飞行器分布式协同进化多学科设计优化方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文以航天装备体系及其它复杂飞行器系统的多学科设计优化(Multidisciplinary Design Optimization,简称MDO)为应用背景,针对航天装备卫星系统设计中存在大量离散和整数设计变量、设计空间非凸和不连通、具有多个局部最优点等特点和现有MDO方法过程难以处理离散和整数变量、对复杂设计空间非常敏感、易于陷入局部最优、不能有效处理多目标等缺陷,采用协同进化的思想,系统地进行基于分解协调的MDO方法研究。
     给出了一种多学科设计优化问题的分解与协调方式,这种分解方式同时适用于单目标和多目标问题。证明了用这种分解方式分解后的问题与MDO原始问题的全局最优解(或全局Pareto最优解)的等价性,以及这种分解方式保留了MDO原始问题的所有局部最优解(或局部Pareto最优解)。
     采用协同进化算法求解按上述方式分解后的问题,给出了协同进化MDO算法的基本过程,并分别构造了合作协同进化MDO算法和分布式协同进化MDO算法。采用NASA兰利研究中心MDO分部提供的四个MDO测试问题进行测试的结果表明,协同进化MDO算法在搜索全局最优解的能力方面明显优于其它MDO方法,其中分布式协同进化MDO算法比合作协同进化MDO算法具有明显的优势。
     研究了异步并行的分布式协同进化MDO算法,并基于CORBA进行了网络分布式实现。不但实现了各学科的并行设计优化,而且同一学科内部也实现了并行优化,从而能大大加快设计进程,同时具有很好的灵活性、可伸缩性和容错性。测试表明异步并行的分布式协同进化MDO算法与单机顺序执行的分布式协同进化MDO算法的收敛性能相当。
     给出了一种分布式的多目标进化算法,它是用分布式进化方式对Deb的NSGA-Ⅱ的改进,用五个困难的多目标优化测试问题对该算法的测试表明这种改进明显的提高了算法的性能。与其它多目标进化算法求解结果的比较显示了分布式多目标进化算法具有很强的求解多目标优化问题的能力。此外,分布式多目标进化算法还非常适合在网络环境的多台微机上异步并行实现。在分布式多目标进化算法研究的基础上,将非优超排序和排挤的多目标处理机制引入分布式协同进化MDO算法中,形成了多目标的分布式协同进化MDO算法。
     将以上方法应用于某导弹的总体参数优化设计,同时也是对算法的进一步测试。计算结果表明:协同进化MDO算法求解该问题是有效的,其中分布式协同进化MDO算法优于合作协同进化MDO算法;异步并行的分布式协同进化MDO算法在保证收敛性能的同时大大加快了优化进程;多目标的分布式协同进化MDO算法仅一次运行就很好的逼近了问题的整个Pareto最优前沿,比用约束法求解Pareto最优集节省了大量计算开销,而且通过网络多台微机的分布式并行执行大大缩短了搜索时间。
     针对不能直观确定星座结构的复杂卫星星座设计问题,采用一种可变维数优化的染色体表示和一组适合卫星星座设计的专用进化算子,设计了一种区域覆盖卫星星座结构与参数同时优化的进化算法,用一个虚拟的海洋监视卫星星座设计实例对算法进行了检验,结果表明该方法十分有效。
     研究了一个具有离散/连续混合变量、需进行结构和参数同时优化的海洋监视卫星星座
    
    国防科学技术大学研究生院学位论文
    系统的多学科设计优化问题,作为算法在航天装备体系多学科设计优化中应用的示例。分
    析了卫星星座系统设计所涉及的学科及它们之间的祸合关系,特别是卫星设计中各分系统
    之间的祸合关系。建立了该海洋监视卫星星座系统的覆盖分析模型、卫星设计分析模型、
    卫星成本分析模型和发射费用分析模型。应用分布式协同进化MDO算法进行优化,实现
    了星座设计优化和卫星设计优化在自治基础上的充分协同,获得了比传统的串行设计方法
    的优化结果更好的解。
     论文研究初步形成了一套适用于各种类型设计变量、复杂设计空间,可进行单学科、
    多学科、单目标、多目标设计优化,以异步并行方式在分布式计算机网络环境下运行,能
    保持各学科设计优化在自治基础上充分协同搜索系统整体最优,能以较大概率收敛到系统
    全局最优解的分布式协同进化MDO算法体系,为我国航夭装备体系及其它复杂工程系统
    的多学科设计优化提供了有效、实用的理论与方法基础。
The background of this dissertation is the multidisciplinary design optimization (MDO) of the space equipment system and other complex flying vehicle systems. In the design optimization of space equipment satellite systems, there are lots of discrete and integer design variables, the design space is nonconvex and even disjointed, and has multimodality. Unfortunately, current MDO procedures or strategies have difficulty to deal with discrete or integer design variables, they are very sensitive to complex design space, have propensity to converge to local optima near the starting point, and can not handle multiple objectives effectively. To overcome these difficulties, this dissertation adopt the idea of coevolution to systematically develop new multidisciplinary design optimization methods based on decomposition and coordination.
    A new way of decomposing and coordinating MDO problems was given. It is suitable for both single objective and multiobjective MDO problems. Proofs were made that global optimum (or global Pareto optimum) of the decomposed problem and the original MDO problem are equivalent, and the decomposed problem retains all local optima (or local Pareto optima) of the original MDO problem.
    By solving the decomposed problem using coevolutionary algorithms, the revolutionary MDO algorithms were formed. The basic procedure of coevolutionary MDO algorithms was given and two coevolutionary MDO algorithms were constructed, i.e. cooperate coevolutionary MDO algorithm and distributed coevolutionary MDO algorithm. Test result on four MDO test problems from the MDO Test Suite of NASA Langley Research Center MDO Branch shows that coevolutionary MDO algorithms are evidently better than other MDO methods in searching global optimal solutions, and distributed coevolutionary MDO algorithm has obvious advantage than cooperate coevolutionary MDO algorithm.
    An asynchronous parallel distributed coevolutionary MDO algorithm was proposed and was implemented in network distributed environment using CORBA. Not only inter disciplinary design optimization was parallelized, but also inner disciplinary design optimization was executed in parallel, thus the optimization procedure can be speeded up greatly. The asynchronous parallel distributed coevolutionary MDO algorithm also has good flexibility, scalability and fault tolerance. Test result shows that convergence performance of the asynchronous parallel version of distributed coevolutionary MDO algorithm is similar to the sequential version.
    By introducing distributed evolution to Deb's NSGA-II, a distributed multiobjective evolutionary algorithm was given. It was tested on five difficult multiobjective optimization test problems, and the result shows that distributed evolution does improve the performance of the algorithm. Comparing with the result of other multiobjective evolutionary algorithms reveals that the algorithm is powerful in solving multiobjective optimization problems. Furthermore, the
    
    
    
    algorithm is very suitable for asynchronous parallel implementation in network distributed environment. On the basis of distributed multiobjective evolutionary algorithm, the nondominated sorting and crowding multiobjective handling mechanism was introduced to distributed coevolutionary MDO algorithm, and the multiobjective distributed coevolutionary MDO algorithm was formed.
    Above methods were applied to a missile design problem. It was also a further test to those methods. Computing result shows that: coevolutionary MDO algorithms are effective on this problem; distributed coevolutionary MDO algorithm is better than cooperate coevolutionary MDO algorithm; asynchronous parallel version of distributed coevolutionary MDO algorithm speeds up the optimization procedure greatly while maintains good convergence performance; multiobjective distributed coevolutionary MDO algorithm approximates the whole Pareto optimal front well in only one single run, saves much computing cost than constraint method to obtain Pareto optimal set, and greatly shortens search time by distri
引文
[1] AIAA Multidisciplinary Design Optimization Technical Committee. Current State of the Art On Multidisciplinary Design Optimization (MDO). An AIAA White Paper, ISBN 1-56347-021-7, September 1991.
    [2] Joseph P. Giesing, J.M. Barthelemy. A Summary of Industry MDO Applications and Needs. An AIAA White Paper, 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, 1998.
    [3] Sobieszczanski-Sobieski J, Haftka T. Multidisciplinary aerospace design optimization: survey of recent developments. AIAA 96-0711.
    [4] Susan L. Burgee, Layne T. Watson. The promise (and reality) of multidisciplinary design optimization.
    [5] http://aemes.aero.ufl.edu/~issmo/
    [6] http://endo.sandia.gov/AIAA_MDOTC/
    [7] http://mdob.larc.nasa.gov/
    [8] J.F. Barthelemy. MDOB Applications-Overview. http://mdob.larc.nasa.gov/a11_barthelemy.pdf.
    [9] S.L. Padula, N. Alexandrov, L. L. Green. MDO Test Suite at NASA Langley Research Center. AIAA Paper 96-4028, 1996.
    [10] http://www.aoe.vt.edu/mad
    [11] http://www.eng.buffalo.edu/Research/MODEL/
    [12] http://aero.stanford.edu/ADG
    [13] http://www.nd.edu/~nddal/
    [14] http://www.aero.ufl.edu/~mdo/
    [15] http://www.ssdl.gatech.edu/
    [16] http://www.asdl.gatech.edu/
    [17] http://www.icase.edu/
    [18] http://www.soton.ac.uk./~cedc
    [19] http://www.edrc.cmu.edu/
    [20] http://hpccp-www.larc.nasa.gov/
    [21] 谭跃进,陈英武,易进先 编著.系统工程原理.国防科技大学出版社,1999.
    [22] 余雄庆,丁运亮.多学科设计优化算法及其在飞行器设计中应用.航空学报,2000,21(1):1-6.
    [23] 陈小前.飞行器总体优化设计理论与应用研究.国防科学技术大学研究生院博士学位论文,2001年10月.
    [24] 黄俊,武哲,孙惠中,吴炳麟.飞机总体优化设计的新进展.航空学报,2000,21(6):481-487.
    [25] 李明.遥感卫星总体参数分析与优化设计方法研究.博士学位论文,中国空间技术研究院,1996.
    [26] 张帆.光学遥感卫星总体参数优化研究.硕士学位论文,哈尔滨工业大学,1998.
    [27] J.J. Korte, R. P. Weston and T. A. Zang, Multidisciplinary Optimization Methods for Preliminary Design, AGARD Interpanel Symposium "Future Aerospace Technology in the Service of the Alliance", Ecole Polytechnique, Paris, France, April 14-18, 1997.
    
    
    [28] J. Bennett, P. Fenyes, W. Haering, M. Neal. Issues in Industrial Multidisciplinary Optimization. 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, 1998. AIAA-98-4727.
    [29] Peter Bartholomew. The Role of MDO within Aerospace Design and Progress towards an MDO Capability. 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, 1998. AIAA-98-4705.
    [30] James A. Young, Ronald D. Anderson, and Rudolph N. Yurkovich. A Description of the F/A-18E/F Design and Design Process. 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, 1998. AIAA-98-4701.
    [31] Augustine R. Dovi, Philip Su, and Tham Murthy. A Distributed Object Approach to Multidisciplinary Analysis of Aerospace Vehicles. 8th AIAA/NASA/USAF/ISSMO Symposium on Multidisciplinary Analysis and Optimization. AIAA Paper 2000-4898.
    [32] Raj Sistla, Gus Dovi, Phillip Su. A Distributed, Heterogeneous Computing Environment for Multidisciplinary Design & Analysis of Aerospace Vehicles. 5th National Symposium on Large-scale Analysis, Design, and Intelligent Synthesis Environments. October 12-15, 1999/Williamsburg,VA.
    [33] Andrea Salas. Application Software Development, http://mdob.larc.nasa.gov/ A12_SALAS.pdf.
    [34] R. P. Weston, J. C. Townsend, T. M. Eidson, R. L. Gates. A Distributed Computing Environment for Multidisciplinary Design. AIAA-94-4372.
    [35] A. O. Salas, J. C. Townsend. Framework Requirements for MDO Application Development. AIAA-98-4740.
    [36] James L. Rogers, Andrea 0. Salas, Robert P. Weston. A Web-Based Monitoring System for Multidisciplinary Design Projects. AIAA-98-4706.
    [37] Alex S. Fukunaga, Andre Stechert, Steve Chien. Towards a Self-Configuring Optimization for Spacecraft Design.
    [38] Norman Lamarra, Julia Dunphy. Web-Based Operation of Interactive Sharable Environment for Collaborative Spacecraft Design.
    [39] A. Deshmukh, T. Middelkoop. Multiagent Design Architecture for Intelligent Synthesis Environment. Journal of Aircraft, 2001, 38(2) :215-223.
    [40] John E. Renaud, Stephen M. Batill, Jay B. Brockman, Multidisciplinary Design Technology Development: A Comparative Investigation of Integrated Aerospace Vehicle Design Tools, 1999 Final Technical Report, N19990061896/XAB.
    [41] R. J. Balling, J. Sobieszczanski-Sobieski, Optimization of coupled systems: A critical Overview of Approaches. AIAA Journal, 1996, 34(1) : 6-17.
    [42] R. J. Balling, C. A. Wilkison, Execution of multidisciplinary design optimization approaches on common test problems. AIAA Journal, 1997, 35(1) : 178-186.
    [43] Evin J. Cramer, J. E. Dennis, Jr., Paul D. Frank, Robert Michael Lewis, Gregory R. Shubin. Problem Formulation for Multidisciplinary Optimization. CRPC-TR93334, August 1993.
    [44] J. E. Renaud, G. A. Gabriele, Improved coordination in non-hierarchic system optimization. AIAA Journal, 1993, 31(12) : 2367-2373.
    [45] J. E. Renaud, G. A. Gabriele, Approximation in non-hierarchic system optimization. AIAA Journal, 1994, 32(1) : 198-205.
    
    
    [46] Stephen M. Batill, Marc A. Stelmack, Richard S. Sellar. Framework for Multidisciplinary Design Based on Response-Surface Approximations. Journal of Aircraft, 1999, 36(1) :287-297.
    [47] R. S. Sellar, S. M. Batill. Concurrent Subspace Optimization Using Gradient-Enhanced Neural Network Approximations. 6th AIAA/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization. AIAA-96-4019.
    [48] H.-W. Chi, C. L. Bloebaum. Concurrent Subspace Optimization for Mixed-Variable Coupled Engineering Systems. 6th AIAA/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization. AIAA-96-4020.
    [49] Ilan Kroo, Valerie Manning. Collaborative Optimization: Status and Directions. 8th AIAA/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, 6-8 September 2000, Long Beach CA. AIAA-2000-4721.
    [50] R. D. Braun, A. A. Moore, I. M. Kroo. Collaborative Approach to Launch Vehicle Design. Journal of Spacecraft and Rockets, 1997,34(4) :478-486.
    [51] Robert Braun, Peter Gage, Ilan Kroo, Ian Sobieski. Implementation and performance issues in collaborative optimization. 6th AIAA/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization. AIAA 96-4017.
    [52] I. P. Sobieski, I. M. Kroo. Collaborative Optimization Using Response Surface Estimation. AIAA Journal, 2000, 38(10) : 1931-1938.
    [53] R. V. Tappeta, J. E. Renaud. Multiobjective collaborative optimization. ASME Journal of Mechanical Design, 1997,119(3) : 403-411.
    [54] Lawrence F. Rowell, Robert D. Braun. Multidisciplinary Conceptual Design Optimization of Space Transportation Systems. Journal of Aircraft, 1999, 36(1) :218-226.
    [55] Kemper Lewis, Farrokh Mistree. Modeling Interactions in Multidisciplinary Design: A Game Theoretic Approach. AIAA Journal, 1997, 35(8) : 1387-1392.
    [56] Prabhat Hajela. Nongradient Methods in Multidisciplinary Design Optimization-Status and Potential. Journal of Aircraft, 1999,36(1) :255-265.
    [57] J. Lee, P. Hajela. GA's in Decomposition Based Design-Subsystem Interactions Through Immune Network Simulation. 6th AIAA/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, AIAA 96-4179.
    [58] Shigeru Obayashi. Multidisciplinary Design Optimization of Aircraft Wing Planform Based on Evolutionary Algorithms. Proceedings of the 1998 IEEE International Conference on Systems, Man, and Cybernetics.
    [59] Shigeru Obayashi, Takanori Tsukahara. Comparison of Optimization Algorithms for Aerodynamic Shape Design. AIAA Journal, 1997, 35(8) :1413-1415.
    [60] Marc A. Stelmack, Nari Nakashima, Stephen M. Batill. Genetic Algorithms for Mixed Discrete/Continuous Optimization in Multidisciplinary Design.
    [61] R.A.E. Makinen, J. Periaux and J. Toivanen. Multidisciplinary Shape Optimization in Aerodynamics and Electromagnetics using Genetic Algorithms. International Journal for Numerical Methods in Fluids, Volume 30,1999, pp. 149-159.
    [62] David B. Fogel. An Introduction to Simulated Evolutionary Optimization. IEEE Transaction on Neural Networks. Vol.5, No.1, January 1994.
    [63] Wirt Atmar. Notes on the Simulation of Evolution. IEEE Transaction on Neural Networks. Vol.5, No.1, January 1994.
    
    
    [64] Xiaofeng Qi, Francesco Palmieri. Theoretical Analysis of Evolutionary Algorithms With an Infinite Population Size in Continuous Space, Part I : Basic Properties of Selection and Mutation. IEEE Transaction on Neural Networks. Vol.5, No.1, January 1994.
    [65] Xiaofeng Qi, and Francesco Palmieri. Theoretical Analysis of Evolutionary Algorithms With an Infinite Population Size in Continuous Space, Part II: Analysis of the Diversification Role of Crossover. IEEE Transaction on Neural Networks. Vol.5, No.1, January 1994.
    [66] Gunter Rudolph. Convergence Analysis of Canonical Genetic Algorithms. IEEE Transaction on Neural Networks. Vol.5, No.1, January 1994.
    [67] Thomas Back. Evolution Strategies: An Alternative Evolutionary Algorithm.
    [68] Thomas Back, Hans-Paul Schwefel. Evolutionary Computation: An Overview.
    [69] Thomas Back, Hans-Paul Schwefel. Evolution Strategies I: Variants and their computational implementation. In: Genetic Algorithms in Engineering and Computer Science, Edited by J. Periaux and G. Winter. John Wiley & Sons Ltd. 1995.
    [70] Nikolaus Hansen, Andreas Ostermeier. Adapting Arbitrary Normal Mutation Distributions in Evolution Strategies: The Covariance Matrix Adaptation. In: Proceedings of the 1996 IEEE Intern. Conf. on Evolutionary Computation (ICEC '96) : 312-317.
    [71] 潘正君,康立山,陈毓屏.演化计算.清华大学出版社,广西科学技术出版社,1998.
    [72] 王正志,薄涛.进化计算.国防科技大学出版社,2000.
    [73] 周明,孙树栋编著.遗传算法原理及应用.北京:国防工业出版社,1999.
    [74] Nestor Michelena, Panos Papalambros, Hyungju A. Park, Devadatta Kulkarni. Hierarchical Overlapping Coordination for Large-Scale Optimization by Decomposition. AIAA Journal, 1999, 37(7) : 890-896.
    [75] Jan Paredis, Coevolutionary Algorithms. In: The Handbook of Evolutionary Computation, Back T., Fogel D., Michalewicz Z. (eds.), Oxford University Press.
    [76] J. Paredis, Coevolutionary Computation. Artificial Life Journal, Vol. 2, nr. 4, Langton, C. (ed.), MIT Press / Bradford Books.
    [77] J. Paredis, Coevolutionary Constraint Satisfaction, Proceedings of the Third Conference on Parallel Problem Solving from Nature (PPSN 94) , Lecture Notes in Computer Science, vol. 866, Davidor, Y., Schwefel, H-P., Manner, R. (eds.), Springer Verlag.
    [78] Potter, M. A., De Jong, K.A.. A Cooperative Coevolutionary Approach to Function Optimization. In Y. Davidor, H-P. Schwefel, & R.Manner (Eds.), Proceedings of the Third Conference on Parallel Problem Solving from Nature 2, Lecture Notes in Computer Science, vol. 866 (pp.249-257) . Berlin Heidelberg: Springer Verlag.
    [79] Mitchell A. Potter. The Design and Analysis of a Computational Model of Cooperative Coevolution. A thesis for the degree of Doctor of Philosophy, George Mason University, 1997.
    [80] Phil Husbands, Distributed Coevolutionary Genetic Algorithms for Multi-Criteria and Multi-Constraint Optimization. Evolutionary Computing, Lecture Notes in Computer Science, Vol. 865, Springer Verlag, T. Fogarty (Ed.), pp. 150-165,1994.
    [81] Jason Morrison. A Co-evolutionary Framework.
    [82] Jason Morrison, Franz Oppacher. A General Model of Co-evolution for Genetic Algorithms.
    
    
    [83] Bjorn Erik Olsson. Algorithms for Coevolution of Solutions and Fitness Cases in Asymmetric Problem Domains. A thesis for the degree of Doctor of Philosophy in Computer Science, University of Exeter, February 2000.
    [84] Paul James Darwen. Co-Evolutionary Learning by Automatic Modularisation with Speciation. A thesis for the degree of doctor of philosophy, University of New South Wales, Australian Defence Force Academy, November 1996.
    [85] P. Hajela, J. Yoo, Constraint Handling in Genetic Search Using Expression Strategies. AIAA Journal, 1996, 34(12) :2414-2420.
    [86] Marco Laumanns, Gunter Rudolph, Hans-Paul Schwefel. A Spatial Predator-Prey Approach to Multi-Objective Optimization: A Preliminary Study. IWEC'2000 International Workshop on Evolutionary Computation. April 3-8, 2000, Wuhan, China.
    [87] Min-Jea Tahk, Youdan Kim, Changho Nam. Coevolutionary Approaches to Structural Optimization. AIAA Journal, 1999, 37(8) : 1019-1021.
    [88] Nair P. B., Keane A. J. Coevolutionary Genetic Adaptation: A New Paradigm for Distributed Multidisciplinary Design Optimization. AIAA Paper 99-1428.
    [89] Prasanth B. Nair, Andy J. Keane. A Coevolutionary Architecture for Distributed Optimization of Complex Coupled Systems.
    [90] G. Soremekun, Z. Gurdal, R. Haftka, L. Watson, Improving Genetic Algorithm Efficiency and Reliability in the Design and Optimization of Composite Structures. 6th AIAA/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, AIAA 96-4024.
    [91] I. Budianto, J. Olds. A Collaborative Optimization Approach to Design and Deployment of a Space Based Infrared System Constellation. IEEE P335E, 2000 IEEE Aerospace Conference, Big Sky, MT, March 18-25,2000.
    [92] E. Arian. Convergence Estimates for Multidisciplinary Analysis and Optimization. ICASE TR-97-57, October 1997.
    [93] D. E. Acton, J. R. Olds. Computational Frameworks for Collaborative Multidisciplinary Design of Complex Systems. 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, St. Louis, MO, September 2-4, 1998. AIAA 98-4942.
    [94] Natalia Alexandrov, and J. E. Dennis. Multilevel Algorithms for Nonlinear Optimization. ICASE Report TR-94-53.
    [95] Natalia M. Alexandrov, Robert Michael Lewis. Analytical and Computational Aspects of Collaborative Optimization, NASA/TM-2000-210104, April 2000.
    [96] Srinivas Kodiyalam. Evaluation of Methods for Multidisciplinary Design Optimization (MDO), Phase I. NASA/CR-1998-208716, September 1998.
    [97] Srinivas Kodiyalam and Charles Yuan. Evaluation of Methods for Multidisciplinary Design Optimization (MDO), Part II. NASA/CR-2000-210313, November 2000.
    [98] Natalia Alexandrov and Srinivas Kodiyalam. Initial Results of an MDO Method Evaluation Study. Proceedings of the 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, St. Louis, Missouri, September 2-4, 1998. AIAA 98-4884.
    [99] M. S. Eldred, W. E. Hart, B. D. Schimel, B. G. van Bloemen Waanders. Multilevel Parallelism for Optimization on MP Computers: Theory and Experiment. 8th
    
    AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization. AIAA Paper 2000-4818.
    [100] M. S. Eldred, W. E. Hart. Design and Implementation of Multilevel Parallel Optimization on the Intel Teraflops. AIAA Paper 98-4707.
    [101] M. S. Eldred, B. D. Schimel. Extended Parallelism Models for Optimization on Massively Parallel Computers. In Proceedings of the 3rd World Congress of Structural and Multidisciplinary Optimization (WCSMO-3) , Amherst, NY, May 17-21, 1999.
    [102] Stanley E. Woodard, Atul G. Kelkar, Gopichand Koganti. Multidisciplinary Concurrent Design Optimization via the Internet. NASA/TM-2001-210644.
    [103] Susan L. Burgee, Anthony A. Giunta, Vladimir Balabanov, Bernard Grossman, William H. Mason, Robert Narducci, Robert T. Haftka and Layne T. Watson. A Coarse Grained Parallel Variable-Complexity Multidisciplinary Optimization Paradigm. TR-95-20.
    [104] Erick Cantu-Paz. A Survey of Parallel Genetic Algorithms. Tech. Rep., The University of Illinois, 1997, IlliGAL Report No. 97003.
    [105] Erick Cantu-Paz, David E. Goldberg. On the Scalability of Parallel Genetic Algorithms.
    [106] Panagiotis Adamidis. Parallel Evolutionary Algorithms: A Review.
    [107] Guangming Lin, Xin Yao. Parallel Genetic Algorithm on PVM. Wuhan Univ. J. Nat. Sci. (China), 1(3-4) :605-610,1996.
    [108] Chong Fuey Sian. A Java Based Distributed Approach Genetic Programming on the Internet. Master's thesis, Computer Science, University of Birmingham, 1998.
    [109] Heinz Muhlenbein. Asynchronous Parallel Search by the Parallel Genetic Algorithm.
    [110] 王柏,王红熳,邹华编著.分布计算环境.北京邮电大学出版社,2000.
    [111] Michi Henning,Steve Vinoski著,徐金梧,徐科,吕志民等译.基于C++CORBA高级 编程.清华大学出版社,2000.
    [112] R.Otte,P.Patric,M.Roy著,李师贤等译校.CORBA教程--公共对象请求代理体 系结构.清华大学出版社,1999.
    [113] C. A. C. Coello. An updated survey of evolutionary multiobjective optimization techniques: state of the art and future trends. Proceedings of the 1999. Congress on Evolutionary Computation CEC99. 6-9 July 1999, Washington, DC, USA, Vol. 1. pp. 3-13.
    [114] N. Srinivas, K. Deb. Multi-Objective function optimization using non-dominated sorting genetic algorithms. Evolutionary Computation, 1995,2(3) , 221-248.
    [115] K. Deb. Multi-objective genetic algorithms: Problem difficulties and construction of test Functions. Evolutionary Computation, 1999, 7(3) , 205-230.
    [116] Deb K, Agrawal S, Pratap A, Meyarivan T. A fast non-dominated sorting genetic Algorithm for multi-objective optimization: NSGA-II. KanGAL Report No.200001.
    [117] Deb K, Agrawal S, Pratap A, Meyarivan T. Constrained Test Problems for Multi-Objective Evolutionary Optimization. KanGAL Report No.200002.
    [118] Eckart Zitzler. Evolutionary algorithms for multiobjective optimization: methods and applications. Doctoral thesis ETH NO. 13398, Zurich: Swiss Federal Institute of Technology (ETH), Aachen, Germany: Shaker Verlag, 1999.
    [119] Carlos C.H. Borges and Helio J.C. Barbosa. A Non-generational Genetic Algorithm for Multiobjective Optimization. In 2000 Congress on Evolutionary Computation, volume 1, pages 172-179, San Diego, California, July 2000.
    
    
    [120] Valenzuela-Rendón, M., and Uresti-Charre E. A Non-Generational Genetic Algorithm for Multiobjective Optimisation. In: Thomas Bck (ed.) Proceedings of the Seventh International Conference on Genetic Algorithms, 658-665, Morgan Kaufmann, San Mateo, CA, 1997.
    [121] To Thanh Binh, Ulrich Korn. MOBES: A Multiobjective Evolution Strategy for Constrained Optimization Problems. The Third International Conference on Genetic Algorithms (Mendel 97).
    [122] Tomoyuki HIROYASU, Mitsunori MIKI, Sinya WATANABE. Distributed Genetic Algorithms with a New Sharing Approach in Multiobjective Optimization Problems. Proceedings of Congress on Evolutionary Computation, Vol. 1, 1999.
    [123] Tomoyuki HIROYASU, Mitsunori MIKI, Sinya WATANABE. The New Model of Parallel Genetic Algorithm in Multi-Objective Optimization Problems—Divided Range Multi-Objective Genetic Algorithm.
    [124] R. Mkinen, P. Neittaanmki, J. Periaux, M. Sefrioui, and J. Toivonen. Parallel genetic solution for multiobjective MDO. In Parallel CFD 96, Capri. Elsevier, 1996.
    [125] Jon Rowe, Kevin Vinsen, and Nick Marvin. Parallel Genetic Algorithms for Multiobjective Functions. The Second Nordic Workshop on Genetic Algorithms, 2NWGA, 1996.
    [126] David A., Van Veldhuizen and Gary B. Lamont. Multiobjective Evolutionary Algorithm Research: A History and Analysis. Technical Report TR-98-03. Air Force Institute of Technology, 1998.
    [127] Franklin Y. Cheng, Dan Li. Genetic Algorithm Development for Multiobjective Optimization of Structures. AIAA Journal, 1998, 36(6): 1105-1112.
    [128] John W. Hartmann, Victoria L. Coverstone-Carroll, Steven N. Williams. Optimal Interplanetary Spacecraft Trajectories via a Pareto Genetic Algorithm. The Journal of the Astronautical Sciences, 1998, 46(3): 267-282.
    [129] Günter Rudolph, Alexandru Agapie. Convergence Properties of Some Multi-Objective Evolutionary Algorithms. In Proceedings of the 2000 Conference on Evolutionary Computation, volume 2, pages 1010-1016, Piscataway, New Jersey, July 2000.
    [130] Günter Rudolph. On a multi-objective evolutionary algorithm and its convergence to the Pareto set. In Proceedings of the 1998 IEEE International Conference on Evolutionary Computation, pp. 511-516. Piscataway (NJ): IEEE Press.
    [131] 《现代应用数学手册》编委会 编.现代应用数学手册:运筹学与最优化理论卷.清华大学出版社,1998.
    [132] 睢英,胡克娴.固体火箭发动机.北京:北京理工大学出版社,1990.
    [133] 李晓斌.非圆截面导弹空气动力工程估算方法研究.工学硕士学位论文,国防科技大学研究生院,2001.
    [134] 《7210任务》办公室.航空气动力手册(第二册).北京:国防工业出版社,1983.
    [135] James L. Rogers. Tools and Techniques for Decomposing and Managing Complex Design Projects. Journal of Aircraft, 1999, 36(1): 266-274.
    [136] 白鹤峰.卫星星座的分析设计与控制方法研究.工学博士学位论文,国防科技大学研究生院,1999.
    [137] 林西强.军用星座设计及气动力控制技术研究.工学博士学位论文,国防科技大学研究生院,2000.
    [138] 张玉锟,戴金海.基于仿真的星座设计与性能评估.计算机仿真,2001,18(2):5-7.
    
    
    [139] 于小红,冯书兴,张海波.遥感小卫星局部非均匀组网方法研究.指挥技术学院学报,1999,10(5).
    [140] John M. Hanson, Maria J. Evans, Ronald E. Turner. Design Good Partial Coverage Satellite Constellations. The Journal of the Astronautical Sciences, 1992, 40(2): 215-239.
    [141] E. Frayssinhes. Investigating New Constellation Geometries with Genetic Algorithms. AIAA/AAS Astrodynamics Conference 1996. AIAA-96-3636.
    [142] 王瑞,马兴瑞,李明.采用遗传算法进行区域覆盖卫星星座优化设计.宇航学报,2002,23(3):24~28.
    [143] J. Sprave, S. Rolf. Variable-Dimensional Optimization with Evolutionary Algorithms Using Fixed-Length Representations.
    [144] Martin Schütz. Other Operators: Gene Duplication and Deletion. In: Handbook of Evolutionary Computation, 1995 IOP Publishing Ltd and Oxford University Press.
    [145] K. Deb, M. Goyal. A Combined Genetic Adaptive Search (GeneAS) for Engineering Design. Computer Science and Informatics, 1996, 26(4):30~45.
    [146] Martin Schütz, Joachim Sprave. Application of Parallel Mixed-Integer Evolution Strategies with Mutation Rate Pooling.
    [147] Ellen Riddle Taylor. Evaluation of multidisciplinary design optimization techniques as applied to the spacecraft design process. PhD dissertation, University of Colorado at Boulder, 1999.
    [148] Ellen Riddle Taylor. Evaluation of multidisciplinary design optimization techniques as applied to the spacecraft design. 2000 IEEE Aerospace Conference. Vol. 1: 371~384.
    [149] Todd Mosher. Spacecraft Design Using A Genetic Algorithm Optimization Approach. 1998 IEEE Aerospace Conference. Vol.3: 123~134.
    [150] Wiley J. Larson, James R. Wertz. Space Mission Analysis and Design (Second Edition). Published jointly by Microcosm, Inc. and Kluwer Academic Publishers, 1992.
    [151] Wiley J. Larson, James R. Wertz编,王长龙等 译.航天任务的分析与设计.航空工业出版社,1992.
    [152] Bearden D A,Boudreault R,Wertz J R.潘科炎译.成本模型.降低航天任务成本,第8章.
    [153] 任萱 主编.军事航天技术.国防工业出版社,1999.
    [154] 《导弹结构强度计算手册》编写组.导弹结构强度计算手册.国防工业出版社,1978.
    [155] Cyrus D. Jilla, David W. Miller, Raymond J. Sedwick. Application of Multidisciplinary Design Optimization Techniques to Distributed Satellite Systems. Journal of Spacecraft and Rockets, 2000, 37(4):481-490.
    [156] The Long March 2C User Manual. http://www.fas.org/spp/guide/china/launch/lm2c/.
    [157] http://www.calt.com/product/lmseries/lm2c/lm2cmenu.htm.
    [158] Cost Estimating-Launch Vehicle Cost and Performance Data. http://www.jsc.nasa. gov/bu2/ELV INTL.html.
    [159] Natalia M. Alexandrov and Robert Michael Lewis. Comparative properties of collaborative optimization and other approaches to MDO. TR-99-24. July 1999.
    [160] Natalia M. Alexandrov. First Order Frameworks for Managing Models in Engineering Optimization. First International Workshop on Surrogate Modeling and Space Mapping for Engineering Optimization, Lyngby, Denmark, November 16-19, 2000.
    [161] N.M. Alexandrov. Multidisciplinary Multiobjective Problem Syntheisis and Optimization. ISE Workshop, Los Angeles, CA, Jan. 17-19, 2001.
    
    
    [162] Natalia M. Alexandrov: On Multilevel Optimization Algorithms for Engineering Design Problems. 16th International Symposium Mathematical Programming, Lausanne, Switzerland, August 24-29,1997.
    [163] Charles F. Lillie, Michael J. Wehner, Tom Fitzgerald. Multidiscipline Design as Applied to Space. 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, 1998. AIAA-98-4703.
    [164] Thomas Philip Runarsson, Xin Yao. Stochastic ranking for constrained evolutionary optimization[J]. IEEE Transactions on Evolutionary Computation, 2000,4(3) : 284-294.
    [165] David H. Wolpert, William G. Macready. No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation, 1997,1(1) : 67-82.
    [166] David H. Wolpert, William G. Macready. No free lunch theorems for search. Technical Report SFI-TR-95-02-010, Santa Fe Institute, 1995.
    [167] William G. Macready and David H. Wolpert. What makes an optimization problem hard? Complexity (USA), 1996,1(5) : 40-46.
    [168] Natalia M. Alexandrov, Robert Michael Lewis. Analytical and Computational Properties of Distributed Approaches to MDO. 8th AIAA/NASA/USAF/ISSMO Symposium on Multidisciplinary Analysis and Optimization. ALA A Paper 2000-4718.
    [169] Natalia M. Alexandrov, Robert Michael Lewis. Algorithmic Perspectives on Problem Formulations in MDO. 8th AIAA/NASA/USAF/ISSMO Symposium on Multidisciplinary Analysis and Optimization. AIAA Paper 2000-4719.
    [170] R. D. Braun, R. W. Powell, R. A. Lepsch, D. O. Stanley, I. M. Kroo. Comparison of Two Multidisciplinary Optimization Strategies for Launch-Vehicle Design. Journal of Spacecraft and Rockets, 1995, 32(3) : 404-410.
    [171] Ravindra V. Tappeta, John E. Renaud. Interactive Multiobjective Optimization Procedure. AIAA Journal, 1999, 37(7) : 881-889.
    [172] Wei Chen, Kemper Lewis. Robust Design Approach for Achieving Flexibility in Multidisciplinary Design. AIAA Journal, 1999,37(8) : 982-989.
    [173] Kemper Lewis, Farrokh Mistree. Modeling Interaction in Multidisciplinary Design: A Game Theoretic Approach. AIAA Journal, 1997, 35(8) : 1387-1392.
    [174] K. F. Hulme, C. L. Bloebaum. Development of CASCADE: A Multidisciplinary Design Simulator. 6th AIAA/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization. AIAA-96-4029.
    [175] Melih Papila, Raphael T. Haftka. Response Surface Approximations: Noise, Error Repair, and Modeling Errors. AIAA Journal, 2000, 38(12) : 2336-2343.
    [176] Resit Unal, Roger A. Lepsch, Mark L. McMillin. Response Surface Model Building And Multidisciplinary Optimization Using D-Optimal Designs. AIAA-98-4759.
    [177] Timothy W. Simpson, Timothy M. Mauery, John J. Korte, Farrokh Mistree. Comparison of Response Surface and Kriging Models for Multidisciplinary Design Optimization. AIAA-98-4755.
    [178] Debora D. Daberkow, Dimitri N. Mavris. New Approaches to Conceptual and Preliminary Aircraft Design: A Comparative Assessment of a Neural Network Formulation and a Response Surface Methodology. 1998 World Aviation Conference, September 28-30,1998, Anaheim, CA. AIAA-98-5509.
    
    
    [179] Natalia Alexandrov, Jr. J. E. Dennis, Robert Michael Lewis, Virginia Torczon. A Trust Region Framework for Managing the Use of Approximation Models in Optimization. NASA/CR-201745, ICASE Report No. 97-50.
    [180] Andrew J. Booker, Jr. J. E. Dennis, Paul D. Frank, David B. Serafini, Virginia Torczon, Michael W. Trosset. A Rigorous Framework for Optimization of Expensive Functions by Surrogates. CRPC-TR98739-S.
    [181] A. A. Giunta. Aircraft Multidisciplinary Design Optimization Using Design of Experiments Theory and Response Surface Modeling Methods. Ph.D. Thesis, Virginia Tech., May 1997.
    [182] Virginia Torczon, Michael W. Trosset. Using approximations to accelerate engineering design optimization. Proceedings of the 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, St. Louis, Missouri, September 2-4, 1998. AIAA Paper 98-4800.
    [183] V. O. Balabanov. Development of Approximations for HSCT Wing Bending Material Weight using Response Surface Methodology. Ph.D. Dissertation, Virginia Tech., June 1997.
    [184] Yaochu Jin, Markus Olhofer, Bernhard Sendhoff. On Evolutionary Optimization with Approximate Fitness Functions. Proceedings of the Genetic and Evolutionary Computation Conference GECCO, Las Vegas, Nevada, USA. July 10-12, 2000.
    [185] P. B. Nair, A. J. Keane, R. P. Shimpi. Combining Approximation Concepts With Genetic Algorithm-Based Structural Optimization Procedures. Proceedings of the 39th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Long Beach, CA, 1998. AIAA Paper 98-1912.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700