电催化电极材料制备及应用于污水处理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为绿色工艺的电化学废水处理技术在有机废水的处理方面具有独特的优势,因而近年来备受国内外研究者的青睐。在电化学反应体系中,电极处于“心脏”地位,是实现电化学反应及提高电流效率,降低能耗的关键因素,因此,寻找和研制催化活性高的电极材料,具有很强的实际意义。
     PbO_2/Ti和气体扩散电极以其优异的电化学性能,在污水处理、电分析等领域的应用和研究日益广泛。本文中主要开展了新型Fe掺杂PbO_2/Ti阳极(Fe-PbO_2/Ti)和3种气体扩散电极的制备及其应用于污水处理的实验研究。
     采用电沉积法制备了Fe-PbO_2/Ti电极,并采用SEM、XRD、XPS对电极进行表征。以对硝基苯酚(p-NP)、十二烷基苯磺酸钠为去除目标,研究了Fe-PbO_2/Ti阳极电催化氧化难生化有机污染物的特性。结果表明,该电极对p-NP的降解效果>十二烷基苯磺酸钠。同时,考察了电流密度、有机物初始浓度、pH值对有机物去除率和降解动力学的影响,并建立了相关的电催化反应动力学模型,结果表明,有机物的去除符合表观一级反应动力学。
     采用循环伏安法、交流阻抗法、并结合高效液相色谱和气相色谱/质谱等分析手段对p-NP的降解机理、历程作了深入研究。结果表明,羟基自由基对有机污染物的降解起着重要作用,有机物的电催化反应属于电化学燃烧过程;p-NP的降解反应可能同时涉及扩散和吸附两种过程;p-NP在高于Fe-PbO_2/Ti电极析氧电位下,电催化氧化降解途径是直接氧化与间接氧化的共同作用;改性后的新型Fe-PbO_2/Ti阳极的抗污染能力较强,对p-NP的降解显示了良好的电催化活性和稳定性,p-NP电催化氧化反应速率常数比未掺杂PbO_2/Ti电极增加24%。
     以Fe-PbO_2/Ti为阳极,活性炭气体扩散电极为阴极,构建了新型电催化反应体系,研究了阴阳两极联合降解p-NP的效果,考察了电流密度、初始浓度、pH值、曝气量对p-NP去除率的影响。结果表明,在阳极电流密度24mA/cm~2、曝气量20mL/s的条件下,处理浓度为100mg/L的p-NP废水,电解55min后去除率达100%,且双极氧化的槽电压可降低0.5V。该体系能耗低、效率高,对pH的适用范围广,有良好的环保应用前景。
     以自制的多壁碳纳米管(MWNT)气体扩散电极为阴极,石墨为阳极,构成电化学体系现场产生H_2O_2。采用星点设计-效应曲面优化法建立了各参数对于H_2O_2产生量的拟合模型。结果表明:MWNT气体扩散电极对催化氧还原产生H_2O_2的能力较强,在电流密度10mA/cm~2、曝气量1.3L/min,60minH_2O_2产生量为707mg/L,是活性碳气体扩散电极H_2O_2产生量的2.2倍。实验还提出了一种以MWNT气体扩散电极为阴极,Fe板和Fe-Pb_O2/Ti电极为双阳极的新型电催化-电Fenton复合电化学污水处理体系,该体系具有很高的处理效率和较大的应用价值。
     实验构建了两种直接空气阴极单室生物燃料电池(ACMFC)进行同步废水处理和生物发电。ACMFC2具有内阻小、输出功率高,充放电性能及稳定性好等优点,其内阻为3.89Ω,最大输出功率密度774.8mW/m~2。放电曲线、循环伏安测试表明,ACMFC2首次放电比容量和比能量分别为308mAh/gCOD和149mWh/gCOD。ACMFC2内阻组成分析表明,欧姆内阻为0.95Ω,非欧姆内阻在活化极化区和欧姆极化区占总内阻的比例分别为92.6%和75.58%。另外实验还以KMnO_4为阴极电子受体,构建了一种双室生物燃料电池,考察了KMnO_4浓度、pH值对MFC发电性能的影响。结果表明,KMnO_4浓度为500 mg/L时,MFC的最大开路电压可达1.68V,COD去除率为87.1%,库仑效率为45.2%。阴极液的pH值对电池的发电性能有显著影响,酸性溶液条件下有利于改善电池的性能。
The electrochemical technology has attracted a great deal of attention recently, mainly because of its special advantage. The electrodes which are the heart in electrochemical reaction system are the important effect on increasing the removal rate of pollutions and reducing energy consumption. So the study of making electrodes with high electrocatalic ability has great practical significance.
     PbO_2/Ti and gas diffusion electrode are perspective materials due to their excellent electrochemical performances. Potential application such as wastewater treatment, electroanalysis, have been proposed and are being actively pursued now. The preparation of the novel Fe-doped PbO_2/Ti, three gas diffusion electrodes and their applications to wastewater treatment had been investigated.
     Fe doped PbO_2/Ti electrode was produced by electro-deposition and the electrode was studied by SEM, EDX, XRD. The characteristics of degradating organic pollutants were studied by electro-catalytic oxidation of Fe-PbO_2 /Ti, taking paranitrophenol and sodium dodecyl benzene sulfonate as model pollutants. The results show that the degradation efficiencies of paranitrophenol was bigger than sodium dodecyl benzene sulfonate's. Various influence factors such as the initial concentration, current density and pH were examined. Furthermore, the degradation kinetic models were discussed. The results show that the first order reaction model can be used for the fitness of the organic pollutants removal.
     The electrochemical oxidation mechanism and degradation process of paranitrophenol on Fe-PbO_2/Ti electrode were studied in detail adopting the techniques of cyclic voltammetry, AC Impedance, combined with efficient liquid chromatographic technique and GC/MS. It was found that·OH was very important for degradating organic pollutant and electro-catalytic reaction of organic pollutant was electrochemical burning process. Above the oxygen evolution potential of Fe-PbO_2/Ti anode, the ways of paranitrophenol electrochemical oxidation included indirect electrochemical oxidation and direct electrochemical oxidation together. The results show that the novel Fe-PbO_2/Ti anode had perfect electro-catalytic activity and stability, and the electro-catalytic degraded rateconstant of p-NP increased 24%.
     The synergetic degradation of paranitrophenol in water by anodic/cathodic electro-catalysis was studied in a new electrocatalytic reaction system using gas diffusion electrode as cathode and Fe-PbO_2/Ti as anode. The influences of initial paranitrophenol concentration, current density, pH and aeration rate on the removal efficiency were investigateded. The degradation kinetics was discussed. The results show that when current density was 24mA/cm~2, aeration rate was 20mL/s, the removed rate of paranitrophenol with 100 mg/L concentration reached 100% after electrolesis of 55 min, and the cell voltage could decrease 0.5V. This system had low energy consumption, high efficiency and large application range for pH . This novel system had a great application priority.
     A system to produce H_2O_2 was built with graphite as anode and a gas diffusion electrode made in carbon nanotubes as cathode. The regression analysis was employed to set up a model for H_2O_2 production by the central composite designed experiment. When current density was 10mA/cm~2, 1.3 L/ min of air flow , the concentration of H_2O_2 could reach 707 mg/ L after an hour.A novel electro-catalysis and electro-Fenton electrochemical reaction system using carbon nanotubes gas diffusion electrode as cathode and Fe-PbO_2/Ti, Fe as double anodes was studied. This system had high efficiency and great potential for future environmental application.
     Two direct-air cathode single-chamber microbial fuel cells were constructed by using air electrode as cathode, foamed metal as anode and glucose as the anode fed. ACMFC2 had low internal resistance, high power density and nice discharge /charge ability. The internal resistance of ACMFC2 was 3.89Ω, the maximum power density could reach 774.8mW/m~2. The discharge curve and CV tests revealed that the first discharge capacity and energy was 308mAh/gCOD and 149mWh/gCOD. The ohmic resistance of ACMFC2 was 0.95Ω. When the ACMFC2 was in the activation overpotential area and the ohmic overpotential area, non-ohmic resistance accounted for 92.6% and 75.58% in the internal resistance. A new two-chamber microbial fuel cell was constructed by using potassium permanganate as cathodic electron acceptors.The influences of permanganate concentration and pH on the power generation performances of MFC were researched. The results show that the maximum open circuit voltage could reach 1.68V when permanganate concentration was 500mg/L and pH=2.0. Meanwhile, COD removal efficiency and coulombic efficiency were 87.1% and 45.2%. pH of catholyte was found to affect performance of MFC, which was meliorated when the catholyte is acidity.
引文
[1] Fernandes A,Morao A,Magrinho M,et al.Electrochemical degradation of C. I. Acid Orange7. Dyes and Pigments,2004,61 (4): 287-296P
    [2] Feng C P,Sugiura N,Shimada S,et al. Development of a high performance electrochemical wastewater treatment system. Journal of Hazardous Materials B,2003,103 (2) :65-78P
    [3] Habazaki H,Hayashi Y,Konno H. Characterization of electrodeposited WO_3 films and its application to electrochemical wastewater treatment.Electrochemical Acta,2002,47(8): 4181-4188P
    [4] 冯玉杰,李晓岩,尤宏等.电化学技术在环境工程中的应用.化学工业出版社,2002:4-95,155,134-141页
    [5] 王翠,史佩红等.电化学氧化法在废水处理中的应用.河北工业科技,2004,21(1):49-52页
    [6] 王建国,王辉,张萍.电化学高级氧化技术处理难降解有机废水研究进展.甘肃联合大学学报(自然科学版),2005,19(2):50-52页
    [7] Comninellis Ch. Electrocatalysis in the electrochemical conversion combustion of organic pollutants for wastewater treatment.Electrochemical Acta,1994,39(12): 1857-1862P
    [8] Iniesta J,Garcia J G,Exposito E,et al. Influence of chloride ion on electrochemical degradation of phenol in alkaline medium using bismuth doped and pure PbO_2 Anodes. Water Research,2001,35(14):3291-3300P
    [9] Korbahti B K,Tanyolac A. Continuous electrochemical treatment of phenolic wastewater in a tubular reactor. Water Research,2003,37(7):1505-1514P
    [10] Feng Y J,Li X Y. Electro-catalytic oxidation of phenol on several metal oxide electrodes in aqueous solution. Water Research, 2003, 37(9):2399-2407P
    [11] 周明华,吴祖成,汪大翠.不同电催化工艺下苯酚的降解特性.高等学校化学学报,2003,24(9):1637-1641页
    [12] 张晓燕,樊彩梅,梁镇海等.氧扩散电极与Ti/SnO_2-Sb_2O_4电极协同降解水中苯酚.太原理工大学学报,2007,38(2):130-132页
    [13] Feng J R,Houk L L,Johnson D. C,et al.Electrocatalysis of anode oxygen-transfer reactions: the electrochemical incineration of Benzoquinone. Journal of The Electrochemistry Society,1995,142(11):3626-3631P
    [14] Bock C,Dougall B M. The anode oxidation of p-Benzoquinone and maleic acid. Journal of The Electrochemical Society,1999,146(8):2925-2932P
    [15] 祝巨,曾翎,周斌斌.阴阳两极降解废水中氯酚的研究.浙江科技学院学报,2004,16(2):88-91页
    [16] Polcaro A M,Palmas S,Renoldi F,et al. On the performance of Ti/SnO_2 and Ti/PbO_2 anodes in electrochemical degradation of 2-Chlorophenol for wastewater treatment. Journal of Applied Electrochemistry,1999,29(11): 147-151P
    [17] Borras C,Laredo T,Scharifker B R.Competitive electrochemical oxidation of p-Chlorophenol and p-Nitrophenol on Bi-doped Electrochemical Acta,2003,48(9): 2775-2780P
    [18] 张新华,钱晓良等.新型钛基二氧化铅电极降解苯胺的实验研究.武汉科技学院学报,2003,16(2):68-72页
    [19] Lissens G,Pieters J,Verhaege M,et al. Electrochemical degradation of surfactants by intermediates of water discharge at carbon-based electrodes. Electrochemical Acta,2003,48(10)':1655-1663P
    [20] 王海燕,蒋展鹏,余刚等.光电协同催化氧化苯甲酸的试验研究.环境科学,2004,25(1):25-29页
    [21] Arienzo M,Chiarenzelli J,Scrudato R,et al. Iron-mediated reactions of polychlorinated biphenyls in electrochemical peroxidation process(ECP).Chemosphere,2001,44(6):1339-1346P
    [22] Canizares P,Saez C,Lobato J,et al. Electrochemical treatment of 2,4-Dinitrophenol aqueous wastes using Boron-doped diamond anodes.Electrochemical Acta,2004,49(9): 4641-4650P
    [23] Saracco G,Solarino L,Specchia V,et al. Electrolytic abatement of biorefractory organics by combining bulk and electrode oxidation processes. Chemical Engineering Science,2001,56(4): 1571-1578P
    [24] Szpyrkowicz L,Juzzolino C,Kaul S N. A comparative study on oxidation of disperse dyes by electrochemical process,ozone,hypochlorite and Fenton reagent.Water Research,2001,35(9):2129-2136P
    [25] Nelson N. Electrochemical destruction of organic hazardous wastes.Platinum Metals Review,2002,46(1):18-23P
    [26] Huitle C A,Quiroz M A,Comninellis C,et al. Electrochemical incineration of chloranilic acid using Ti/IrO_2,Pb/PbO_2 and Si/BOD electrodes. Electrochemical Acta,2004,50(4): 949-956P
    [27] Rajkumar D,Palanivelu K.Electrochemical treatment of industrial wastewater. Journal of Hazardous Materials B,2004,113(3):123-129P
    [28] Naumczyk J,Szpyrkowicz L,Grandi F Z. Electrochemical treatment of textile Wastewater. Water Science and Technology,1996,34(11):17-24P
    [29] Vlyssides A G,Karlis P K,Rori N,et al. Electrochemical treatment in relation to pH of domestic wastewater using Ti/Pt electrodes. Journal of Hazardous Materials B,2002,95(11):215-226P
    [30] Ge T,Qu J ,Lei P,et al.New bipolar electrocoagulation electroflotation process for the treatment of laundry wastewater. Separation and Purification Technology,2004,36(1): 33-39P
    [31] Bejankiwar R S,Lokesh K S,Gowda T P. Colour and organic removal of biologically treated coffee curing wastewater by electrochemical oxidation method. Journal of Environmental Sciences,2003,15(3):323-327P
    [32] Bejankiwar R S. Electrochemical treatment of cigarete industry wastewater feasibility study. Water Research,2002,36(8): 4386-4390P
    [33] Szpyrkowicz L,Naumczyk J,Grandi F Z. Electrochemical treatment of tannery wastewater using Ti/Pt and Ti/Pt/Ir electrodes. Water Research,1995,29(2): 517-524P
    [34] Panizza M,Cerisola G. Electrochemical oxidation as a final treatment of synthetic tannery wastewater. Environmental Science and Technology,2004,38(20): 5470-5475P
    [35] 周明华,吴祖成.含酚模拟废水的电催化降解.化工学报,2002,53(1):40-44页
    [36] 周明华,戴启洲,雷乐成等.新型二氧化铅阳极电催化降解有机污染物的特性研究.物理化学学报,2004,20(8):871-876页
    [37] 周明华,吴祖成,汪大翚.不同电催化工艺下苯酚的降解特性.高等学校化学学报,2003,24(9):1637-1641页
    [38] 林美强,宋卫锋,倪亚明.电解催化降解有机物机理的高效液相色谱研究(Ⅱ)——动力学解析.环境科学与技术,2004,27(2):27-29页
    [39] 赵国华,陈蕊,高廷耀.有机污染物苯胺在催化电极上氧化降解的途径.环境科学研究,2003,16(3):51-54页
    [40] Comninellis Ch,Pulgarin C. Electrochemical oxidation of Phenol for waste water treatment using SnO_2 anode. Journal of Applied Electrochemistry,1993,23(2): 108-112P
    [41] Comninellis Ch,Nerini A. Anodic oxidation of phenol in the presence of NaCl for wastewater treatment. Journal of Applied Electrochemistry,1995,25(1):23-28P
    [42] Huitle C A M,Quiroz M A,Comninellis Ch,et al.Electrochemical incineration of chloranilic acid using Ti/IrO_2,Pb/PbO_2 and Si/BDD electrodes. Electrochemical Acta,2004,50(4): 949-956P
    [43] Rodgers L D,Jedral W,Bunce N J. Electrochemical oxidation of chlorinated Phenols.Environmental science and Technology,1999,33(9):1453-1457P
    [44] 李耀刚,孙彦平,许文林.硫酸介质中Ti/SnO_2/PbO_2析氧阳极的研究.电化学,1998,4(4):441-443页
    [45] 张乃东,李宁,彭永臻.涂膏热解法制备钛基Sn,Sb氧化物.物理化学学报,2003,19(12):1154-1158页
    [46] 赵国华,胡惠康,李楹等.氧化物修饰电极降解有机污染物的电催化特性.中国环境科学,2003,23(4):385-389页
    [47] 尤宏,崔玉虹.钛基Co中间层SnO_2电催化电极的制备及性能研究.材料科学与工艺,2004,12(3):230-233页
    [48] 谢光炎,邓旭忠,肖锦.难降解有机物对硝基苯酚的电化学氧化工艺研究.广东工业大学学报,2001,18(4):81-85页
    [49] 王雅琼,童宏扬.不同前驱体制备的锡锑中间层Ti/SnO_2+Sb_2O_3/PbO_2电极性能的影响.稀有金属材料与工程,2004,33(9):976-980页
    [50] 冯玉杰,沈宏,崔玉红等.钛基二氧化铅电催化电极的制备及电催化性能研究.分子催化,2002,16(3):181-186页
    [51] 申哲民,雷阳明,贾金平等.PbO_2电极氧化有机废水的研究.高校化学工程学报,2004,18(1):105-108页
    [52] 李天成,朱慎林.电催化氧化技术处理苯酚废水研究.电化学,2005,11(1):101-104页
    [53] 蒋雄,舒平.电生氢氧自由基用作氧化剂处理有机废水.华南师范大学学报,2000,(3):41-44页
    [54] Alvarez-Gallegos A,Pletcher D. The removal of low level organics via hydrogen peroxide formed in a reticulated vitreous carbon cathode cell,Partl. The electrosynthesis of hydrogen peroxide in aqueous acidic solutions. Electrochemical Acta,1998,44(5): 853-861P
    [55] 李明玉,熊林,陈芸芸等.光/电/化学催化降解水中酸性大红3R染料的研究.中国科学(B辑化学),2005,35(2):144-150页
    [56] Qiang Z M,Chang J H,Huang C P. Electrochemical generation of hydrogen peroxide from dissolved oxygen in acidic solution. Water Research,2002,36(1): 85-94P
    [57] Drogui P,Elmaleh S,Rumeauetal M. Oxidising and disinfecting by hydrogen peroxide produced in a two-electrode cell. Water Research,2001,35(13): 3235-3241P
    [58] Brillas E,Bastida R M,Llosa E,et al.Eletrochemical destruction of aniline and 4-chloroaniline for wastewater treatment using a carbon-PTFE O_2-fed cathode. Journal of Electrochemical Society,1995,142(6): 1733-1741P
    [59] 郁青红,周明华,雷乐成.新型气体扩散电极体系高效产H_2O_2的研究.物理化学学报,2006,22(7):883-887页
    [60] 李俊.燃料电池反应器中过氧化氢的产生实验研究.化学反应工程与工艺,2001,17(3):222-226页
    [61] Pozzo A D,Palma I D,Meri C,et al. An experimental comparison of a graphite electrode and a gas diffusion electrode for the cathodic production of hydrogen peroxide. Journal of Applied Electrochemistry, 2005,35(6):413-419P
    [62] Brillas E,Sauleda R,Casado J. Use of an acidic Fe/O_2 cell for wastewater treatment: degradation of aniline. Journal of Electrochemical Society,1999,146(12):4539-4543P
    [63] Do J S,Yeh W C. Paired electrooxidative degradation of phenol with in situ electrogenerated hydrogen peroxide and hypochlorite. Journal of Applied Electrochemistry,1996,26(6): 673-678P
    [64] 郑曦,陈日摧,兰瑞芳等.电生成Fenton试剂及其对染料降解脱色的研究.电化学,2003,9(1):98-103页
    [65] Zhou M H,Wu Z C. A novel electrocatalysis method for organic pollutants degradation. China Chemical Letter. 2001,12(10): 929-932P
    [66] Wu Z C,Zhou M H,Wang D H. Synergetic effects of Anodic-Cathodic electrocatalysis for phenol degradation in the presence of Iron(Ⅱ).Chemosphere,2002,48(10): 1089-1096P
    [67] 周明华,吴祖成,汪大晕.不同电催化工艺下苯酚的降解特性.高等学校化学学报,2003,24(9):1637-1641页
    [68] 祝巨,曾翎,周斌斌.阴阳两极降解废水中氯酚的研究.浙江科技学院学报,2004,16(2):88-91页
    [69] 王爱民,曲久辉,姜桂兰.电化学方法降解酸性红B研究.环境科学,2003,24(2):108-111页
    [70] 于秀娟,王辉,乌兰,孙德智.隔膜电解体系内苯酚降解效果的研究.材料科学与工艺,2004,12(3):303-306页
    [71] 王辉,于秀娟,孙德智等.两种电解体系对苯酚降解效果的对比.中国环境科学,2005,25(1):80-83页
    [72] Brillas E,Mur E,Casado J. Iron(Ⅱ) catalysis of the mineralization of aniline using a Carbon-PTFE O_-fed cathode. Journal of Electrochemical Society,1996,143(3): 149-153P
    [73] Du Z W,Li H R,Gu T Y. A state of the art review on microbial fuel cells:A promising technology for wastewater treatment and bioenergy.Biotechnology Advances,2007,25(5): 464-482P
    [74] Park D H,Gregory Z J. Improved fuel cell and electrode designs for producing electricity from microbial degradation. Biotechnology and Bioengineering,2003,81(3): 348-355P
    [75] Rabaey K,Ossieur W,Verhaege M,et al.Continuous microbial fuel cells convert carbohydrates to electricity. Water Science and Technology,2005,52(1-2):515-523P
    [76] Allen R M,Bennetto H P. Microbial fuel cells-electricity production from carbohydrates. Appllied Biochemical Biotechnology,1993,39(40):27-40P
    [77] Tanaka K,Vega C A,Tamamushi R. Thionine and ferric chelate compounds as coupled mediators in microbial fuel cells.Bioelectrochemical Bioenergy,1983,11(4-6):289-297P
    [78] Park D H,Kim S K,Shin I H,et al. Electricity generation in bio-fuel cell using modified graphite electrode with neutral red. Biotechnology Letter,2000,22(2): 1301-1304P
    [79] 邹勇进,孙立贤,徐芬等.以新亚甲基蓝为电子媒介体的大肠杆菌微生物燃料电池的研究.高等学校化学学报,2007,28(3):510-513页
    [80] Bond D R,Lovley D R. Electricity production by Geobacter sulfurreducens attached to electrodes. Applied Environmental Microbiology,2003,69(3):1548-1555P
    [81] Bond D R,Holmes D E,Tender L M,et al. Electrode-reducing microorganisms that harvest energy from marine sediments. Science,2002,295(5554): 483-485P
    [82] Park H S,Kim B H,Kim H S,et al. A novel electrochemically active and Fe(Ⅲ)-reducing bacterium phylogenetically related to clostridium butyricum isolated from a microbial fuel cell. Anaerobe,2001,399(7):297-306P
    [83] Kim H J,Park H S,Hyun M S,et al.A mediator-less microbial fuel cell using a metal reducing bacterium,Shewanella Putrefaciens. Enzyme and Microbiology Technology,2002,30(2): 145-152P
    [84] Chaudhuri S K,Lovley D R. Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nature Biotechnology,2003,21(10): 1229-1232P
    [85] Korneel R,Geert L,Steven D S. A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency.Biotechnology Letter,2003,25(3): 1531-1535P
    [86] Liu H,Ramanathan R,Logan B E. Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell. Environment Science and Technology,2004,38(10): 658-662P
    [87] Liu H,Logan B E. Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environmental Science and Technology,2004,38(14): 4040-4046P
    [88] Logan B E,Muranob C,Scottb K,et al. Electricity generation from cysteine in a microbial fuel cell. Water Research,2005,39(5): 942-952P
    [89] Logan B E. Simultaneous wastewater treatment and biological electricity generation. Water Science and Technology,2005,52(1-2):31-37P
    [90] Min Booki,Cheng Shaoan,Logan Bruce E. Electricity generation using membrane and salt bridge microbial fuel cells. Water Research,2005,39(9):1675-1686P
    [91] 刘道广,陈银广.同步污水处理/发电技术-微生物燃料电池的研究进 展.水处理技术,2007,33(4):1-5页
    [92] 吴祖林,刘静.生物质燃料电池的研究进展.电源技术,2005,29(5):333-340页
    [93] Gil G C,Chang I S,Kim B H,et al.Operational parameters affecting the performance of a mediator-less microbial fuel cell.Biosensors and Bioelectronics,2003,18(4): 327-334P
    [94] Oh S,Min B,Logan B E.Cathode performance as a factor in electricity generation in microbial fuel cells.Environment Science and Technology,2004,38(18):4900-4904P
    [95] Chaudhuri S K,Lovley D R.Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells.Nature Biotechnology,2003,21(10):1229-1232P
    [96] Uwe S,Juliane N,Fritz S.A generation of microbial fuel cells with current outputs boosted by more than one order of magnitude.Angewandte Chemie-International Edition,2003,42(25): 2880-2883P
    [97] Doo H P,Gregory Z.Improved fuel cell and electrode designs for producing electricity from microbial degradation.Biotechnology Bioenergy,2003,81(3):348-355P
    [98] Logan Bruce,Cheng Shaoan,Valerie Watson,et al.Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells.Environmental Science and Technology,2007,41(9):3341-3346P
    [99] Miriam Rosenbaum,Zhao Feng,Marion Quaas,et al.Evaluation of catalytic properties of tungsten carbide for the anode of microbial fuel cells.Applied Catalysis B: Environmental,2007,74(3-4): 261-269P
    [100] Qiao Yan,Li Chang Ming,Bao Shu-Juan,et al.Carbon nanotube/polyaniline composite as anode material for microbial fuel cells.Journal of Power Sources,2007,170(1):79-84P
    [101 ] Kim H J, Park H S, Hyun M S, et al. Enrichment of microbial community generating electricity using a fuel-cell-type electrochemical cell. Appl.Environ. Microbiol., 2003, 63(4): 672-681P
    [102] Pham C A, Jung S J, Phung N T, et al. A novel electrochemically active and Fe(III)-reducing bacterium aeromonas hydrophoila related to clostridium butyricum isolated from a microbial fuel cell. FEMS Microbiol. Lett., 2003, 223(6): 129-134P
    [103] Prasad D, Sivaram T K, Sheela Berchmans, et al. Microbial fuel cell construction with a micro-organism isolated from sugar industry effluent.Journal of Power Sources, 2006,160(2): 991-996P
    [104] You Shijie, Zhao Qingliang, Zhang Jinna, et al. A microbial fuel cell using permanganate as the cathodic electron acceptor. Journal of Power Sources, 2006, 162(2): 1409-1415P
    [105] Peter Clau Waert, Korneel Rabaey, Peter Aelterman, et al. Biological denitrification in microbial fuel cells. Environmental Science and Technology, 2007, 41(9): 3354-3360P
    [106] Oh S, Min B, Logan B E. Cathode performance as a factor in electricity generation in microbial fuel cells. Environmental Science and Technology, 2004, 38(18): 4900-4904P
    [107] Zuo Yi, Cheng Shaoan, Call Doug, et al. Tubular membrane cathodes for scalable power generation in microbial fuel cells. Environmental Science and Technology, 2007,41(9): 3347-3353P
    [108] Hyunsoo Moon, In Seop Chang, Jae Kyung Jang, et al. Residence time distribution in microbial fuel cell and its influence on COD removal with electricity generation. Biochemical Engineering, 2005, 27(1): 59-65P
    [109] Min B, Logan B E. Continuous electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell. Environmental Science and Technology,2004,38(21): 5809-5814P
    [110] Liu H,Ramanathan Ramnarayanan,Logan B E.Production of electricity during wastewater treatment using a single chamber microbial fuel cell.Environmental Science and Technology,2004,38(7): 2281-2285P
    [111] Rodrigo M A,Canizares P,Lobato J,et al.Production of electricity from the treatment of urban waste water using a microbial fuel cell.Journal of Power Sources,2007,169(1): 198-204P
    [112] Logan B E.Biologically extracting energy from wasterwater:Biohydrogen production and microbial fuel cells.Environmental Science and Technology,2004,38(9):160A-167AP
    [113] He Z,Minteer S D,Angenent L T.Electricity generation from artificial wastewater using an upflow microbial fuel cell.Environmental Science and Technology,2005,39(14): 5262-5267P
    [114] 吴晶.利用生物燃料电池技术处理有机废水的效能研究.浙江大学硕士学位论文,2006:45-50页
    [115] Li Xiaoyan,Cui Yuhong ,Feng Yujie.Reaction pathways and mechanisms of the electrocatalytic degradation of phenol on different elect rodes.Water Research,2005,39(10): 1972-1981P
    [116] Szpyrkowicz L,Kaul Santosh N,Neti Rao N,et al.Influence of anode material on electrocatalytic oxidation for the treatment of tannery wastewater.Water Research,2005,39(8): 1601-1613P
    [117] 薛斌,李月华,郭英伟等.Ti/SnO_2-Sb_2O_s/PbO_2阳极电催化降解含环己酮废水的研究.沈阳工业大学学报,2007,29(4):477-480页
    [118] 刘文武,涂学炎,王伟等.两种DSA电极的制备及其对有机废水降解的电催化性能.环境化学,2007,26(2):152-156页
    [119] 王雅琼,顾彬,许文林.不同金属氧化物膜电极上苯酚的电催化氧化.化工学报,2007,58(8):2087-2092页
    [120] 汪定国,王建飞,李炳华.电催化氧化法处理生活污水研究.环境工程,2007,25(3):29-31页
    [121] 李伟东,赵东风.电催化氧化法处理垃圾渗滤液中氨氮的研究.工业用水与废水,2006,37(6):42-44页
    [122] 崔玉虹,冯玉杰,刘峻峰.Sb掺杂钛基SnO_2电极的制备、表征及其电催化性能研究.功能材料,2005,36(2):234-237页
    [123] 冯玉杰,崔玉虹,孙丽欣等.电化学废水处理技术及高效电催化电极的研究与进展.哈尔滨工业大学学报,2004,36(4):450-455页
    [124] 李耀刚,许文林,孙彦平.不同组份PbO_2-MnO_2催化层钛基阳极的研究.无机材料学报,1997,12(1):125-128页
    [125] 李善评,胡振,孙一鸣等.新型钛基PbO_2电极的制备及电催化性能研究.山东大学学报,2007,37(3):109-113页
    [126] 张招贤.钛电极工学.第2版.冶金工业出版社,2003:84-90页
    [127] 万年升,顾继东,黄锦辉等.Achromobacter xylosoxidans NS12的分离和对硝基苯酚的降解.环境科学,2007,28(2):422-426页
    [128] 郑凤英,李顺兴,钱沙华等.水杨酸和5-磺基-水杨酸表面修饰纳米TiO_2吸附去除对硝基苯酚.环境科学学报,2007,27(1):64-68页
    [129] 张继征,张俊卿,冯德荣.La_2O_3/TiO_2纳米粒子超声光催化降解邻硝基苯酚.稀土,2007,28(1):23-29页
    [130] 彭晓兰,陈晨,龙娟等.超声内电解协同作用对对硝基苯酚的处理.给水排水,2007,33(5):164-167页
    [131] 潘理黎,严国奇,郑飞燕等.高压电晕与臭氧联用降解对硝基苯酚.环境科学,2005,26(6):115-118页
    [132] 许春建,王卉,吕东来等.US/Femon试剂法在水体系中降解对硝基苯酚的研究.高校化学工程学报,2005,19(4):567-570页
    [133] 周明华,吴祖成,祝巨等.基于均相光化学氧化的光电一体化降解对硝基苯酚的研究.催化学报,2002,23(4):376-380页
    [134] 刘立柱,孙明礼.对-硝基苯酚在碳纳米管上的吸附行为研究.中国科技 信息,2006,(1):52页
    [135] 潘鹏,周志刚,高宝红.在金刚石膜上电化学氧化对硝基苯酚.天津理工大学学报,2006,22(4):48-50页
    [136] 王辉.阴阳极同时作用电化学法降解有机污染物的研究.哈尔滨工程大学博士学位论文,2005:104-111页
    [137] 丁海洋,冯玉杰,刘峻峰.采用循环伏安与Tafel曲线比较不同阳极的电催化性能.催化学报,2007,28(7):646-650页
    [138] 华勃,樊彩梅.电催化氧化水中苯酚的循环伏安特性研究.应用技术,2007,(2):80-83页
    [139] Bard A J, ELECTROCHEMICAL METHODS(电化学方法).版次 Beijing:Chemical Industry Press(化学工业出版社),1986:58-65页
    [140] 田昭武.电化学研究方法.版次.北京,科学出版社,1984:68-90页
    [141] 常青云.含sn、Pb复合全属氧化物电极上模拟废水电氧化行为研究.河北师范大学硕士学位论文,2005:30-40页
    [142] 胡吉明,张鉴清,曹楚南.Ti基IrO_2+Ta_2O_5阳极的电化学特性.材料科学学报,2002,16(4):365-370页
    [143] 纪红,周德瑞,周育红.CeO_2对Ti基RuO_2-SnO_2涂层阳极电催化性能的影响.稀土,2004,25(6):41-44页
    [144] Deng T S,Bing J H. Morphology and electrochemical activity of Ru-Ti-Sn ternary-oxide electrodes in 1M NaCl solution. Electrochemical Acta,1993,38(15):23-29P
    [145] Silva L A D,Alves V A,Silva M A.Oxygen evolution in acid solution on IrO_2+TiO_2 ceramic films. A study by impedance,voltammetry and SEM. Electrochemical Acta,1997,42(2): 271-281P
    [146] 赵国华,李明利,祈源等.苯酚在金刚石膜电极上的电化学氧化降解过程.中国环境科学,2005,25(3):370-374页
    [147] 张文兵.均相和非均相高级氧化技术处理水中有机污染物的研究.中国 科学院广州地球化学研究所博士学位论文,2003:65-80页
    [148] Quiroz M A,Reyna S,Martinez-Huitle C A,et al.Electrocatalytic oxidation of p-nitrophenol from aqueous solutions at Pb/PbO_2 anodes.Applied Catalysis B: Environmental,2005,(59): 259-266P
    [149] 宋沁.泡沫分离法处理含阴离子表面活性剂废水.污染防治技术,2000,13(2):123-12页
    [150] 孙穷,周群英,周新宇.SBR法处理洗涤废水试验研究.中国给水排水,1998,14(6):15-19页
    [151] 于晓彩,王恩德,徐微等.改性粉煤灰处理阴离子表面活性剂废水.东北大学学报,2005,26(4):299-302页
    [152] 郑忠,张武.泡塑处理含阴离子表面活性剂污水的试验.水处理技术,2002,28(3):185-186页
    [153] 谢光炎,肖锦.高浓度表面活性剂废水的电凝聚处理研究.给水排水,1998,24(4):40-43页
    [154] Zhang Rubing,Gao Lian,Zhang Qinghong. Photodegradation of surfactants on the nanosized TiO_2 prepared by hydrolysis of the alkoxide titanium. Chemosphere,2004,54(3): 405-411P
    [155] Brillas E,Boye B,Sires I,et al. Electrochemical destruction of chlorophenoxy herbicides by anodic oxidation and electro-fenton using a boron-doped diamond electrode. Electrochemical Acta,2004,49(25):4487-4496P
    [156] Kusvuran E,Gulnaz O,Irmak S,et al. Comparison of several advanced oxidation processes for the decolorization of reactive red 120 azo dye in aqueous solution[J]. Journal of Hazardous Materials B,2004,109(1-3):85-93P
    [157] 雷阳明,申哲民,祝松鹤等.采用气体扩散电极降解酸性红B研究.环境化学,2005,24(3):330-333页
    [158] 申哲民.电催化氧化处理有机废水及提高其能效的研究.中国科学院生态环境研究所中心博士学位论文,2002:51-59页
    [159] Harringon T,Pletcher D. The removal of low levels of organics from aqueous solutions using Fe(Ⅱ) and hydrogen peroxides fromed in site at gas diffusion electrodes. Electrochemical Society,1999,146(8):2983-2989P
    [160] Brillas E,Calpe J C,Casado J. Mineralization of 2,4-D by advanced electrochemical oxidation processes. Water Research,2000,34(8):2253-2262P
    [161] Brillas E,Casado J. Aniline degradation by Electro-Fenton and peroxi-coagulation processes using a flow reactor for wastewater treatment. Chemosphere,2002,47(3):241-248P
    [162] 姜成春,张佳发,李继.电化学方法现场产生H_2O_2的影响因素及其废水处理应用.生态环境,2006,15(3):503-508页
    [163] Hsiao Y L,Nobe K. Oxidative reaction of phenol and chlorobenzene with in situ electrogenerated Fenton's reagent. Chemical Engineering Communication,1993,126: 97-110P
    [164] Hsiao Y L,Nobe K. Hydroxylation of chlorobenzene and phenol in a packed bed flow reactor with electrogenerated Fenton's reagent. Journal of Applied Electrochemistry,1993,23(9): 943-946P
    [165] 彭佳,牟其伍,张弛.碳纳米管电极对水溶液中苯酚的电化学氧化处理.重庆大学学报,2006,29(8):135-137页
    [166] 温轶,方建慧,曹为民等.碳纳米管电极电催化氧化降解活性艳红X-3B研究.电化学,2005,11(3):329-332页
    [167] 温轶,施利毅,方建慧等.压缩集结碳纳米管电极对活性艳红染料的电催化降解研究.化学学报,2006,64(5):439-443页
    [168] 姜成春,张佳发,李继.电化学原位产生H_2O_2的影响因素分析及数学 建模.环境科学学报,2006,26(9):1504-1509页
    [169] 褚有群,马淳安,朱英红.碳纳米管电极上氧的电催化还原.物理化学学报,2004,20(3):331-335页
    [170] Neyens E,Baeyens J. A review of classic Fenton's peroxidation as an advanced oxidation technique. Hazard Material,2003 ,98(1-3): 33-50P
    [171] Benitez F J,Acero J L,Real F J,et al.The role of hydroxyl radicals for the decomposition of p-hydroxy phenylacetic acid in aqueous solutions.Water Research,2001,35(5): 1338-1343P
    [172] Min B,Cheng S. Electricity generation using membrane and salt bridge microbial fuel cells. Water Research,2005,39(9): 1675-1686P
    [173] 张金辉,裴普成.质子交换膜燃料电池欧姆阻抗的试验研究.清华大学学报,2007,47(2):228-231页
    [174] 梁鹏,范明志,曹效鑫等.微生物燃料电池表观内阻的构成和测量.环境科学,2007,28(8):1894-1898页
    [175] 莫志军,胡林会,朱新坚.燃料电池表观内阻的在线测量.电源技术,2005,29(2):95-98页
    [176] 尤世界,赵庆良,姜珺秋.电极构型对空气阴极生物燃料电池发电性能的影响.环境科学,2006,27(11):2159-2163页
    [177] Rabaey K,Clauwaert P,Aelterman P,et al. Tubular microbial fuel cells for efficient electricity generation. Environmental Science and Technology,2005,39(20): 8077-8082P
    [178] 赵新生,樊小颖,汪国雄等.直接甲醇燃料电池膜电极性能衰退原因的分析.电源技术,2005,49(4):227-230页
    [179] 曹效鑫,梁鹏,黄霞.“三合一”微生物燃料电池的发电特性研究.2006,26(8):1252-1257页
    [180] Rodrigo M A,Canizares P,Lobato J,et al.Production of electricity from the treament of urban waste water using a microbial fuel cell. Power Sources, 2007, 169(1):198-204P
    [181] Qiao Y, Li C M, Bao S J, et al .Carbon nanotube/polyaniline composite as anode material for microbial fuel cells. Power Sources, 2007, 170(1):79-84P
    [182] Tartakovsky B, Guiot S R. A Comparison of Air and Hydrogen Peroxide Oxygenated Microbial Fuel Cell Reactors. Biotechnology Progress, 2006,22(1): 241-246P

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700