] C. Aggarwal, J. Wolf, P. Yu. On optimal batching policies for video-on-demand storage servers. Proc IEEE International Conference on Multimedia Computing and Systems, Hiroshima, Japan, 1996.
    [AWY96b] C. Aggarwal, J. Wolf, P. Yu. A permutation-based pyramid broadcasting scheme for video-on-demand systems. Proc IEEE Int’l Conf on Multimedia System, Japan, June 1996.
    [BBCDWW98] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, W. Weiss. An Architecture for Differentiated Service. RFC 2475, Dec. 1998.
    [BDHMS95] Bowman, P-B. Danzig, D-R. Hardy, U. Manber, and M-F. Schwartz. The Harvest information discovery and access system. Computer Networks and ISDN Systems, vol. 28, no.1-2, pp. 119-125, 1995.
    [BT96] J-C. Bolot and T. Turletti. Adaptive error control for packet video in the Internet. Proc. IEEE International Conference on Image Processing (ICIP'96), Lausanne, Switzerland, pp. 25-28, Sep. 1996.
    [BB00] D. Bansal, H. Balakrishnan. TCP-Friendly Congestion Control Real-Time Streaming Application. MIT Technical Report. May 2000.
    [BCFPS99] L. Breslau, P. Cao, L. Fan, G. Phillips, S. Shenker. Web caching and Zipf-like distributions: evidence and implications. Proc. of INFOCOM’99.
    [BTW94] J-C. Bolot, T. Turletti, and I. Wakeman. Scalable feedback control for multicast video distribution in the Internet. Proc. ACM SIGCOMM'94, London, UK, pp. 58-67, Sep. 1994.
    [BZBHJ97] R. Braden, Ed., L. Zhang, S. Berson, S. Herzog, S. Jamin. Resource Reservation Protocol (RSVP) -- Version 1 Functional Specification. RFC 2205, Sep. 1997
    [CAL96] S. Y. Cheung, M. Ammar, and X. Li. On the use of destination set grouping to improve fairness in multicast video distribution. Proc. IEEE INFOCOM'96, pp. 553-560, Mar. 1996.
    [CDN02] Content Delivery Networks: An Architectural Overview. Whiter Paper, May. 2002. http://cdn.hcltech.com/
    [CGBSZ02] Y. Chae, K. Guo, M. M. Buddhikot, S. Suri, and E. W. Zegura. Silo, rainbow, and caching token: Schemes for scalable, fault tolerant stream caching. IEEE J. Select. Areas in Comm., 20(7), pp.1328-1344, Sep. 2002.
    [CGK01] C. D. Cranor, M. Green, C. Kalmanek, and et al. Enhanced Streaming Services in a Content Distribution Network. IEEE Internet Computing. vol. 5, no. 4, pp. 66-75. July-Aug. 2001.
    [CGRT02] P. de Cuetos, P. Guillotel, K. W. Ross, and D. Thoreau. Implementation of Adaptive Streaming of Stored MPEG–4 FGS Video. Proc. of IEEE International Conference on Multimedia and Expo, Lausanne, Switzerland, August 2002.
    [CJ89] D. Chiu and R. Jain. Analysis of the Increase and Decrease Algorithms for Congestion Avoidance in Computer Networks. Computer Networks and ISDN System, vol. 17, no. 1, pp. 1-14, 1989.
    [CM01] P. A. Chou and Z. Miao. Rate-Distortion Optimized Streaming of Packetized Media. Submitted to IEEE Transactions on Multimedia, Feb. 2001.
    [CR02] P. de Cuetos and K. W. Ross. Adaptive Rate Control for Streaming Stored Fine-Grained Scalable Video. Proc. of NOSSDAV, Miami, Florida, pp. 3-12, May 2002.
    [CR03] P. de Cuetos and M. Reisslein. Evaluating the Streaming of FGS–Encoded Video with Rate–Distortion Traces. Institut Eurecom Technical Report RR-03-078, June 2003
    [CSWZ03a] S. Chen, B. Shen, S. Wee, and X. Zhang. Adaptive and lazy segmentation based proxy caching for streaming media delivery. Proc. NOSSDAV’03, Monterey, CA, June 2003.
    [CSWZ03b] S. Chen, B. Shen, S. Wee, and X. Zhang. Streaming Flow Analyses for Prefetching in Segment-based Proxy Caching to Improve Media Delivery Quality. Proceedings of the 8th International Workshop on Web Caching and Distribution (WCW'03), Hawthorne, NY, Sep. 29 - Oct. 1, 2003.
    [CZ97] T. Chiang and Y.Q. Zhang. A new Rate Control Scheme Using Quadratic Distortion Model. IEEE Trans. CSVT, vol. 7, Feb. 1997.
    [DCTR02] M. Day, B. Cain, G. Tomlinson, P. Rzewski. A Model for Content Internetworking (CDI). RFC 3466, Feb. 2003.
    [Dem94] Bert J. Dempsey. Retransmission-Based Error Control For Continuous Media Traffic in Packet-Switched Networks. PhD Dissertation, University of Virginia, 1994.
    [DHS96] A. Dan, Y. Heights, and D. Sitaram. A generalized interval caching policy for mixed interactive and long video workloads. Proc. of SPIE/ACM Conf. on Multimedia Computing and Networking (MMCN’96), San Jose, CA, Jan. 1996.
    [DL03] M. Dai and D. Loguinov. Analysis of Rate-Distortion Functions and Congestion Control in Scalable Internet Video Streaming. ACM NOSSDAV, June 2003.
    [DLR03] M. Dai, D. Loguinov, H. Radha. Analysis and Distortion Modeling of MPEG-4 FGS. Proc. IEEE ICIP, Barcelona, Spain, Sep. 14-17, 2003.
    [DSS94] A. Dan, D. Sitaram, P. Shahabuddin. Scheduling policies for an on-demand video server with batching. Proc ACM Multimedia’94, pp. 492-500, 1994.
    [EA01] A. Eleftheriadis and D. Anastassiou. Meeting arbitrary QoS constraints using dynamic rate shaping of coded digital video. Proc. 5th International Workshop on Network and Operating System Support for Digital Audio and Video (NOSSDAV'95), April 1995, pp. 95-106. Feb. 2001.
    [EV98] D. L. Eager, M. K. Vernon. Dynamic skyscraper broadcast for video-on-demand. Proc. 4th Int. Workshop on Advances in Multimedia Information Systems, pages 18–32, Sep. 1998.
    [EVZ99] D. L. Eager, M. K. Vernon, J. Zahorjan. Optimal and Efficient Merging Schedules for Video-on-Demand Servers. Proceedings of the seventh ACM international conference on Multimedia, Orlando, Florida, United States, pp. 199-202, 1999.
    [EVZ00] D. L. Eager, M. K. Vernon, J. Zahorjan. Bandwidth Skimming: A Technique for Cost-Effective Video-on-Demand. Proc. Multimedia Computing and Networking 2000 (MMCN’00), San Jose, CA, Jan. 2000.
    [FF99] S. Floyd, and K. Fall. Promoting the Use of End-to-End Congestion Control in the Internet. IEEE/ACM Trans. Networking, Aug. 1999.
    [FHP00] S. Floyd, M. Handley, J. Padhye. A Comparison of Equation-based and AIMD Congestion Control. May 2000.
    [FHPW00] S. Floyd, M. Handley, J. Padhye, and J. Widmer. Equation-Based Congestion Control for Unicast Applications. Proc. SIGCOMM 2000, Aug. 2000.
    [FJCL99] Li Fan, Quinn Jacobson, Pei Cao, Wei Lin. Web Prefetching between low-bandwidth clients and proxies: Potential and performance. Proc Joint Conf on Measurement and Modeling of Computer Systems, 1999
    [Flo00] S. Floyd. Congestion Control Principle. RFC 2914, Sep. 2000.
    [FLSGLH01] H. Fahmi, M. Latif, S. Sedigh-Ali, A. Ghafoor, P. Liu, and L. Hsu. Proxy servers for scalable interactive video support. IEEE Computer, 43(9): 54-60, Sep. 2001.
    [Gha93] M. Ghanbari. Cell-loss concealment in ATM video codes. IEEE Trans. on Circuits and Systems for Video Technology, vol. 3, no. 3, pp. 238-247, June 1993.
    [GLM96] L. Golubchik, J. Lui, R. Muntz. Adaptive piggybacking: a novel technique for data sharing in video-on-demand storage servers. Multimedia Systems, vol. 4, Issue 3, June 1996.
    [GZT99] L. Gao, Z.-L Zhang and D. Towsley. Catching and selective catching: efficient latency reduction techniques for delivering continuous multimedia streams. Proc. ACM Multimedia Conf., pp. 203-206, Nov. 1999.
    [GZZZ01] Q. Guo, Q. Zhang, W. Zhu, and Y.-Q. Zhang. Sender-adaptive and receiver-driven video multicasting. Submitted to IEEE International Symposium on Circuits and Systems, Sydney, Australia, May 2001.
    [HCS98] K. Hua, Y. Cai, S. Sheu. Patching: A multicast technique for true video-on-demand services. In Proc. ACM Multimedia’98, Bristol, UK, 1998.
    [HC97] H.-M. Hang and J.-J. Chen. Source model for transform video coder and its application. I. Fundamental theory. IEEE Trans. CSVT, vol.7, April 1997
    [HFPW03] M. Handley, S. Floyd, J. Padhye, J. Widmer. TCP Friendly Rate Control (TFRC): Protocol Specification. RFC3448, Jan. 2003.
    [HL01] C.-L. Huang and B.-Y. Liao. A Robust Scene-Change Detection Method for Video Segmentation. IEEE Trans. on Circuits and Systems for Video Technology, vol. 11, no. 12, pp. 1281-1288, Dec. 2001.
    [HS97] K. A. Hua and S. Sheu. Skyscraper broadcasting: a new broadcasting scheme for metropolitan video-ondemand systems. Proc. ACM SIGCOMM '97 Conf., pp. 89-100, Sep. 1997.
    [Internet2] www.internet2.edu.
    [ISO/IEC99] ISO/IEC JTC1/SC29/WG11 Information Technology - Generic Coding of Audio-Visual Objects : Visual ISO/IEC 14496-2 /Amd X, Dec. 1999.
    [ISO/IEC00] Coding of Audio-Visual Objects, Part-2 Visual, Amendment 4: Streaming Video Profile, ISO/IEC 14 496-2/FPDAM4, July 2000.
    [JBI02] S. Jin, A. Bestavros, and A. Iyenger. Accelerating Internet streaming media delivery using networkaware partial caching. Proc. IEEE ICDCS’02, Vienna, Austria, July 2002.
    [KHRR02] J. Kangasharju, F. Hartanto, M. Reisslein, and K. W. Ross. Distributing layered encoded video through caches. IEEE Trans. Computers, 51(6), pp. 622-636, June 2002.
    [LCX04] J. Liu, X. Chu, and J. Xu. Proxy Cache Management for Fine-Grained Scalable Video Streaming. Proc. IEEE INFOCOM'04, Hong Kong, Mar. 2004.
    [Li01] Weiping Li. Overview of Gine Granularity Scalability in MPEG-4 Video Standard. IEEE Trans. On circuits and Systems for Video Technology, vol. 11, no. 3, pp. 301-317, Mar. 2001.
    [LPH01] E. Lim, S. H. Park, H. O. Hong, and et al. A proxy caching scheme for continuous media streams on the Internet. The 15th International Conference on Information Networking (ICOIN'01), Beppu City, Oita, Japan, 2001.
    [LQZQ01] T. M. Liu, W. Qi, H.J. Zhang, F.H. Qi. A Content-Aware Rate Controller for Streamed Delivery of MPEG-4 FGS Video. IEEE International Conference on Multimedia and Expo (ICME 2001), Waseda University, Tokyo, Japan, Aug. 22-25, 2001.
    [LX03] J. Liu and J. Xu. Proxy Caching for Media Streaming over the Internet. IEEE Communications, 2004.
    [Mca90] A. J. McAuley. Reliable broadband communication using a burst erasure correcting code. Proceedings of ACM SIGCOMM’90, pp. 297-306, Sep. 1990.
    [Mce77] R. J. McEliece, “The Theory of Information and Coding,” Addison Wesley, 1977.
    [MJV96] S. McCanne, V. Jacobson, and M. Vetterli. Receiver-driven layered multicast. Proc. ACM SIGCOMM'96, Aug. 1996, pp. 117-130.
    [MMVRS03] Microsoft MPEG-4 Visual Reference Software, microsoft-v2.4-030305-NTU.
    [MO02] Z. Miao and A. Ortega. Scalable proxy caching of video under storage constraints. IEEE J. Select. Areas in Comm., vol. 20, no. 7, pp. 1315-1327, Sep. 2002.
    [MWM01] M. Miyabayashi, N. Wakamiya, M. Murata, et al. MPEG-4 Video Transfer with TCP-friendly Rate Control. In Proc. 4th IFIP/IEEE International Conference on Management of Multimedia Networks and Services 2001 (MMNS2001), vol. 1, pp. 29-42, Oct.-Nov. 2001.
    [MWM03] M. Miyabayashi, N. Wakamiya, M. Murata, et al. Dynamic Quality Adaptation Mechanisms for TCP-friendly MPEG-4 Video Transfer. 2nd International Workshop on QoS in Multimedia IP Networks, Milano, Italy, Feb. 24-26, 2003.
    [NS2] NS-2 Network Simulator, http://www.isi.edu/nsnam/ns, 2002.
    [MO02] Z. Miao and A. Ortega,. Expected Run–time Distortion Based Scheduling for Delivery of Scalable Media. Proc. of International Conference of Packet Video, Pittsburg, PA, April 2002.
    [OSB97] S. Olsson, M. Stroppiana, and J. Baina. Objective Methods for Assessment of Video Quality: State of the Art. IEEE Trans.on Broadcasting, vol. 43, no. 4, pp. 487–495, Dec. 1997.
    [PFTK98] J. Padhye, V. Firoiu, D. Towsley, J. Kurose. Modeling TCP Throughput: a simple model and Its Empirical Validation. In Proceedings of SIGCOMM’98. Aug. 1998.
    [PRLB00] R. Puri, K. Ramchandran, K. W. Lee, and V. Bharghavan. Application of FEC based multiple description coding to Internet video streaming and multicast. Proc. Packet Video Workshop, Cagliari, Sardinia, Italy, May 1-2, 2000.
    [PWCS02] VN Padmanabhan, HJ Wang, PA Chou, and K. Sripanidkulchai, Distributing streaming media content using cooperative networking, in ACM/IEEE NOSSDAV, Miami, FL, USA, May 12-14, 2002.
    [RC99] H. Radha and Y. Chen. Fine–Granular–Scalable video for Packet Networks. Proc. of Packet Video Workshop, 1999.
    [RCPC99] H. Radha, Y. Chen, K. Parthasarathy, R. Cohen. Scalable Internet Video Using MPEG-4. Signal Processing: Image Communication, vol. 15, no. 1-2, pp. 95–126, Sep. 1999.
    [RHE99] R. Rejaie, M. Handley, D. Estrin. RAP: An End-to-End Rate-based Congestion Control Mechanism for Realtime Streams in the Internet. In Proceedings of INFOCOMM’99, VOL. 3, Mar. 1999.
    [RHE00] R. Rejaie, M. Handley, D. Estrin. Layered quality adaptation for Internet video streaming. IEEE Journal on Selected Areas of Communications (JSAC), Special issue on Internet QoS, Winter 2000.
    [RRG01] S. Ramesh, I. Rhee, and K. Guo. Multicast with cache (Mcache): An adaptive zero-delay video-on-demand service. Proc. IEEE INFOCOM’01, Anchorage, AK, April 2001.
    [RSC01] H. Radha, M. van der Schaar, and Y. Chen. The MPEG-4 Fine-Grained Scalable Video Coding Method for Multimedia Streaming over IP. IEEE Transactions on Multimedia, vol. 3, no. 1, pp. 53–68, Mar. 2001.
    [RYHE00] R. Rejaie, H. Yu, M. Handley, and D. Estrin. Multimedia proxy caching mechanism for quality adaptive streaming applications in the Internet. Proc. IEEE INFOCOM’00, Tel Aviv, Israel, Mar. 2000.
    [SK95] H. Sun and W. Kwok. Concealment of damaged block transform coded images using projection onto convex sets. IEEE Trans. on Image Processing, vol. 4, no. 4, pp. 470-477, April 1995.
    [SRL98] H. Schulzrinne, A. Rao, R. Lanphier. Real Time Streaming Protocol (RTSP). RFC 2326, April 1998
    [SRT99] S. Sen, J. Rexford, and D. Towsley. Proxy prefix caching for multimedia streams. Proc. IEEE INFOCOM’99, New York, NY, Mar. 1999.
    [Tan88] A. Tanenbaum. Computer Networks - Second Edition. Prentice Hall 1988.
    [TDVK99] R. Tewari, M. Dahlin, H. Vin, and J. Kay. Beyond Hierarchies: Design Considerations for Distributed Caching on the Internet. International Conference on Distributed Computing Systems, June 1999.
    [TH96] T. Turletti and C. Huitema. Video conferencing on the Internet. IEEE/ACM Trans. on Networking, vol. 4, no. 3, pp. 340-351, June 1996.
    [TT03] M. Tran and W. Tavanapong, An Overlay Caching Scheme for Overlay Networks. SPIE/ACM Multimedia Computing and Networking, San Jose, CA, USA. pp. 150-161, 2003.
    [TTZK02] W. Tavanapong, M. Tran, J. Zhou, S. Krishnamohan. Video Caching Network for On-Demand Video Streaming. IEEE Global Telecommunication Conference (GLOBECOM'02), pp. 1723-1727, 2002.
    [TVDS98] R. Tewari, H. M. Vin, A. Dan, and D. Sitaram. Resource-based caching for Web servers. in Proc. SPIE/ACM Conf. on Multimedia Computing and Networking (MMCN'98), San Jose, CA, Jan. 1998.
    [VI95] Viswanathan S, Imielinski T. Pyramid broadcasting for video on demand service. IEEE Multimedia Computing and Networking Conference, San Jose, CA, 2417: pp66-77, 1995.
    [VVFA01] O. Verscheure, C. Venkatramani, P. Frossard, and L. Amini. Joint server scheduling and proxy caching for video delivery. Proc. 6th Int. Content Caching and Distribution Workshops, Boston, MA, June 2001.
    [WHZZP01] D. Wu, Y. T. Hou, W. Zhu, Y.-Q. Zhang, and J. M. Peha. Streaming Video over the Internet: Approaches and Directions. IEEE Transactions on Circuits and Systems for Video Technology, vol. 11, no. 3, pp. 1–20, Mar. 2001.
    [WHZ00] D. Wu, Y. T. Hou, and Y.-Q. Zhang. Transporting real-time video over the Internet: challenges and approaches. Proceedings of the IEEE, vol. 88, no. 12, Dec. 2000.
    [WHZL00] D. Wu, Y. T. Hou, W. Zhu, H.-J. Lee, and et al. On end-to-end architecture for transporting MPEG-4 video over the Internet. IEEE Trans. on Circuits and Systems for Video Technology, vol. 10, no. 6, pp. 923-941, Sept. 2000.
    [WLZ01] F. Wu, S. Li, and Y.-Q. Zhang. A Framework for Efficient Progressive Fine Granularity Scalable Video Coding. IEEE Transactions on Circuits and Systems for Video Technology, vol. 11, no. 3, pp. 332–344, Mar. 2001.
    [WOR97] Y. Wang, M. T. Orchard, and A. R. Reibman. Multiple description image coding for noisy channels by pairing transform coeffecients. Proc. IEEE Workshop on Multimedia Signal Processing, June 1997, pp. 419-424.
    [WSAT02] B. Wang, S. Sen, M. Adler, and D. Towsley. Optimal proxy cache allocation for efficient streaming media distribution. Proc. IEEE INFOCOM’02, New York, NY, June 2002.
    [WXWL02] Q. Wang, Z. Xiong, F. Wu and S. Li. Optimal Rate Allocation for Progressive Fine Granularity Scalable Video Coding. IEEE Signal Processing Letters, vol. 9, Feb. 2002.
    [WYW01] K. L. Wu, P. S. Yu, and J. L. Wolf. Segment-based proxy caching of multimedia streams. Proc. WWW10, Hong Kong, May 2001.
    [WZ98] Y. Wang and Q.-F. Zhu. Error control and concealment for video communication: a review. Proceedings of the IEEE, vol. 86, no. 5, pp. 974-997, May 1998.
    [WZS93] Y. Wang, Q.-F. Zhu, and L. Shaw. Maximally smooth image recovery in transform coding. IEEE Trans. on Communications, vol. 41, no. 10, pp. 1544-1551, Oct. 1993.
    [ZHYZ02] X.J. Zhao, Y.W. He, S.Q. Yang and Y.Z. Zhong. Rate Allocation of Equal Image Quality for MPEG-4 FGS Video Streaming. International Packet Video Workshop, 2002.
    [ZKK02] L. Zhao, J. Kim, and C.-C. J. Kuo. MPEG-4 FGS Video Streaming with Constant-Quality Rate Control and Differentiated Forwarding. Proc. SPIE Visual Communications and Image Processing’2002, San Jose, CA, Jan. 2002.
    [ZNAT99] Z.-L. Zhang, S. Nelakuditi, R. Aggarwa, and R. P. Tsang. Effecient server selective frame discard algorithms for stored video delivery over resource constrained networks. Proc. IEEE INFOCOM'99, New York, Mar. 1999, pp. 472-479.
    [ZWDS00] Z.-L. Zhang, Y. Wang, D. Du, and D. Su. Video staging: A proxy-server-based approach to end-to-end video delivery over wide-area networks. IEEE/ACM Trans. Networking, 8(4): 429-442, 2000.
    [ZVSS02] X.M Zhang, A. Vetro, Y.Q. Shi and H. Sun. Constant Quality Constrained Rate Allocation for FGS Video Coded Bitstreams. SPIE Conference on Visual Communications and Image Processing (VCIP), Vol. 4671, pp. 817-827, Jan. 2002.
    [林00] 林闯,单志广,盛立杰. 新一代网络传输控制的模型与机制,计算机世界,2000,http://www.e-works.net.cn/wljs/yj32.htm。
    [欧02] 欧建平等. 网络与多媒体通信技术,北京:人民邮电出版社,2002.
    [王02] 王宝智. 多媒体宽带网技术,北京:国防工业出版社,2002.
    [吴01] 吴国勇等. 网络视频流媒体技术与应用,北京:北京邮电大学出版社,2001.
    [向00] 向哲,钟玉琢. 一种选择性PeriodPatch流调度算法,第九届全国多媒体技术学术会议论文集,pp. 295-301,2000.
    [钟02] 钟玉琢,王琪,赵黎,杨小勤. MPEG-2运动图像压缩编码国际标准及MPEG的新进展,北京:清华大学出版社,2002.
    [钟03] 钟玉琢,向哲,沈洪. 流媒体和视频服务器,pp.146-161, 北京:清华大学出版社,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700