CGF协同行为建模关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
协同行为建模是计算机生成兵力(CGF)研究中的重要内容,也是作战仿真系统中人类行为表示是否准确、仿真结果是否可信的关键所在。论文以作战仿真系统中的人类行为表示为研究背景,以真实反映战场人类协同行为为目标,通过“理论—方法—应用”的思路对CGF协同行为建模关键技术展开研究。
     论文首先论述了CGF协同行为建模研究的背景及意义,并在掌握国内外研究现状基础上分析了已有研究的不足,进而引出了CGF协同行为建模研究的技术需求和主要内容,为后续理论和方法研究提供了技术参考依据。
     其次,协同行为建模研究需要有良好的认知体系结构作支撑。论文研究了CGF协同行为建模的统一认知体系结构,并设计了具有个体行为差异、对手意图识别与推理、协同行为能力的PVC_HBM认知体系结构。在此基础上,分析了CGF协同有关概念及功能需求,建立了CGF协同行为建模技术框架,论述了每个层次的功能特点及层次间相互关系,提出了框架中需要解决的几个关键技术问题。作战中的行为均是组织约束下的行为。为了真实表示实际战场上的组织行为,论文研究并构建了基于本体理论的CGF实体组织模型。根据作战组织特征分析,论述了CGF组织本体构建需求及过程;提出了CGF组织本体概念化描述方法,描述了CGF组织本体的静态结构关系和动态交互行为;实现了CGF组织本体的形式化表示方法,包括CGF组织本体形式化建模方法和CGF组织本体知识库构建方法。组织本体的实现,为CGF实体提供了一致的组织术语、描述框架和可重用的组织行为知识。
     任务组织是各作战单元之间进行协同的基础。为了形成CGF任务组织以实现整体作战目标,论文研究了CGF作战任务分解以及动态任务分配方法。首先,给出了作战任务的形式化定义、分类和关系描述,并利用“与或分解树”方法表示作战任务间的逻辑依赖关系;其次,提出了基于LD-TAEMS的CGF任务分解框架,增强了任务分解的可操作性;在此基础上,对CGF动态任务分配问题进行了数学描述,定义了CGF实体完成任务的综合能力指标,给出了各级指标“权重”分配方法;最后,综合考虑CGF实体经验、能力和个体状态,设计实现了基于个体综合能力评估与排序(ICCER)的CGF动态任务分配算法。实验结果表明,算法是有效的、适用的,能够真实表示作战仿真系统中CGF任务组织的形成过程。
     作战单元在无法单独完成被赋予的协同任务时,可以通过与团队内其它单元协作实现。论文分析了作战协作行为过程,提出了基于改进联合意图的协作行为建模方法。该方法首先针对已有联合意图理论的不足,给出了基于任务逻辑依赖关系的联合目标形成方法;其次,研究了基于观察的识别与推理(OBRR)技术,并实现了基于联合意图的行为约束、基于团队内部通信和基于OBRR三种技术相结合的团队状态监控与维护方法;最后,设计了一种团队状态修复算法,并实现了针对团队无法完成修复时的任务组织重规划能力。实验结果表明,该协作行为模型能够真实有效地表示协同过程中的实际协作行为。
     作战单元之间在面临信念冲突时需要有效地进行冲突消解。为了达到上述目的,论文研究了基于辩论理论的CGF协商行为建模方法。首先定义了相关概念,并设计了基于辩论的协商流程;进而提出了基于效用理论的论据强度定量评估算法,用于辩论过程中选取首选议题及确定共同信念;同时为了提高协商效率,实现了一种用于多个事件辩论过程中的排序与约简方法。实验结果表明,该协商行为模型能够真实表示信念冲突下的实际人类战场行为,且能够保证协同过程中协商行为的一致性。
     最后,论文论述了分队级战术仿真系统中CGF协同行为建模编辑工具(CGF-CBMET)的设计思想和开发过程。首先明确了功能需求,设计了总体结构;其次,给出了组织协同编辑、协同战术行为模型编辑两大功能模块以及知识库与外部仿真应用接口的详细设计;最后在“小组阵地进攻”任务背景下进行了仿真应用开发和结果数据分析,从整体上检验了本文所做的研究工作。
Cooperative behavior modeling technology plays an important role in research ofComputer Generated Forces (CGF). It also ensures the validity of human behaviorrepresenting and the credibility of combat simulation results. Through making humanbehavior representing in combat simulation system as the research background andreflecting actual battlefield cooperative behaviors as the aim, this paper elaborates onthe research of cooperative behavior modeling key technology in CGF by the guidelinesof“theory - method - application”.
     First of all, paper expatiates on the background and significance of research ofcooperative behavior modeling technology, analyses shortages of exsiting internal andoverseas research, according to which fetchs out the technical requirement of researchon cooperative behavior modeling and main contents of this paper, provides technicalreference for following research of theories and methods.
     Secondly, research of cooperative behavior modeling needs backup of well formedcognize architecture. Unified cognize architecture of human cognitive behaviormodeling is researched, and hence PVC_HBM cognize architecture is designed that canbe provided with human behavior variability, adversary intention recognition andreasoning and cooperative behavior. According to analysis of CGF cooperationconcepts and fuctional requirements, our CGF cooperative behavior modelingframework is established, characteristics of each functional level and correlationsbetween levels are expatiated, and their key implement technologies are also broughtforward.
     Behaviors in combat are all under the organization restrictions. Paper studies andbuilds ontology-based CGF organization model, which can precisely representbattlefield organization behaviors. It expatiates on the modeling requirements andprocess of CGF organization ontology based on modern combat organizationcharacteristics, presents conceptual description method of CGF organization ontology,describes related concepts and relations at aspects of static structure and dynamicbehavior, and implements the formalizing representation of CGF organization ontology,including formalizing modeling method using first-order predicate logic and buildingmethod of knowledge. The implemention of CGF organization ontology providescoherent organization glossary, description framework and reuseable organizationbehavior knowledge for CGF entites.
     Task organization is the base of cooperation between combat units. In order toforming CGF task organization to fulfill the whole combat target, methods of combattask decomposition and dynamic task allocation in CGF are studied. First, formalizeddefinition, classification and relation description about combat task are put forward, a method called“AND-OR decomposition tree”is presented to describe logic dependencebetween combat tasks.Second, a CGF task decomposition framework that is based onLD-TAEMS is presented to enhance maneuverability of task decomposition. Furthermore, the process of dynamic task allocation in CGF is firstly described in mathematicalforms, then comprehensive capabilities target of entity to accomplish task is defined,and an“authority”assignment method is given for all levels’targets. At last, throughtaking the entity’s experiences, abilities, and individual states into account, paper designsand implements the dynamic task allocation algorithm based on individualcomprehensive capabilities evaluation and ranking (ICCER). The experimental resultsshow that algorithm is effective, applicable and can represent the whole CGF taskorganization formation process in domain of combat simulation.
     When a cooperative task assigned to certain combat unit can’t be fulfilled, it couldbe achieved through collaboration with other units in the team. With analyzing thecombat collaborative behavior process, collaborative behavior modeling method basedon modified joint intention theory is presented. First, according to the shortage ofexisting joint intention theory, a new joint goal formation method which is based ontask logic and dependence relations is presented. Second, an observation-basedrecognition and reasoning (OBRR) technology is studied, and an team status monitorand maintenance method is given which is combined with Joint-Intention-basedbehavior restriction, team inter-communication method and OBRR-based method. Atlast, a team status repairing algorithm is designed, and the capability of replanning taskorganization is implemented which is used when the team can not be repaired any more.As the test results show, this model could practically and effectively representbattlefield collaborative behaviors during cooperation process.
     Effective resolution needs to be done among combat units when they areconfronting belief conflicts. According to this requirement, a negotiatory behaviormodeling method based on argumentation theory is studied. First, the definitions aboutrelated concepts are given, and the Argumentation-based negotiation process isdesigned. Further more, the Utility Theory-based arguments strength qualifiedevaluation algorithm is implemented, which is used for the selection of optimal proposaland confirmation of common belief. For improving negotiation efficiency, a rankingand reduction method for multi-event argumentation is implemented. According to testresults, it can represent the actual battlefield behaviors under conflicts and ensure theconsistency of negotiation during the cooperation process.
     Finally, paper expatiates on the design guideline and development process of CGFcooperative behavior modeling edit tools (CGF-CBMET) in unit-level tacticalsimulation system. First, the collective architecture of CGF-CBMET is designed afterfunctional requirements analyse. Then, two functional modules including editors oforganizational cooperation and cooperative tactic behavior, as well as the interface between knowledge base and outerside simulation application are designed detailedly.Last, combining with the“group position attack”task scenario, the development processand data analysis of simulation application are given to validate the whole work above.
引文
[1]胡晓峰,杨镜宇,司光亚,张明智.战争复杂系统仿真分析与实验[M].北京:国防大学出版社,2008.
    [2]黄柯棣,刘宝宏,黄健等.作战仿真技术综述[J].系统仿真学报,2004,16(9):1887-1895.
    [3]胡晓峰等.作战模拟术语导读[M].北京:国防大学出版社,2004.
    [4] Richard W.Pew and Anne S.Mavor.Representation Human Behavior in MilitarySimulations: Iterim Report[R].1997.
    [5]郭齐胜等.计算机生成兵力导论[M].北京:国防工业出版社.2006.10.
    [6] DoD 5000.59-P, MODELING AND SIMULATION MASTERPLAN[S].1995.10.
    [7] Cohen, P R, and Levesque, H J. Intention is Choice with Commitment [J].Artificial Intelligence, 1990, 42(3): 213-361.
    [8] Cohen, P R, and Levesque, H J. Teamwork [J]. Nous, 1991, 25(4): 487-512.
    [9] Jennings, N R. Joint Intentions as a model of Multi-Agent Cooperation [D]. Dept.Electronic Engineering, Queen Mary and Westfield College, University ofLondon, 1992.
    [10] Grosz B, Kraus S. Collaborative Plans for Group Activities[C]//Proc. ofIJCAI-93, 1993: 363-375.
    [11] Grosz B, Kraus S. Collaborative Plans for complex group action [J]. ArtificialIntelligence, 1996, 86(2): 269-357.
    [12] Kinny D, Ljungberg M, Rao A, Sonenberg E, Tidhar G, Werner E. PlannedTeam Activity [C]//Proc. of Artificial Social Systems, Lecture notes in AI 830.Springer, New York.
    [13] Tambe M. Agent Architectures for Flexible, Practical Teamwork [C]//Proc. ofthe Fourteenth National Conference on Artificial Intelligence, Menlo Park,California: AAAI Press, 1997: 22-28.
    [14] Tambe M. Tracking Dynamic Team Activity [C]// Proc. of ICMAS-97, 1997:80-87.
    [15] Tambe M. Towards Flexible Teamwork [J]. Journal of Artificial IntelligenceResearch. Vol. 7, 1997: 83-124.
    [16] Jennings N R, Mamdani E H, Laresgoiti, I, Perez, J, and Corera, J. GRATE: AGeneral Framework for Cooperative Problem Solving[J]. Journal of IntelligentSystems Engineering. 1992, 1(2): 102-114.
    [17] Rich C., & Sidner C. COLLAGEN: When agents collaborate with people[C]//Proc. of the International Conference on Autonomous Agents (Agents’97),1997.
    [18] Durfee E., & Lesser V. Partial global planning: a coordination framework fordistributed planning [J]. IEEE transactions on Systems, Man and Cybernetics,21(5), 1991.
    [19] Decker K, & Lesser V. Designing a Family of Coordination Algorithms[C]//Proc. of First International Conference on Multi-agent System, SanFrancisco, USA, June 1995: 73-80.
    [20] Barbuceanu M., & Fox M. The architecture of an agent building shell [J]. InWooldridge M., Muller J., & Tambe M. (Eds.), Intelligent Agents, Volume II:Lecture Notes in Artificial Intelligence 1037. Springer-Verlag, Heidelberg,Germany, 1996.
    [21]石纯一,张伟.基于Agent的计算[M].北京:清华大学出版社.2007.5.
    [22]贾利民,刘刚,秦勇.基于智能Agent的动态协作任务求解[M].北京:科学出版社.2007.9.
    [23]尹全军.基于多Agent的计算机生成兵力建模与仿真[D].国防科技大学研究生院.2005.
    [24]杨建池.Agent建模理论在信息化联合作战仿真中的应用研究[D].国防科学技术大学.2007.10.
    [25]宋一兵.计算机生成兵力中智能体技术与应用研究[D].哈尔滨工程大学.2006.
    [26]孙珠峰.舰艇CGF协同反潜技术研究[D].哈尔滨工程大学.2003.11.
    [27]刘金琨,王树青.多智能体控制系统的设计与实现[J].控制理论与应用,1999,16(4):580-582.
    [28]中国人民解放军军语[M].军事科学出版社,1997.
    [29]周晓宇等.联合作战新论[M].国防大学出版社,2000.1.
    [30]王厚卿.战役学[M].国防大学出版社,2000.5.
    [31]薛彦绪.高技术条件下联合作战指挥与协同[M].国防大学出版社,2000.7.
    [32]姜道洪,刘会民.作战协同概论[M].国防大学出版社,2004.4.
    [33]姜虹.认知科学的兴起及其发展路径[J].学术交流,2009,186(9):28-30.
    [34]刘继云,孙绍荣.行为科学理论研究综述[J].金融教学与研究,2005(5):36-37.
    [35] John E. Morrison. A Review of Computer-Based Human BehaviorRepresentations and Their Relation to Military Simulations. Institute for DefenseAnalyses[R], IDA Paper P-3845, 2003.8.
    [36] Laird, J.E., Rosenbloom, P.S. The evolution of the soar cognitive architecture[R](Technical Report CSE-TR-219-49). Ann Arbor, MI: Department of ElectricalEngineering and Computer Science, University of Michigan, 1994.
    [37] Anderson, J.R., Bothell, D., Byrne, M.D., and Lebiere, C. An integrated theory ofthe mind[J]. Psychological Review, 2004, 111(4): 1036-1060.
    [38] Yule, P., and Cooper, R. The COGENT tutorial[C]//Presented at the 22nd AnnualConference of the Cognitive Science Society. Philadelphia, PA.2000.8.
    [39] Grossberg, S. Linking mind to brain: The mathematics of biological intelligence[J]. Notices of the American Mathematical Society, 2000, 47:1361–1372.
    [40] Meyer, D.E., Kieras, D.E. A computational theory of executive cognitiveprocesses and multiple-task performance: Part 1. Basic mechanisms [J].Psychological Review, 1997, 104: 3–65.
    [41] Deutsch, S., Benyo, B. The D-OMAR simulation environment for the AMBRexperiments[C]//In Proceedings of the 10th Conference on Computer GeneratedForces and Behavioral Representation. Orlando, FL: Simulation InteroperabilityStandards Organization. 2001.
    [42] Langley, P., Cummings, K., Shapiro, D. Hierarchical skills and cognitivearchitectures[C]//Proceedings of the Twenty-Sixth Annual Conference of theCognitive Science Society, Chicago, IL, 2004: 779-784.
    [43] Mulgund, S.S., Harper, K.A., Zacharias, G.L., and Menke, T.E. SAMPLE:Situation Awareness Model for Pilot-in-the-Loop Evaluation[C]//In Proceedingsof the 9th Conference on Computer Generated Forces and BehavioralRepresentation. Orlando, FL: Simulation Interoperability Standards Organization,2000.
    [44] Kintsch, W. The role of knowledge in discourse comprehension: Aconstruction-integration model[J]. Psychological Review, 1988, 95:163–182.
    [45] Langley, P., Laird, J. E., Rogers, S. Cognitive Architectures: Research Issues andChallenges [J]. Cognitive Architectures.
    [46] Van Nostrand, Model Effectiveness as a Function of Personnel[R],CAA-SR-86-34, U.S. Army Concepts Analysis Agency, Bethesda, MD.1986.
    [47] Robert E. Wray, John E. Laird, Variability in Human Behavior Modeling forMilitary Simulations[C]//Presented at: Behavior Representation in Modeling &Simulation Conference (BRIMS), 2003.
    [48]胡记文,尹全军,冯磊,邓海军,查亚兵.基于前景理论的CGF Agent决策建模研究[J].国防科技大学学报.2010.10.
    [49] Ji-Wen Hu, Quan-Jun Yin, Lei Feng, Hai-jun Deng. A ComputationalArchitecture for Modeling Emotional Behavior in Synthetic Agent[C]//The 2ndInternational Conference on Computer Modeling and Simulation (ICCMS2010),January 2010, Sanya, China.
    [50] Ji-Wen Hu, Quan-Jun Yin, Lei Feng, Ya-Bing Zha. Modeling Risk Propensity inDecision Making Behavior for CGF Agent[C]//The International Conference onElectrical and Control Engineering (ICCSIT2010), July 2010, Chengdu, China.
    [51] Q.J. Yin, J.W. Hu, L. Feng, H.J. Deng and K.D. Huang. Integrating Emotionsinto Agent Modeling[J]. Journal of System Simulation, 2008, 20(19):5152-5157.
    [52] Suzic R. Representation and recognition of uncertain enemy policies usingstatistical models [C]//Proceedings of the NATO RTO Symposium on MilitaryData and Information Fusion. Prague, Czech Republic, 2003.
    [53]邓海军,尹全军,胡记文,查亚兵.基于MEBN的战术意图识别[J].系统工程与电子技术.2010,32(11):2374-2379.
    [54] Malone T, Crowstone K. The Interdisciplinary Study of Coordination [J].ACMComputing Surveys, 1994, 26(1): 87-119.
    [55] Omicini A, Zambonelli R, Klusch M, and Tolksdorf R editors. Coordination ofInternet Agents[C]//Springer-Verlag Berlin Heidelberg, New York, 2001.
    [56] Ossowski S. Co-ordination in Artificial Agent Societies volume 1535 ofLNAI[C]//Springer-Verlag Berlin Heidelberg, New York Tokyo, 1999.
    [57] Durfee E H, Lesser V R. Negotiation Task Decomposition and Allocation UsingPartial Global Planning[C]//Gasser L, Huhns M N. Distributed ArtificialIntelligence 2, London: Pitman/Morgan, 1989:224-229.
    [58] ShohamY, Tennenholtz M. On the emergence of social conventions: modeling,analysis, and simulations [J]. Artificial Intelligence, 1997, 94(1/2):139-166.
    [59] Shoham Y, Tennenholtz M. On the Synthesis of Useful Social Laws for ArtificialAgent Societies [C]//AAAI-92, 1992.
    [60] Martha E. Pollack. The Uses of Plans [J]. Artificial Intelligence. 1992, 57:43-68.
    [61]李明峰. CGF通信行为建模研究[D].国防科技大学研究生院.2010.12.
    [62]袁文先,孙儒凌.联合战役指挥教程[M].国防大学出版社.2006.12.
    [63]汪江淮,卢利华.联合战役作战指挥[M].国防大学出版社.1999.3.
    [64]程显毅,刘一松,晏立.面向智能体的知识工程[M].科学出版社.2008.9.
    [65] Gruber T R. Towards Principles for the Design of Ontologies Used forKnowledge Sharing[J]. International Journal Human-Computer Studies Issues5-6, 1995, 23(5):907-928.
    [66] L. Gasser. Perspectives on organizations in multi-agent systems[C]//InMulti-agents systems and applications, Springer-Verlag New York, 2001:1-16.
    [67] N. Jennings. Controlling cooperative problem solving in industrial multi-agentsystems[J]. Artificial Intelligence, 1995, 75(2):195-240.
    [68] Yin QJ, Feng L, Hu JW, et al. Game Engine Based Simulation for ModelingHuman Behavior [J]. Journal of System Simulation, 2009, 21(3):724-729.
    [69] Mintzberg, H. The Structuring of Organizations [M]. Prentice Hall: EnglewoodCliffs, 1979.
    [70] Morgan, G. Images of Organizations [M]. Thousand Oaks London New Delhi:SAGE Publications, 1996.
    [71] Zambonelli F, Jennings N R, Wooldridge M. Developing multi-agent systems:the Gaia Methodology [J]. ACM Transactions on Software Engineering andMethodology, 2003, 12(3):317-370.
    [72] Hannoun M, Sichman J S, Boissier O, et al. Dependence relations between rolesin a multi-agent system: Towards the detection of inconsistencies in organization[J]. Lecture Notes in Computer Science, 1998, 3(2):169-182.
    [73] Ferber J, Gutknecht O, Michel F. From agents to organizations: Anorganizational view of multi-agent systems [J]. Lecture Notes in ComputerScience, 2003, 14(5):214-230.
    [74] Dastani M, Hulstijn J, Dignum F, et al. Issues in multi-agent system development[C]//Proc. of the third International Joint Conference on Autonomous Agents andMulti-agent Systems. Washington: IEEE Press, 2004:922-929.
    [75]丁燕君,焦玉玺.Agent组织研究综述[J].电脑知识与技术,2007,2(10):1086-1088.
    [76] O. Yadgar, S. Kraus, and C. Ortiz. Scaling up distributed sensor networks:cooperative large-scale mobile-agent organizations[C]//In V. Lesser, C. Ortiz,and M. Tambe, editors, Distributed Sensor Networks: a multiagent perspective,Kluwer publisching, 2003:185-218.
    [77] M. Ulieru. Emergence of holonic enterprises from multi-agent systems: Afuzzy-evolutionary approach[C]//In V. Loia, editor, Soft Computing Agents: ANew Perspective on Dynamic Information Systems, IOS Press, 2002:187-215.
    [78] M. Sims, C. Goldman, and V. Lesser. Self-Organization through Bottom-upCoalition Formation[C]//In Proceedings of Second International Joint Conferenceon Autonomous Agents and MultiAgent Systems (AAMAS2003), Melbourne,AUS, ACM Press, 2003.7:867-874.
    [79] D. V. Pynadath and M. Tambe. The communicative multi-agent team decisionproblem: Analyzing teamwork theories and models[J]. Journal of AI research,2002, 16:389-423.
    [80] N. Griffiths. Supporting Cooperation through Clans. In Cybernetic Intelligence,Challenges and Advances[C]//Proceedings of the 2nd IEEE Systems, Man andCybernetics, UK & RI Chapter Conference, 2003.
    [81] M. Klein, J. Rodriguez-Aguilar, and C. Dellarocas. Using domain-independentexception handling services to enable robust open multi- agent systems: The caseof agent death[J].Journal of Autonomous Agents and Multi-Agent Systems, 2003,7(1-2):179-189.
    [82] M. R. Genesereth. An agent-based framework for interoperability[C]//In J.Bradshaw, editor, Software agents, MIT Press, 1997: 317-345.
    [83] M. Wellman. A market-oriented programming environment and its application todistributed multicommodity flow problems[J]. Journal of Artificial IntelligenceResearch, 1993.1:1-23.
    [84] T.Wagner and V. Lesser. Relating Quantified Motivations for OrganizationallySituated Agents[C]//In Intelligent Agents VI . Proceedings of the SixthInternational Workshop on Agent Theories, Architectures, and Languages,Lecture Notes in Artificial Intelligence, N. R. Jennings and Y. Lesperance (eds.),Springer-Verlag, Berlin, 1999.4:334-348.
    [85] B. Horling, R. Mailler, J. Shen, R. Vincent, and V. Lesser. Using Autonomy,Organizational Design and Negotiation in a Distributed Sensor Network[C]//In V.Lesser, C. Ortiz, and M. Tambe, editors, Distributed Sensor Networks: Amultiagent perspective, Kluwer Academic Publishers, 2003:139-183.
    [86] Horling B., Lesser V. A survey of multi-agent organizational paradigms[J]. TheKnowledge Engineering Review, 2005, 9:281-316.
    [87] Juan, T., Sterling, L. The ROADMAP meta-model for intelligent adaptivemulti-agent systems in open environments[C]//LNCS 2935, Berlin: Springer,2004:53-68.
    [88] Ferber, J. and Gutknecht, O., Aalaadin: a meta-model for the analysis and designof organizations in multi-agent systems[C]//In Third International Conference onMulti-Agent Systems, Paris, IEEE, 1998:128-135.
    [89] Bresciani, P., Giorgini, P., Giunchiglia, F., Mylopoulos, J., Perini, A.: Tropos:An agentoriented software development methodology[C]//Autonomous Agentsand Multi-Agent Sytems, 2004(8) :203-236.
    [90] Dignum, V., J. Vazquez-Salceda and F. Dignum, Omni: Introducing socialstructure, norms and ontologies into agent organizations[C]//In: R. H. Bordini, M.Dastani, J. Dix and A. E. Fallah-Seghrouchni, editors, Second InternationalWorkshop on Programming Multi-Agent Systems: Languages and Tools(ProMAS 2004), New York, USA, 2004.
    [91] Hübner, J., Sichman, J., & Boissier, O. MOISE+: Towards a structural,functional and deontic model for MAS Organization[C]//In Proceedings of the1st International Joint Conference on Autonomous Agents and Multi-AgentSystems (AAMAS’02), 2002:501–502.
    [92] Esteva, M., de la Cruz, D., Sierra, C.: ISLANDER: An electronic institutionseditor[C]//In Gini, M., Ishida, T., Castelfranchi, C., Johnson, W.L., eds.: TheFirst International Joint Conference on Autonomous Agents and MultiagentSystems (AAMAS 2002). Volume 3, ACM, 2002:1045-1052.
    [93] Horling, B., Lesser, V. Using ODML to Model Multi-agent Organizations[C]//InProceedings of the IEEE/WIC/ACM International Conference on IntelligentAgent Technology, 2005:72–80.
    [94] Broek E. L., Jonker C. M., Sharpanskykh A., Treur J., and Yolum P. FormalModeling and Analysis of Organizations[C]//O. Boissier et al. (Eds.): ANIREMand OOOP 2005, LNAI 3913, 2006:18-34.
    [95]吴永波,沙基昌,谭东风.军事组织本体分析[J].计算机工程与科学,2007,29(2):132-134.
    [96]麻大顺.群体组织协同行为并行仿真技术研究[D].国防科技大学硕士学位论文.2007.
    [97]戴静波,曾亮,张巍.虚拟战场环境中群体组织结构本体建模方法研究[J].系统仿真学报,2008, 20:128-131.
    [98]张会.虚拟群体组织协同行为建模方法研究[D].国防科技大学博士学位论文.2006.
    [99]曹裕华,冯书兴,徐雪峰.作战任务分解的概念表示方法研究[J].计算机仿真,2007,24(8):1-4.
    [100]杨立功,郭齐胜,张伟.聚合级实体仿真中任务的分解与解聚[J].系统仿真学报,2006, 18(增刊2): 186-188.
    [101] Decker K S, Environment Centered Analysis and Design of CoordinationMechanisms [D]. Ph.D. thesis, University of Massachusetts/Amherst, 1995.
    [102] Okamoto S, Allocating Roles in Large Scale Teams: An Empirical Evaluation[D]. Master thesis, University of Southern California, 2003.
    [103]程翠云,钱新,万玉秋等.水库大坝突发事件应急预案可行性评价方法初探[J].水利水运工程学报,2009(1):71-75.
    [104]黎萍,杨宜民.多机器人系统任务分配的研究进展[J].计算机工程与应用,2008,44(17):201~205.
    [105]廖沫,陈宗基,周锐.基于MAS的多UAV协同任务分配设计与仿真[J].系统仿真学报,2007,19(10):2313~2317.
    [106]周锐,郁鼎文,张玉峰.基于BOM的任务分解求解策略[J].机械科学与技术,2003,22(2):315~317.
    [107]刘秀罗.CGF建模相关技术及其在指挥控制建模中的应用研究[D].国防科技大学博士学位论文,2001.
    [108]曹裕华.面向实体的作战建模方法[D].军事科学院博士学位论文, 2004.
    [109]方欢,崔焕庆,王丽丽.任务分解的Petri网方法及有效性研究[J].安徽理工大学学报(自然科学版),2008,28(1):85~89.
    [110]冉承新,熊纲要,王慧林,马满好.基于HTN的卫星应用任务分解方法[J].中国空间科学技术,2010,30(3):76~83.
    [111] Lesser V, Decker K, Wagner T, et al. Evolution of the GPGP/TAEMSDomain-Independent Coordination Framework [J]. Autonomous Agents andMulti-Agent Systems, 2004, 9: 87~143.
    [112]马巧云.基于多Agent系统的动态任务分配研究[D].华中科技大学博士学位论文,2006.
    [113] Smith R G. The contract net protocol: high-level communication and control in adistributed problem solver [J]. IEEE Transaction on Computers, 1980, 29(12):1104~1113.
    [114] Lesser V, Corkill D D. Functionally accurate cooperative distributed systems [J].IEEE Trans. On SMC, 1981, 11: 81~96.
    [115] Durfee E, Lesser V. Cooperation through communication in a distributedproblem solving network[C]//In: M. Huhns eds. DAI, 1987: 29~85.
    [116] Sagar G, Sarje A K, et al. Task allocation technique for distributed computingsystems: a review [J]. Journal of Microcomputer Applications, 1989, 12(2): 97~105.
    [117] Protzel P W. Artificial neural network for real-time task allocation infault-tolerant, distributed processing system[C]//Parallel Processing in NeuralSystems and Computers. Dusseldorf, West Germany, 1990.
    [118] Derin H. Experimentations with simulated annealing in allocation optimizationproblems[C]//Princeton Univ., Princeton, NJ, USA, 1986.
    [119] Kim Y C, Hong Y S. A task allocation using a genetic algorithm inmulti-computer systems[C]//Proceedings IEEE Region 10 Conference onComputer, Communication, Control and Power Engineering, 1993.
    [120] Salman A, Ahmad I, Al-Madani S. Particle swarm optimization for taskassignment problem [J]. Microprocessors and Microsystems, 2002, 26(8): 363~371.
    [121] Decker K S, Lesser V R. Generalizing the partial global planning algorithm [J].International Journal of Intelligent and Cooperation Systems. 1992, 1(2): 319~346.
    [122] Shehory O, Sycara K, Kraus S. Task allocation via coalition formation amongautonomous Agent[C]//Proceedings of the Fourteenth International JointConference on Artificial Intelligence, Los Angeles, CA, 1995:655~661.
    [123]刘海龙,吴铁军.基于合同网的多agent任务分配分布式优化算法[J].浙江大学学报工学版,2001,35(5):550~554.
    [124] Anderson M R, Sandholm T W. Contract Types for Satisfying Task Allocation:II Experimental Results[C]//In proceeding of AAAI 1998 Spring Symposium:Satisfying Models, Stanford University, CA, 1998: 1~7.
    [125] Walsh W E, Wellman M P. A market protocol for decentralized taskallocation[C]//In Third International Conference on Multi-Agent Systems, 1998:325~332.
    [126] Sarne D, Hadad M, Kraus S. Equilibrium Strategies for Task Allocation inDynamic Multi-Agent Systems[C]//ECAI 2004: 1083~1084.
    [127] Wang, Xiao-Fang, Yang, Jia-Ben. Self-Adaptive agent model for task allocationin manufacturing system [J]. Computer Integrated Manufacturing Systems, 2001,7(8): 17~21.
    [128] Rich, C., and Sidner, C.. DiamondHelp: A generic collaborative task guidancesystem [J]. AI Magazine, 2007, 28(2): 33-46.
    [129] Tambe M., Zhang WX. Towards Flexible Teamwork in Persistent Teams:Extended Report [J]. Autonomous Agents and Multi-Agent Systems, 2000, 3:159-183.
    [130] Nair R., Tambe M., Marsella S., Raines T. Automated Assistants for AnalyzingTeam Behaviors [J]. Autonomous Agents and Multi-Agent Systems, 2004, 8:69-111.
    [131] Smith I., Cohen P. Towards Semantics for an Agent Communication LanguageBased on Speech Acts[C]//In Proceedings of the National Conference onArtificial Intelligence. 1996.
    [132] Feng L, Yin Q J, Hu J W, et al. IBMSE: An Integrated Behavior Modeling andSimulation Environment[C]//Proc. ICCMS, 2010,:401-406.
    [133] Laird J. Soar Releases[C]//28th Soar Workshop, University of Michigan, 2008.
    [134] Tambe M., Jung H. The benefits of arguing in a team [J]. AI Magazine, 1999,20(4): 46-56.
    [135] Rahwan I, Amgoud L. An argumentation-Based Approach for PracticalReasoning[C]//Proc. ArgMAS 2006, LNAI 4766, 2007:74-90.
    [136]姜丽,刘大有,白岩等.多Agent协商研究[J].计算机研究与发展,2006,43:1-5.
    [137] Parker L E. ALLIANCE: An architecture for fault tolerant multi-robotcooperation[C]//IEEE Trans on Robotics and Automation, 1998, 14(2): 220-240.
    [138]石纯一,张伟,徐晋晖.多Agent系统引论[M].北京:电子工业出版社,2003.
    [139] Rosenschein J S. Rational Interaction: Cooperation among Intelligent Agents[D].Ph. D. Thesis, Stanford Univ. 1986.
    [140] Ephrati E, Pollack M E, et al. Deriving Multi-Agent Coordination throughFiltering Strategies[C]//In: Mellish C S. ed. Proceedings of the FourteenthInternational Joint Conference on Artificial Intelligence. California: MorganKaufmann Publishers, 1995:679-685.
    [141] Nguyen, T D., Jennings, N R. A heuristic model of concurrent bilateralnegotiations in incomplete information settings[C]//In: Proc. of the 18thInternational Joint Conferences on Artificial Intelligence, Acapulco, Mexico,2003: 1467-1469.
    [142] Fisher R., Ury W., Patton B. Getting to Yes: Negotiating Agreement WithoutGiving in [M]. 2nd edition. New York: Penguin Books, 1991.
    [143] Parsons S, Jennings N R. Negotiation through argumentation-a preliminaryreport[C]//Proc. ICMAS, 1996:267-274.
    [144] Sierra C, Jennings N R, Noriega P, Parsons S. A framework forargumentation-based negotiation. pp. 177-192.
    [145] Kraus S, Sycara K, Evenchik A. Reaching agreements through argumentation: alogical model and implementation[J]. Artificial Intelligence, 1998, 104: 1-69.
    [146] Freeman K, Farley A. Towards formalizing dialectical argumentation[C]//Proc.15th Conference on Cognitive Science Society, 1993,:440-445.
    [147] Chu-Carroll J, Carberry S. Conflict detection and resolution in collaborativeplanning[C]//Proc. LNAI 1037, 1996:1243-1250.
    [148] Tolk R. A. Composable Mission Spaces and M&S Repositories Applicability ofOpen Standards[C]//In Proceedings of the 2004 Spring SimulationInteroperability Workshop, 2004.
    [149] Campbell, C. E., McCulley, G. Terrain Reasoning Challenges in the CCTTDynamic Environment[C]//Proc. 5th Annual Conference on AI, Simulation, andPlanning in High Autonomy Systems, IEEE, 1994.
    [150] Reich A. J. An Efficient Representation of Spatial Data for Terrain Reasoning byComputer Generated Forces[C]//In Proceedings of the ELECSIM95, SCS, 1995.
    [151]孙召春,高阳,贾松茂,陈世福.多Agent信念修正研究综述[J].广西师范大学学报(自然科学版),2003,21(1):74~80.
    [152]刘一松,桑丘,刘朗宇.智能体行动推理中的信念修正[J].计算机应用,2010,30(7):1892~1895.
    [153] Tambe M. Teamcore Project Control of Agent-based Systems(COABS)Program[R].AFRL-IF-RS-TR-2002-253, Air Force Research Laboratory, 2002.9.
    [154] Goerger S. R., McLinnis L., Darken P. A Validation Methodology for HumanBehavior Representation Models[R].DSE-R-0530, Department of SystemsEngineering, US Military Academy, West Point, NY, 2005.5.
    [155] Goerger S. R. Validating Computational Human Behavior Models: Consistencyand Accuracy Issues [D]. Naval Postgraduate School, Monterey, CA, 2005.5.
    [156] Goerger S. R. Validating Human Behavioral Models for Combat SimulationsUsing Techniques for the Evaluation of Human Performance[C]//Paper presentedat the 2003 Summer Computer Simulation Conference, Montreal, Quebec,Canada, 2003.
    [157]焦鹏.导弹制导仿真系统VV&A理论和方法研究[D].国防科技大学博士学位论文,2010.
    [158]唐见兵.作战仿真系统可信性研究[D].国防科技大学博士学位论文,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700