常压下微波等离子体处理四氟化碳的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代工业的发展,温室气体排放与日俱增。在众多温室气体中,全氟化碳(PFCs)因其具有低毒、化学性质稳定等特点,被广泛应用于工业生产。PFCs在大气中具有较长的存在年限和强烈的红外吸收能力,PFCs直接排放到大气中将引起强烈的温室效应。微波等离子体处理PFCs气体具有去除率高,没有二次污染等优点,是二十世纪九十年代发展起来的新工艺。本研究设计了一套微波等离子体反应器,在大气压下激发并维持稳定的等离子体。利用发射光谱对常压下(大气压)微波等离子体特性进行了诊断。采用微波等离子体对CF_4这种最难分解的PFCs气体进行分解,考察了载气种类、微波功率、气体流量、初始浓度、添加气体等因素对去除率的影响。对CF_4分解的产物进行了分析。采用自由基诊断实验及热分解实验论证了CF_4在大气压微波等离子体中的分解过程和机理。开发了催化剂与微波等离子体协同分解CF_4的新方法。研究结果表明,大气压微波等离子体具有较高的电子温度和电子密度,其中含有多种活性粒子和自由基。CF_4气体的最高分解率可达99%以上,分解率随微波功率的提高而增加,随气体流速的增加而减小。适量的添加气(如O_2、H_2O)可以提高PFCs的分解效率,但过多的添加气体消耗等离子体中的高能电子,导致去除率下降。当O_2和H_2O在最适宜添加量时,CF_4去除率最高可提高17%和10%左右。在有氧气等添加气存在的条件下,CF_4完全分解时的最终产物主要为CO_2和F_2。CF_4在微波等离子体中分解机理是首先通过高能电子碰撞逐次失去一个F原子生成CF,基团,随后O自由基与CF_i基团发生链式反应生成CO_2和F_2等最终产物,而热分解不是CF_4分解的主要途径。添加催化剂与微波等离子体协同分解CF_4时,去除率可以提高10%左右,紫外线,高温和等离子体自身都可以激发催化剂催化分解CF_4。
With the development of modem industry,the more and more greenhouse gases are released to the atmosphere.In all of greenhouse gases,perfluorocompounds(PFCs) have low toxic and stable chemical characters,and are widely used in industrial processes.Because of their strong infrared absorption and long atmospheric lifetimes, PFCs emission will cause the globe warming effect.Atmospheric microwave plasma, which is the new technology on decomposing PFCs from 1990,has relative high destruction and removal efficiencies and no secondary pollution in PFCs treatment.In this study,the microwave plasma device is designed to excite and maintain stable plasma on atmospheric press.The characters of plasma are diagnosed by emission optical spectroscopy.Microwave plasma is employed to decompose the CF4,which is the most difficult to be decomposed.The experiment has been done with a varity of conditions including carrier gases,microwave power,gas flow rate,initial concentration,additive gases.The products of CF4 decomposition are analysed.The process and mechanism of PFCs decomposition is certified by radicals' diagnosis and thermodynamic experiment.The combined catalysts and microwave plasma is developed to decompose PFCs.The results indicate that the atmospheric microwave plasma has relative high electron temperature and high electron density.There are kinds of actived radicals in plasma.The highest DRE of CF4 is up to 99%.The DRE is increased with the increase of microwave power,and is decreased with the increase of gas flow rate.Optimum volume of additive gases can promote the DRE,while the excessive additive gases will exhaust the electron and result in the decrease of DRE. The optimum volume of O_2 and H_2O can enhance the DRE about 20%and 10%, respectively.With O_2 exist,CO_2 and F_2 is the main products of CF_4 decomposition.The mechanism of CF_4 decomposition is that the CF_4 molecular lost one F atom each time to form CF_i by the electron collision firstly,and the O radicals was the assistance in the later reaction,to further transform CF_i to CO_2 and F_2.The thermal decomposition is not the main process in CF_4 decomposition.The DRE of CF_4 is enhanced about 10%by catalysts used,the ultraviolet radiation,high temperature and plasma all can actived the catalysts to decompose CF_4.
引文
[1]Tsai W T,Chen H P,Hsien W Y.A review of uses,environmental hazards and recovery/recycle technologies of perfluorocarbons(PFCs)emissions from the semiconductor manufacturing processes.Journal of Loss Prevention in the Process Industries,2002,15(2):65-75.
    [2]Anna K,Ber van B,Ulf J et al.Perfluorinated chemicals in relation to other persistent organic pollutants in human blood.Chemosphere,2006,64(9):1582-1591.
    [3]Leech P W,Reeves G K,Holland A S et al.Ion beam etching of CVD diamond film in Ar,Ar/O_2 and Ar/CF_4 gas mixtures.Diamond and Related Materials,2002,11(3-6):833-836.
    [4]Ferreira N G,Corat E J,Trava-Airoldi V J et al.Gas phase study with CF_4 and CCl_2F_2 addition in microwave CVD diamond growth.Diamond and Related Materials,1998,7(2-5):272-275.
    [5]Oh C H,Lee N E,Kim J H et al.Increase of cleaning rate and reduction in global warming effect during C_4F_8O/O_2 remote plasma cleaning of silicon nitride by adding NO and N_2O.Thin Solid Films,2003,435(1-2):264-269.
    [6]Fang Y S.The abatement of perfluorocarbons using surface-wave microwave plasma:(paper of the requirements for the degree of master of Engineering).Chung Li:Chung Yuan Christian University,2002.
    [7]Ralph E,Weston J.Possible greenhouse effects of tetrafluoromethane and carbon dioxide emitted from aluminum production.Atmospheric Environment,1996,30(16):2901-2910.
    [8]McCulloch A.Fluorocarbons in the global environment:a review of the important interactions with atmospheric chemistry and physics.Journal of Fluorine Chemistry,2003,123(1):21-29.
    [9]Fenhann J.Industrial non-energy,non-CO:greenhouse gas emissions.Technological Forecasting and Social Change,2000,63(2-3):313-334.
    [10]Deeds D A,Vollmer M K,Kulongoski J T et al.Evidence for crustal degassing of CF_4 and SF_6 in Mojave Desert groundwaters.Geochimica et Cosmochimica Acta(2007)doi:10.1016/j.gca.2007.11.027.
    [11]Hu W Y,Jones P D,Decoen W.Alterations in cell membrane properties caused by perfluorinated compounds.Comparative biochemistry and physiology part C,2003, 135(1):77-88.
    [12]Lehtil(a|¨) A,Savolainen I,Syri S.The role of technology development in greenhouse gas emissions reduction:The case of Finland.Energy,2005,30(13):2738-2758.
    [13]Tsai W T.A review of environmental hazards and adsorption recovery of cleaning solvent hydrochlorofluorocarbons(HCFCs).Journal of Loss Prevention in the Process Industries,2002,15(2):147-157.
    [14]McCulloch A.Fluorocarbons in the global environment:a review of the important interactions with atmospheric chemistry and physics.Journal of Fluorine Chemistry,2003,123(1):21-29.
    [15]Beppu T,Mitsui Y,Sakai K et al.New Alternative Gas Process Feasibility Study for PFC Emission Reduction from Semiconductor CVD Chamber Cleaning.Greenhouse Gas Control Technologies-6th International Conference,Kyoto,Japan,2003.Pages:1269-1274.
    [16]Allgood C C.Fluorinated gases for semiconductor manufacture:process advances in chemical vapor deposition chamber cleaning.Journal of Fluorine Chemistry,2003,122(1):105-112.
    [17]Muller E.Adsorption of Super Greenhouse Gases on Microporous Carbons.Environ.Sci.Technol,2005,39(22):8736-8741.
    [18]Jia L,Li J S.The experimental study on regenerative heat transfer in high temperature air combustion.Journal of Thermal Sciencek,2004,13(4):366-370.
    [19]Lee M C,Choi W.Development of thermochemical destruction method of perfluorocarbons(PFC_S).Journal of Industrial and Engineering Chemistry,2004,10(1):107-114.
    [20]Lee M C,Choi W.Efficient destruction of CF_4 through in situ generation of alkali metals from heated alkali halide reducing mixtures.Environ.Sci.Technol,2002,36(6):1367-1371.
    [21]El-Bahy Z M,Ohnishi R,Ichikawa M.Hydrolytic decomposition of CF_4 over alumina-based binary metal oxide catalysts:high catalytic activity of gallia-alumina catalyst.Catalysis Today,2004,90(3-4):283-290.
    [22]Kim Y,Kim K T,Cha M S et al.CF_4 decomposition using streamer-and glow-mode in dielectric barrier discharges.IEEE Trans.Plasma Sci,2005,33(3):1041-1046.
    [23]Yu S J,Chang M B.Oxidative Conversion of PFC via Plasma Processing with Dielectric Barrier Discharges.Plasma Chemistry and Plasma Processing,2001,21 (3):311-327.
    [24]Chang M B,Lee H M.Abatement of perfluorocarbons with combined plasma catalysis in atmospheric-pressure environment.Catalysis today,2004,89(1-2):109-115.
    [25]Park J Y,Jung J G,Kim J S et al.Effect of Nonthermal Plasma Reactor for CF_4 Decomposition.IEEE transactions on plasma science,2003,31(6):1349-1354.
    [26]Fujita T,Kawano T,Huang L et al.Influence of H_2 on the decomposition of halides by nonthermal plasma incorporated with in situ alkaline absorption.Journal of Material Cycles and Waste Management,2007,9(1):15-20.
    [27]Takaki K,Urashima K,Chang J S.Ferro-Electric pellet shape effect on C_2F_6 removal by a packed-bed-type nonthermal plasma reactor.IEEE transcations on plasma science,2004,32(6):2175-2183.
    [28]Lee H M,Chang M B,Lu R F.Abatement of perfluorocompounds by tandem packed-bed plasmas for semiconductor manufacturing processes.Ind.Eng.Chem.Res,2005,44(15):5526-5534.
    [29]Takaki K,Urashima K,Chang J S.Scale-up of ferro-electric packed bed reactor for C_2F_6 decomposition.Thin Solid Films,2006,506-507:414-417.
    [30]Kuroki T,Mine J,Odahara S et al.CF_4 decomposition of flue gas from semiconductor process using inductively coupled plasma.IEEE transactions on industry applications,2005,41(1):221-227.
    [31]Kuroki T,Tanaka S,Okubo M.Low Pressure Pulse-Modulated and Radio-Frequency Plasma for CF_4 Decomposition.IAS,Hongkong,China,2005,page:2900-2905.
    [32]Kuroki T,Mine J,Okubo M et al.CF_4 Decomposition using inductively coupled plasma:effect of power frequency.IEEE transactions on industry applications,2005,41(1):215-220.
    [33]Wang Y F,Lee W J,Chen C Y.Reaction Mechanisms in Both a CHF_3/O_2/Ar and CHF_3H_2/Ar Radio Frequency Plasma Environment.Ind.Eng.Chem.Res,1999,38(9):3199-3210.
    [34]Wang Y F,Shih M,Tsai C H et al.Total toxicity equivalents emissions of SF_6,CHF_3 and CCl_2F_2 decomposed in a RF plasma environment.Chemosphere,2006,62(10):1681-1688.
    [35]Hartz C L,Bevan J W,Jackson M W.Innovative Surface Wave Plasma Reactor Technique for PFC Abatement.Environmetal Science and Technology,1998,32(5):682-687.
    [36]Wofford B A,Jackson M W,Hartz C et al.Surface Wave Plasma Abatement of CHF_3 and CF_4 containing Semiconductor Process Emissions.Environmental Science and Technology,1999,33(11):1892-1897.
    [37]Hong Y C,Kim H S,Uhm H S.Reduction of perf luorocompound emissions by microwave plasma-torch.Thin Solid Films,2003,435(1-2):329-334.
    [38]Hong Y C,Uhm H S.Abatement of CF_4 by atmospheric-pressure microwave plasma torch.Physics of plasma,2003,10(8):3410-3414.
    [39]Hong Y C,Uhm H S,Chun B J et al.Microwave Plasma Torch Abatement of NF_3 and SF_6,XXVIIth ICPIG,Eindhoven,the Netherlands,2005,pages:18-22.
    [40]Shin D H,Hong Y C,Cho S C et al.Abatement of SF_6 and CF_4 using an enhanced kerosene microwave plasma burner.Physics of plasma,2006,13(11):114504.1-1145041.4.
    [41]Radoiu M T.Studies of 2.45 GHz Microwave Induced Plasma Abatement of CF_4.Environ.Sci.Technol,2003,37(17):3985-3988.
    [42]Radoiu M T.Studies on atmospheric plasma abatement of PFCs.Radiation Physics and chemistry,2004,69(2):113-120.
    [43]Radoiu MT,Hussain S.Microwave plasma removal of sulphur hexafluoride.Journal of Hazardous Materials,2009,164(1):39-45.
    [44]Tsai C H,Shao J M.Formation of fluorine for abating sulfur hexafluoride in an atmospheric-pressure plasma environment.Journal of Hazardous Materials,2008,157(1):201-206.
    [45]Tsai C H,Kuo Z Z.Effects of additives on the selectivity of byproducts and dry removal of fluorine for abating tetrafluoromethane in a discharge reactor.Journal of Hazardous Materials,2009,161(2-3):1478-1483.
    [46]Zhan R J,Wen X,Zhu X et al.Adjustment of electron temperature in ECR microwave plasma.Vacuum,2003,70(4):499-503.
    [47]Gao P,Xu J,Piao Y et al.Deposition of silicon carbon nitride thin films by microwave ECR plasma enhanced unbalance magnetron sputtering.Surface and Coatings Technology,2007,201(9-11):5298-5301.
    [48]Zhang Z,Liu T,Xu J et al.N-rich Zr-N films deposited by unbalanced magnetron sputtering enhanced with a highly reactive MW-ECR plasma.Surface and Coatings Technology,2006,200(16-17):4918-4922.
    [49]Song Q,Li C R,Li J Y et al.Photoluminescence properties of the Yb:Er co-doped Al_2O_3 thin film fabricated by microwave ECR plasma source enhanced RF magnetron sputtering.Optical Materials,2006,28(12):1344-1349.
    [50]Gustavsson L E,Bar(?)nkov(?) H,B(?)rdos L.Some properties of TiN films produced in hollow cathode and microwave ECR hybrid plasma system.Surface and Coatings Technology,2006,201(3-4):1464-1468.
    [51]Dey R M,Singh S B,Biswas A et al.Substrate bias effects during diamond like carbon film deposition by microwave ECR plasma CVD.Current Applied Physics,2008,8(1):6-12.
    [52]Abdul R,Datar A,Bhoraskar S V et al.Surface modification of polymers by atomic oxygen using ECR plasma.Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms,2007,258(2):345-351.
    [53]Ken(?)z L,Kar(?)csony J,Derzsi A et al.Theoretical model for study of the voltage-current curve of a Langmuir-probe used in the hot region of the ECR plasma.Physics Letters A,2008,372(29):4927-4931.
    [54]Besteman A D,Bryan G K,Lau N et al.Multielement Analysis of Whole Blood Using a Capacitively Coupled Microwave Plasma Atomic Emission Spectrometer.Microchemical Journal,1999,61(3):240-246.
    [55]Pless A M,Croslyn A,Gordon M J et al.Direct determination of cadmium in solids using a capacitively coupled microwave plasma atomic emission spectrometer.Talanta,1997,44(1):39-46.
    [56]Pless A M,Smith B W,Bolshov M A et al.A capacitively coupled microwave plasma atomic emission spectrometer for the determination of trace metals in microsamples.Spectrochimica Acta Part B:Atomic Spectroscopy,1996,51(1):55-64.
    [57]Seelig M,Broekaert J.Investigations on the on-line determination of metals in air flows by capacitively coupled microwave plasma atomic emission spectrometry.Spectrochimica Acta Part B:Atomic Spectroscopy,2001,56(9):1747-1760.
    [58]Vrlinic T,Mille C,Debarnot D et al.Oxygen atom density in capacitively coupled RF oxygen plasma.Vacuum,2009,83(5):792-796.
    [59]Masamba W,Winefordner J.Analytical characteristics of a helium/hydrogen capacitively coupled microwave plasma.Spectrochimica Acta Part B:Atomic Spectroscopy,1993,48(4):521-529.
    [60]Ali A,Winefordner J.Microsample introduction by tungsten filament electrode into capacitively coupled microwave plasma for atomic emission spectroscopy:diagnostics.Analytica Chimica Acta,1992,264(2):319-325.
    [61]Masamba W,Ali A,Winefordner J D.Temperature and electron density measurements in a helium/hydrogen capacitively coupled microwave plasma.Spectrochimica Acta Part B:Atomic Spectroscopy,1992,47(4):481-491.
    [62]Au A,Ng K,Winepordner J.Microsampling in graphite cup capacitively coupled microwave plasma atomic emission spectroscopy.Spectrochimica Acta Part B:Atomic Spectroscopy,1991,46(8):1207-1214.
    [63]Grekov D L.Coaxial waves in magnetized plasma cylinder.Physics Letters A,2004,328(4-5):357-363.
    [64]Bilgic A M,Prokisch C,Broekaert J et al.Design and modelling of a modified 2.45 GHz coaxial plasma torch for atomic spectrometry.Spectrochimica Acta Part B:Atomic Spectroscopy,1998,53(5):773-777.
    [65]Moisan M,Grenier R,Zakrzewski Z.The electromagnetic performance of a surfatron-based coaxial microwave plasma torch.Spectrochimica Acta Part B:Atomic Spectroscopy,1995,50(8):781-789.
    [66]Tendero C,Tixier C,Tristant P et al.Atmospheric pressure plasmas:A review.Spectrochimica Acta Part B:Atomic Spectroscopy,2006,61(1):2-30.
    [67]Adhikari S,Omer A,Adhikary S et al.Diamond-like carbon thin films grown by large-area surface-wave mode microwave plasma CVD:Effects of stage distance to microwave window.Diamond and Related Materials,2006,15(4-8):913-916.
    [68]Rusop M,Omer A,Adhikari S et al.Effects of deposition gas pressure on the properties of hydrogenated amorphous carbon nitride films grown by surface wave microwave plasma chemical vapor deposition.Diamond and Related Materials,2005,14(3-7):975-982.
    [69]Ghimire D C,Adhikari S,Aryal H R et al.Enhancement of fluorine doped amorphous carbon thin films from microwave surface wave plasma activated above room temperature.Diamond and Related Materials,2009,18(2-3):465-468.
    [70]Kalita G,Adhikari S,Aryal H R et al.Fluorination of multi-walled carbon nanotubes(MWNTs)via surface wave microwave(SW-MW)plasma treatment.Physica E:Low-dimensional Systems and Nanostructures,2008,41(2):299-303.
    [71]Adhikari S,Aryal H R,Ghimire D C.Optical band gap of nitrogenated amorphous carbon thin films synthesized by microwave surface wave plasma CVD.Diamond and Related Materials,2008,17(7-10):1666-1668.
    [72]Kousaka H,Ono K,Umehara N et al.Plasma distribution in a planar-type surface wave-excited plasma source.Thin Solid Films,2006,506-507:503-507.
    [73]Ghimire D C,Adhikari S,Uchida H et al.The role of pressure on thin amorphous carbon films deposited using microwave surface wave plasma CVD.Diamond and Related Materials,2006,15(11-12):1792-1794.
    [74]廖承恩.微波技术基础.西安.西安电子科技大学出版社.1994.
    [75]杨涓,许映乔,朱良明.局域环境中微波等离子体电子密度诊断实验研究.物理学报,2007,57(3):1788-1792.
    [76]Thang D H,Muta H,Kawai Y.Investigation of plasma parameters in 915 MHz ECR plasma with SiH_4/H_2 mixtures.Thin Solid Films,2008,516(13):4452-4455.
    [77]Singh S B,Chand N,Patil D S,Langmuir probe diagnostics of microwave electron cyclotron resonance(ECR) plasma.Vacuum,2008,83(2):372-377.
    [78]Schink6th D,Rock M,Schulz-Gulde E.Experimental stark broadening parameters for near-infrared ArI and KrI lines.Journal of Quantitative.Spectroscopy and Radiative Transfer,1999,16(6):635-643.
    [79]Torres J,Van de M J,van de J Jet al.Stark broadening for simultaneous diagnostics of the electron density and temperature in atmospheric microwave discharges Spectrochimica Acta Part B:Atomic Spectroscopy,2006,61(1):58-68.
    [80]Pohl P,Zapata I J,Amberger M A et al.Characterization of a microwave microstrip helium plasma with gas-phase sample introduction for the optical emission spectrometric determination of bromine,chlorine,sulfur and carbon using a miniaturized optical fiber spectrometer.Spectrochimica Acta Part B:Atomic Spectroscopy,2008,63(3):415-421.
    [81]屠昕,陆胜勇,严建华等.大气压直流氩等离子体光谱诊断研究.光谱学与光谱分析,2006,26(10):1785-1789.
    [82]唐平瀛,刘铁,丁伯南等.高频离子源等离子体的光谱诊断.强激光与粒子束,2003,15(3):293-296.
    [83]Jamroz P,Zyrnicki W.A spectroscopic study into the decomposition process of titanium isopropoxide in the nitrogen- hydrogen 100 kHz low-pressure plasma.Vacuum,2008,82(6):651-656.
    [84]王晓臣.电晕放电关键问题研究与新型放电装置研制:(博士学位论文).大连:大连理工大学,2007.
    [85]Cadwell L,H(u|¨)wel L.Time-resolved emission spectroscopy in laser-generated argon plasmas-determination of Stark broadening parameters.Journal of Quantitative Spectroscopy and Radiative Transfer,2004,83(3-4):579-598.
    [86]Milosavljevic V,Ellingboe A R,Djenize S.Measured Stark widths and shifts of the neutral argon spectral lines in 4s-4p and 4s-4p' transitions.Spectrochimica Acta Part B:Atomic Spectroscopy,2006,6(1):81-87.
    [87]Jankowski K.Some spatial effects observed in the axially viewed filament argon microwave induced plasma with solution nebulization.Spectrochimica Acta Part B:Atomic Spectroscopy,2002,57(5):853-863.
    [88]Piotrowski A.Non-LTE argon plasma composition at atmospheric pressure.Czechoslovak journal of physics,2003,53(4):273-364.
    [89]Smith H M M,Langmuir.The Theory of collectors in gaseous discharges.Phys.Rev.1926,28:727-763.
    [90]马宁生,葛自良.低温等离子体放电管中的电子能量的测估.同济大学学报(自然科学版),2007,35(10):1416-1419.
    [91]Deresupun G B.低温等离子体物理及技术[M].唐福林,译.北京:科学出版社,1980.
    [92]牛田野,曹金祥,刘磊等.低温氩等离子体中的单探针和发射光谱诊断技术.物理学报,2007,56(4):2330-2336.
    [93]Afanasev V P.Proc.22~(nd) ICPIG:Int.Conf.on Phenomena in Ionized Gase.Toulouse.1997,104-105.
    [94]Mezei P,Cserfalvi T,Csillag L.The spatial distribution of the temperatures and the emitted spectum in the electrolyte cathode atmospheric glow discharge.J.Phys.D:Appl.Phys.2005,38:2804-2811.
    [95]董丽芳,冉俊霞,尹增谦等。大气压氩气介质阻挡放电中的电子激发温度.光谱学与光谱分析.2005,25(8):1184-1186.
    [96]http://physics,nist.gov/cgi-bin/Elements/ASD_lines,pl?el=Ar
    [97]Xie H D,Sun B,Zhu X M.Abatement of perfluorocompounds with microwave plasma in atmospheric pressure environment.Journal of Hazardous Materials(2009),doi:10,1016/j.jhazmat.2009.02.081.
    [98]Ohata M,Ota H,Fushimi M et al.Effect of adding oxygen gas to a high power nitrogen microwave-induced plasma for atomic emission spectrometry.Spectrochimica Acta Part B:Atomic Spectroscopy,2000,55(10):1551-1564.
    [99]董丽芳,毛志国,张连水等.少量氩气对大气介质阻挡放电光谱的增强.光谱学与光谱分析,2005,25(10):1542-1544.
    [100]陈栋梁,李庆,于作龙等.甲烷和氮气在微波等离子体下的转化研究.天然气化工,2000,25(3):28-33.
    [101]王慧贤,高志明.微波等离子体甲烷转化反应中积炭的形成及其与氢气的反应.大然气化工,2006,31(6):11-14.
    [102]Miyake M,Ogino A,Nagatsu M.Characteristics of nano-crystalline diamond films prepared in Ar/H2/CH4 microwave plasma.Thin Solid Films,2007,515(9):4258-4261.
    [103]Lamara T,Belmahi M,Bougdira J et al.Diamond thin film growth by pulsed microwave plasma at high power density in a CH_4-H_2 gas mixture.Surface and Coatings Technology,2003,174-175:784-789.
    [104]Hong S,Yoshikawa H,Wazumi K et al.Synthesis and tribological characteristics of nanocrystalline diamond film using CH_4/H_2 microwave plasmas.Diamond and Related Materials,2002,11(3-6):877-881.
    [105]Griem H R.Plasma Spectroscopy.McGraw-Hill Book Company,New York,1964.
    [106]Lieberman M A,Lichtenberg A J.Principle of Plasma Discharges and Materials Processing,Wiley,New York,1994.
    [107]Duman E L,Tishchenko N P,Shmatov I P.Rate-constant for 3-body recombination of atomic fluorine.Dokl.Akad.Nauk,SSSR 1987,292:111-114.
    [108]Chang M B,Chang J-S.Abatement of PFCs from Semiconductor Manufacturing Processes by Nonthermal Plasma Technologies:A Critical Review.Ind.Eng.Chem.Res.2006,45(12):4101-4109.
    [109]Plumb I C,Ryan K R.A model of the chemical processes occuring in CF_4/O_2discharges used in plasma-etching.Plasma Chem.Plasma Process.1986,6(3):205-230.
    [110]Berry R J,Ehles C J,Burgess D R J.A compulational study of the reactions of atomic hydrogen with fluoromethanes:kinetics and product channels.Chem.Phys lett.1997,269(1-2):107-116.
    [111]Herron J T.Evaluated chemical kinetics data for reactions of N(~2D),N(~2P)and N_2(A~3 Σ_u~+) in the gas phase.J.Phys.Chem.Ref.Data 1999,28(5):1453.
    [112]Atkinson R,Baulch D L,Cox R Aet al.Evaluated Kinetic,Photo chemical and Heterogeneous Data for Atmospheric Chemistry:Supplement V,IUPAC Subcommittee on Gas Kinetic DataEvaluation for Atmospheric Chemistry.J.Phys.Chem.Ref.Data 1997,26(3):521-1011.
    [113]PEARSE R,GAYDONA.The identification of molecular spectra.John Wiley & Sons,Inc.,New York,1976.
    [114]Kim D,Park D W.Decomposition of PFCs by steam plasma at atmospheric pressure.Surface& Coatings Technology,2008,202(22-23):5280-5283.
    [115]Xu X P,Rauf S,Kushner M J.Plasma abatement of perfluorocompounds in inductively coupled plasma reactors.J.Vac.Sci.Technol,2000,18(A):213-231.
    [116]Nagai M,Hori M,Goto T.Decomposition and polymerization of perfluorinated compounds in microwave excited atmospheric pressure plasma.J.Appl.Phys,2005,97:123304-1-123304-5.
    [117]唐旺军,马磊,徐长海等.一种常压微波放电反应器及其在氮氧化物脱除中的应用.中 国,发明专利,0010497.7.2001.
    [118]Holzer F,Roland U,Kopinke F D.Combination of non-thermal plasma and heterogeneous catalysis for oxidation of volatile organic compounds Part 1.Accessibility of the intra-particle volume.Applied Catalysis B-Environmental,2002,38(3-4):163-181.
    [119]Ogata A,Einaga H,Kabashima Het al.Effective combination of nonthermal plasma and catalysts for decomposition of benzene in air.Applied Catalysis B-Environmental,2003,46(1):87-95.
    [120]Kim H H,Oh S M,Ogata A et al.Decomposition of gas-phase benzene using plasma-driven catalyst(PDC) reactor packed with Ag/TiO_2 catalyst.Applied Catalysis B-Environmental,2005,56(3):213-220.
    [121]Ogata A,Kim H H,Futamura Set al.Effects of catalysts and additives on fluorocarbon removal with surface discharge plasma.Applied Catalysis B:Environmental,2004,53.(3):175 -180.
    [122]张丽.混相高压脉冲放电处理染料废水的研究:(博士学位论文).大连:大连海事大学,2007.
    [123]Fujishima A,Rao T N,Tryk D A.Titanium dioxide photocatalysis.Journal of Photochemistry and Photobiology C:Photochemistry Reviews,2000,1(1):1 -21.
    [124]Hoffmann M R,Martin S T,Choi Wet al.Environmental applications of semiconductor photocatalysis.Chem.Rev,1995,95(1):69-96.
    [125]E1-Bahy Z M,Ohnishi R,Ichikawa M.Hydrolysis of CF_4 over alumina-based binary metal oxide catalysts.Applied Catalysis B:Environmental,2003,40(2):81-91.
    [126]Xua X F,Jeon J Y,Choi M Het al.The modification and stability of γ-A1203based catalysts for hydrolytic decomposition of CF4.Journal of Molecular Catalysis A:Chemical,2007,266(1-2):131-138.
    [127]解宏端,朱小梅,孙冰.微波等离子体处理PFC_S的研究[J].河北大学学报自然科学版.2007,S1(27):98-101。
    [128]Hongduan Xie,Xiaomei Zhu,Bing Sun.Studies on the Abatement of PFCs by microwave plasma.The 5th Asia-Pacific International Symposium on the Basic and Application of Plasma Technology.(2007):231-234.
    [129]Xie Hongduan,Sun Bing,Zhu Xiaomei,Liu Yongjun.STUDY ON THE ABATEMENT OF CF4 BY ATMOSPHERIC MICROWAVE PLASMA AND EMISSION SPECTROSCOPY.Proceeding of The 6th International Conference On Applied Electrostatics.ICAES' 2008:127-130.
    [130]H.D.Xie,B.Sun,X.M.Zhu,Y.J.Liu.Influence of O_2 on the CF_4 Decomposition with
    Atmospheric Microwave Plasma.International Journal of Plasma Environmental Science Mechnology,2009,3(1):39-42.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700