深空探测转移轨道设计方法研究及在小天体探测中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本学位论文结合863计划项目“深空探测自主技术与仿真演示系统”、“星际高速公路的低能量转移轨道设计技术研究”、国家自然科学基金资助项目“深空探测转移轨道机理与优化方法研究”与我国首个小行星探测计划构想,针对深空探测转移轨道与小天体探测目标选择与轨道方案设计问题进行了深入研究。主要研究内容包括以下几个方面:
     针对转移时间自由的星际探测发射机会搜索问题,特别是小天体探测中的大规模发射机会搜索,结合Gauss算法与变分原理,提出了一种全局-局部协同搜索方法。该方法根据探测任务要求定义待搜索目标函数并确定搜索域,利用Gauss算法和星历计算进行降维,结合变分原理与边界条件推导出搜索所需的解析梯度函数,采用全局-局部协同搜索方法求解,解决了传统方法计算量大,计算效率低的问题。同时,还提出了一种转移时间固定的多脉冲转移发射机会搜索方法。该方法结合最优脉冲转移的必要条件,由主矢量变化历程寻找和判别中间脉冲,将直接转移轨道发射机会搜索问题的研究推广到了多脉冲领域。
     针对星际探测多目标交会转移轨道设计问题,结合Tisserand原理、Prok-Chop图法和“软匹配”策略,提出了一种多目标交会的混合设计方法。该方法采用P ? rp曲线确定借力目标的序列,利用Pork-Chop图确定设计参数的可行域和时序,避免了传统方法对借力交会目标序列和初始轨道段的假设,通过“软匹配”和惩罚策略寻找最优设计参数。通过对金星借力探测火星任务和ROSETTA任务转移轨道方案的设计,验证了该方法的正确性和有效性。
     研究了借力飞行及其衍生技术的机理,给出了借力飞行俘获、逃逸和顺行与逆行轨道转变的条件、界定了有推力借力的俘获区域、提出了气动-借力转移轨道方案设计的拼接条件。针对借力飞行技术,基于圆型限制性三体模型,深入研究了全相角借力飞行自由参量与轨道变化的隐含关系,给出了借力飞行俘获、逃逸和顺行与逆行轨道转变的条件。同时,将对该问题的研究拓展到椭圆型限制性三体模型,分析了借力天体相位角和偏心率对借力飞行轨道的影响。针对借力飞行的衍生技术,分别结合限制性三体与气动模型,界定了有推力借力的俘获区域、提出了气动-借力转移轨道方案设计的拼接条件。这些关系和条件将为星际转移轨道方案设计提供重要准则。
     针对星际转移轨道设计问题,提出了一种基于动平衡点不变流形结构的星际转移轨道设计方法。该方法首先通过Poincaré映射,将连续动力系统离散化并降低维数,由单值矩阵分析该系统,确定出与目标周期轨道(Halo轨道)相切的局部子空间,并将其拓展为不变流形。然后,由停泊轨道向动平衡点目标周期轨道转移,利用该系统的不稳定流形逃逸以实现低能量的星际飞行。在小天体探测中的应用显示了该转移方法的潜在优势。
     结合本文研究内容,针对我国首个小行星探测计划构想从目标选择到转移轨道方案设计进行了系统的研究计算,给出了一套行之有效的小天体探测目标选择与轨道方案设计方法。首先基于最优两脉冲和借力机制可接近性评价方法对探测目标进行筛选与评估,得到26颗科学价值与工程可实现性兼具的目标星。然后,基于任务约束,采用大规模发射机会搜索方法,确定(1627)Ivar小行星为目标星, (3288)Seleucus和(4660)Nereus为备选目标,针对Ivar小行星,设计了直接和借力两类转移轨道方案,对比分析确定了2:1ΔV-EGA转移轨道方案,该方案可有效降低探测任务所需的发射能量和总速度增量,使之满足任务要求。最后,对2:1ΔV-EGA转移轨道方案进行了拓展设计,实现了“一探三”Ivar小行星的多目标交会任务,并对其测控等轨道特性进行了分析,验证了任务的可行性。
With the supports of the Tenth Five-Year 863 Program‘Autonomy Technology of Deep Space Exploration and Its Simulation and Demonstration System’,‘Investigation on Entry Orbit Design and Optimization of Interplanetary Surperhighway’, National Natural Science Foundation of China‘Investigation on Mechanism and Optimal Method of transfer Trajectory for Deep Space Exploration’, and the First Asteroid Exploration Program and Scenario of China, this dissertation deeply studies the transfer trajectory of deep space exploration and target selection and design of trajectory profiles for small body exploration. The main contents of this dissertation are as follows:
     For the‘transfer Free-time’search problem of launch opportunity for interplanetary exploration, especially Large-Scale search of launch opportunity for small body exploration, combining Gauss Algorithm and Variational Theory, a search method with Global-Local Coordinated is presented. According to the requirments of exploration mission, it defines the target function and makes certain search domain. Then, it reduces the search dimension, combining Gauss Algorithm and ephemeris computation, obtains the necessary analytical partial derivatives by Variational Theory and boundary constraints, and solves this problem by using Global-Local Coordinated method. Compared with traditional method, the method proposed by this dissertation needs little compute time and becomes more efficient. On based of Primer Vector theory, a‘transfer Fixed-time’search method of launch opportunity with multiple-impulsive transfer is proposed. In the method, combining the necessary condition of optimal transfer, it finds and judges the midcourse impulse by using history of Primer Vecotr magnitude. The method, which search launch opportunity with multiple-impulsive transfer, extends the investigation about search problem of launch opportunity with direct transfer to the multiple-impulsive fields.
     For design problem of transfer trajectory with multiple encounters for interplanetary mission, combining Tisserand theory, Prok-Chop plots with“soft matching”ideal, a hybrid method is presented. In this method, it determines flyby sequence by using P ? rpcurve, on base of Tisserand theory, and makes centain feasible domain and time sequence of design paremeter by using Prok-Chop plots, avoids the assumption of flyby sequence and intial trajectory segment by using traditional method. Then it finds the optimal design parameters by using“software matching”and penalty function strategies. Design and computation of transfer trajectory for Mars Mission with Venus Gravity assists and ROSETTA mission demonstrate the effectiveness of the method.
     For the gravity-assisted and its derivative technology, it proposes conditions of capture, escape and change of orbit type, developes the capture fields of powered swingby, presents the patching condition of aerogravity-assisted transfer trajectory. For gravity-assisted technology, based on CR3BP model, it studies implication relation between free parameters of gravity assist and orbit change with all phase angles, presents conditions of capture, escape and change of direct and retrograde orbit. Then it extends this investigation to ER3BP model, and puts the emphasis on the relation between phase angle, eccentricity of gravity-assisted body and trajectory. For the gravity-assisted derivative technology, it developes the possible capture fields of powered swingby, presents the patching conditions of aerogravity-assisted transfer. These relations and conditions will provide principle for designing transfer trajectory profile of interplanetary mission.
     For the design problem of interplanetary transfer trajectory, a design method of transfer trajectory with Libration point by using invariant manifold structures is presented. In this method, the five-dimension continuous systems can be reduced four-dimension discrete system by using PoincaréMapping. It uses the monodromy matrix to analyze this system for determinating the local subspace which involved in target periodic orbits. Local subpace will be extended to stable invariant manifold. Then the spacecraft transfers from parking orbit to target periodic orbits associated with librations point, and escapes from unstable invariant manifold associated with the system to achieve interplanetary flight with low energy. Application in the small body exploration mission demonstrates the potential predominance.
     For the First Asteroid Exploration Program and Scenario of China, combining the contents of this dissertation, systematical research and computation from target selection to design profiles of transfer trajectory is performed. A set of effectual method about target selection and transfer trajectory design of small body exploration is presented. Firstly, basing on evaluating accessibility method of global optimal two-impulsive and gravity-assisted, the possible target is evaluated and filtrated. 26 targets which involved in scientifically significant and technically feasible can be obtained. Then, according to constraints of the mission, it selects the 1627 Ivar asteroid as the target of the mission, the 3288 seleucus and 4660 Nereus asteroid as the possible candidates by using Large-Scale search method of launch opportunity. For the Ivar asteroid, it designs transfer trajectory profiles by using direct transfer and transfer with gravity-assisted and selects the 2:1ΔV-EGA transfer profile by comparison of several different profiles. This profile can decrease the launch energy and total velocity increments to satisfy with requirements of the mission. Finally, it extends the 2:1ΔV-EGA pofile to mulitple flybys pofile for Ivar asteroid exploration mission, achieves the mission to rendezvous with three target objects, and analyzes the trajectory characteristics assoicated with measure and control system of spacecraft to validate the feasible of the mission.
引文
1 W. T. Huntress. The Discovery Program. Acta Astronautica, 1999, 45(49): 207-213
    2 D.Woerner. X2000 Systems and Technologies for Missions to the Outer Planets. 49th International Astronautical Congress, Melbourne,Australia Sep.28-Oct.2, 1998, IAA.4.1.02
    3 E.K. Casani and B. Wilson. The New Millennium Program: Technology Development for the 21st Century. 34th Aerospace Sciences Meeting & Exhibit. Reno, NV. Jan.15-18, 1996. AIAA 96-0696
    4 A. G. Accettura. Asteroids and Comets Capture Techniques for the New Millennium. 49th International Astronautical Congress, Melbourne, Australian, Sep.28-Oct.2, 1998. ST-98-W.2.01.
    5 R. Gershman and R.A. Wallace. Technology Needs of Future Planetary Mission. Acta Astronautica. 1999, 45(4-9): 329-335
    6 R.J. Haw, P.G. Antreasian, T.P McElrath, et al. Galileo Prime Mission Navigation. Jounral of Spacecraft and Rockets, 2000, 37(1): 56-63
    7 M.S. Robinson, P.C. Thomas, J. Veverka, et al. The Geology of 433 Eros. Meteoritics & Planetary Science, Dec. 2002, 37(12):1651-1684
    8 D.W. Dunham, R.W. Farquhar, J.V. McAdams, et al. Recovery of NEAR’s Mission to Eros. Acta Astronautica, Jul-Nov 2000, 47(2-9):503-512
    9 M.D. Rayman, P. Varghese. The Deep Space 1 Extended Mission. Acta Astronautica, Mar-Jun. 2001, 48(5-12): 693-705
    10 K.E Williams. Earth Return Maneuver Strategies for Genesis and Stardust. Advances in the Astronautical Sciences. 2005, 119:1925-1944
    11 A. Fujiwara, J. Kawaguchi, K.T. Uesugi. Role of Sample Return Mission MUSES-C in Asteroid Study. Advances in Space Research, 2004, 34(11):2267-2269
    12 P. Ferri. Mission Operations for the New ROSETTA. Acta Astronautica. 2006, 58(2):105-111
    13 Blume, H. William. Deep Impact: Mission Design Approach for a New Discovery Mission. Acta Astronautica. Jan.-Mar. 2003, 52(2-6):105-110
    14 Rayman, D. Marc, Fraschetti, C. Thomas, et al. Dawn: A Mission in Development for Exploration of Main Belt Asteroid Vesta and Ceres. Acta Astronautica. Jun. 2006, 58(11):605-616
    15 D. Sears, C. Allen, D. Britt, et al. The Hera Mission: Multiple Near-Earth Asteroid Sample Return. Advance in Space Research. 2004, 34(11):2270-2275
    16 A.B. Seergeyensky and N.H. Yin. Interplanetary Mission Design Handbook, Volume 1, Part 1: Earth to Venus Ballistic Mission Opportunities 1991-2005. Jet Propulsion Laboratory, Pasadena, CA, Nov 1983, JPL D:82-43
    17 J.V.Breakwell,L.M. Perko. Matched Asymptotic Expansions, Patched Conics and the Computation of Interplanetary Trajectories. AIAA/AAS Astrodynamics Specialist Conference, Monteerey, C.A. Sept.1965, AIAA 65-689
    18 R.H.Battin. An Introduction to the Mathematics and Methods of Astrodynamics. AIAA Education Series, New York, 1987
    19 J.M. Longuski. User’s Guide Satellite Tour Design Program. Jet Propulsion Laboratory, Pasadena, CA, Nov.1983, D-263
    20 A.E Petropoulos, J.M. Longuski, E.P. Bonfiglio. Trajectories to Jupiter via Gravity Assists from Venus, Earth and Mars. Journal of Spacecraft and Rockets. 2000, 37(6):776-783
    21 J.M. Longuski, A.A. Wolf. The Galileo Orbital Tour for the 1986 Launch Opportunity. AIAA/AAS Astrodynamics Conference, Williamsburg, VA, 1986, A86-47901
    22 C.R.H. Solorzano, A.A. Sukhanov, A.F.B.A. Prado. Analysis of Trajectorie to Neptune Using Gravity Assists. Advances in the Astronautical Sciences. 2006, 122: 447-456
    23 T.T. McConaghy, J.M. Longuski, D.V. Byrnes. Anlysis of A Class of Earth-Mars Cycler Trajectories. Journal of Spacecraft and Rockets. 2004, 41(4):622-628
    24 S.N.Williams and J.M. Longuski. Automated Design of Multiple Encounter Gravity-Assist Trajectories. AIAA-90-2982-CP
    25 J.M. Longuski and S.N.Williams. Automated Design of Gravity-Assist Trajectories to Mars and the Outer Planets. Celestial Mechanics andDynamical Astronomy. 1991, 52:207-220
    26 M. Vasile, P. Pascale. Preliminary Design of Multiple Gravity-Assist Trajectories. Journal of Spacecraft and Rockets. 2006, 43(4):794-805
    27 R.P. Moonish and J.M. Longuski. Automated Design of Delta-V Gravity-Assist Trajectories for Solar System Exploration. Proceedings of the AAS/AIAA Astrodynamics Conference, Victoria, BC, Can. Aug 16-19 1993, AAS 93-682
    28 C. Sauer. The Effect of Parking Orbit Constraints on the Optimization of Ballistic Planetary Mission. AAS/AIAA Astrodynamics Specialist Conference. Lake Placid, NY, Aug.1983, AAS 83-311
    29 C. Sauer. Optimization of Interplanetary Trajectories with Unpowered Planetary Swingby. AAS/AIAA Astrodynamics Specialist Conference. Kalispell, MT, Aug.1987, AAS 87-424
    30 L.A. Amario, D.V.Byrnes, L.L. Sackett, and R.H.Stanford. Optimization of Multiple Flyby Trajectories. AAS/AIAA Astrodynamics Specialist Conference. Provincetown, Mass., June 25-27, 1979, AAS 79-162,1979
    31 L.A.Amario. Trajectories Optimization Software for Planetary Mission Design. The Journal of Astronautical Sciences. 1989, 37:213-220
    32 D. J. Jezewski, J.P. Brazzel, E.E. Prust, B.G. Brown, T.A. Mulder, and D.B.Wissinger. A Survey of Rendezvous Trajectory Planning. AAS/AIAA Astrodynamics Conference, Durango, CO, August 19-22, 1991, AAS 91-505.
    33 J.P. Carstens, and T.N. Edelbaum. Optimum Maneuvers for Launching Satellites into Circular Orbits of Arbitrary Radius and Inclination. A.R.S. Journal, July 1961, 31(7): 943-949
    34 G.A.McCue. Optimum Two-Impulse Orbital Transfer and Rendezvous between Inclined Elliptical Orbits. AIAA Journal, Aug.1963, 1:1865-1872
    35 G.A.McCue, and D.F. Bender. Numerical Investigation of Minimum Impulse Orbital Transfer. AIAA Journal, Dec.1965, 3:2328-2334
    36 F.W. Goetz, and J.R. Doll. A Survey of Impulsive Trajectories . AIAA Journal, May 1969, 7: 801-834
    37 D.F. Lawden. Optimal Trajectories for Space Navigation. Butterworths, London, 1963
    38 P. M. Lion and M.Handelsman. Primer Vector on Fixed-Time Impulsive Trajectories. AIAA Journal, 1968, 6(1): 127–132.
    39 D.J. Jezewski, and H.L. Rozendaal. An Efficient Method for Calculating Optimal Free-Space N-Impulse Trajectories. AIAA Journal, 1968, 6(11): 2160–2165.
    40 J.H. Chiu. Optimal Multiple-Impulse Nonlinear Orbital Rendezvous. Ph.D. Thesis, University of Illinois as Urbana-Champaign, IL, 1984
    41 J.E. Prussing , S. Sandrik. Second-order Necessary Conditions and Sufficient Conditions Applied to Continuous-thrust Trajectories. Journal of Guidance, Control and Dynamics, 2005, 28(4):812-816
    42 J.E. Prussing, B.A. Conway. Optimal Terminal Maneuver for a Cooperative Impulsive Rendezvous. Journal of Guidance, Control and Dynamics, 1989, 12(3):433-435
    43 J.I. Plamore. An Elementary Proof of the Optimality of Hohmann Transfer. Journal of Guidance, Control and Dynamics, 1984, 7(5): 629-630
    44 D.F. Lawden. Optimal Transfer Between Coplanar Elliptical Orbits. Journal of Guidance, Control and Dynamics, May-June 1992, 15(3): 788-791
    45 J.E.Prussing. Simple Proof of the Global Optimality of the Hohmann Transfer. Journal of Guidance, Control and Dynamics, 1992, 15(4): 1037-1038
    46 J.E. Prussing. A Class of Optimal Two-Impulse Rendezvous Using Multiple-Revolution Lambert Solutions. The R.H. Battin Astrodynamics Symposium, College Station, TX. Mar.20-21, 2000, AAS 00-250
    47 S. Haijun, T. Panagiotis. Optimal Two-Impulse Rendezvous Between Two Circular Orbits Using Multiple-Revolution Lambert’s Solutions. AIAA Guidance, Navigation, and Control Conference and Exhibit, Moriterey, California, Aug. 5-8, 2002 , AIAA 2002-4844
    48 O.M. Kamel and A.S. Soliman. On Transfer between Elliptical Coplanar Coaxial Orbits. Bulletin of the Faculty of Science, Cario. University, 1999, 67:61-71
    49 O.M. Kamel and A.S. Soliman. On the Optimization of the Generalized Coplanar Hohmann Impulsive Transfer Adopting Energy Change Concept.Acta Astronautica, 2005, 56:431-438
    50 O.M. Kamel and M.K. Ammar. Velocity Corrections in Generalized Coplanar Coaxial Hohmann and Bi-elliptic Impulsive Transfer Orbits. Acta Astronautica, Mar.2006, 58:243-250
    51 R.A.Broucke. The Celestial Mechanics of Gravity Assist. AIAA/AAS Astrodynamics Conference, Minneapolis, MN, Aug. 15-17, 1988,AIAA P88-4220,
    52 A.E.Roy , Orbital Motion, 2nd ed., Adam Hilger, Bristol, England, U.K., 1982, 129-130
    53 R.H.Battin. The Determination of Round-Trip Planetary Reconnaissance Trajectories. Journal of the Aerospace Sciences, 1959, 26(9): 545-567
    54 L.I.Sedov. Orbits of Cosmic Rockets toward the Moon. ARS Journal, 1960, 30(1):14-21
    55 M.A.Minovitch. The Determination of Characteristics of Ballistic Interplanetary Trajectories Under the Influence of Multiple Planetary Attractions. Jet Propulsion Lab. TR 32-464, California Inst. Of Technology, Pasadena, CA, Oct. 1963
    56 J.M.Deerwester. Jupiter Swingby Missions to the Outer Planets. Journal of Spacecraft and Rockets, 1966, 3(10): 1564-1567
    57 G.A.Flandro. Fast Reconnaissance Mission to the Outer Solar System Utilizing Energy Derived from the Gravitational Filed of Jupiter. Astronautica Acta, 1966, 12(4):329-337
    58 R. Farquhar, and S.A. Stern. Pushing Back the Frontier: A Mission to the Pluto-Charon System. Planetary Report, 1990, 10(4):18-23
    59 G.R.Hollenbeck. New Flight Techniques for Outer Planet Missions. Astrodynamics Specialist Conference,Nassau, Bahamas,July 28-30, 1975,AAS paper 75-087
    60 A.F.B. Prado. Close-Approach Trajectories in the Elliptic Restricted Problem. Journal of Guidance, Control and Dynamic, July-August 1997, 20(4):797-802
    61 G. Felipe and A.F.B. Prado. Classification of Out-of-Plane Swing-By Trajectories. Journal of Guidance, Control and Dynamic, Sep.-Oct. 1999, 22(5):643-649
    62 G. Felipe and A.F.B. Prado. Trajectory Selection for a Spacecraft Performing a Two-dimensional Swing-by. Advances In Space Research. 2004, 34 (11): 2256-2261
    63 A.F.B. Prado. Powered Swingby. Journal of Guidance, Control and Dynamic, September-October 1996, 19(5):1142-1147
    64 L.Casalino, G. Colasurdo and D. Pastrone. Simpe Strategy for Powered Swingby. Journal of Guidance, Control and Dynamic, January-February 1999, 22(1): 156-159
    65 G.R. Hollenbeck. Ballistic Mode Mercury Orbiter Missions. AIAA, ASME, and SAE, Joint Space Mission Planning and Execution Meeting, Denver, Colo, United States, July 10-12, 1973. AIAA paper 73-8
    66 S.N.Williams. Automated Design of Multiple Encounter Gravity-Assist Trajectories. M.S. Thesis, School of Aeronautics and Astronautics, Purdue Univ., West Lafayette, IN, Aug. 1994
    67 J.A.Sims. Delta-V Gravity-Assist Trajectory Design: Theory and Practice. Ph.D. Thesis, School of Aeronautics and Astronautics, Purdue Univ., West Lafeyette, IN, Dec.1996
    68 J.A.Sims, J.M.Longuski and A.J.Staugler. V∞ Leveraging for Interplanetary Missions: Mul.-Revolution Orbit Techniques. AAS/AIAA Astrodynamics Specialist Conf., Halifax, NS, Canada, Aug.1995, AAS Paper95-306,
    69 J.A. Sims, J.M. Longuski, and A.J. Straugler. V∞ Leveraging for Interplanetary Missions: Multiple-Revolution Orbit Techniques. Journal of Guidance, Control and Dynamics, 1997, May-June, 20(3): 409-415
    70 D.F.Bender. Trajectories to the Outer Planets Using Aerogravity Assist Flybys of Venus and Mars. Proceedings of the AAS/AIAA Astrodynamics Conference, Durango, CO, Aug. 19-22, 1991,AAS Paper 91-419
    71 A.D.McRonald and J.E. Randolph. Hypersonic Maneuvering for Augmenting Planetary Gravity Assist. Journal of Spacecraft and Rockets, 1992, 29(2): 216-222
    72 A.D.McRonald and J.E. Randolph. Solar System ‘Fast Mission’ Trajectories Using Aerogravity Assist. Journal of Spacecraft and Rockets, 1992, 29(2): 223-232
    73 J.A. Sims, J.M. Longuski and R.P.Moonish. Aerogravity-assist Trajectoriesto the Outer Planets and the Effect of Drag. Journal of Spacecraft and Rockets, 2000, 37(1):49-55
    74 E.P.Benfiglio, J.M. Longuski and N.X.Vinh. Automatd Design of Aerogravity-assist Trajectories. Journal of Spacecraft and Rockets, 2000, 37(6):768-775.
    75 Gordon, S.Graig. Orbit Determination Error Analysis and Station-Keeping for Libration Point Trajectories. Ph. D, Thesis, School of Aeronautica and Astronautics, Purdue University, West Lafayette, IN, Dec. 1991
    76 R.W.Farquhar. The Control and Use of Libration Point Satellites. Stanford NASA TR R-346, 1970
    77 R.W.Farquhar and A.A.Kamel. Quasi-Periodic Orbits About the Translunar Libration Point. Celestial Mechanics, 1973, 7:458-473
    78 R.W.Farquhar. The Utilization of Halo Orbits in Advanced Lunar Operations. NASA TN D-6353, July 1971
    79 R.W.Farquhar, D.P. Muhonen, C.R. Newman and H.S.Hueberger. Trajectories and Orbital Maneuvers for the First Libration Point Satellite. Journal of Guidance, Control and Dynamic. 1980, 3(6):549-554
    80 D.L.Richardson. Analytic Construction of Periodic Orbits about The Collinear Point. Celestial Mechanics, 1980,22:241-253
    81 P.D. Giamberardino, S.Monaco. Nonlinear Regulation in Halo Orbits Control Design. In Proceedings 31st IEEE Decision and Control Conference, Tucson, U.S.A., 1992, 536-541
    82 D. Cielasky and B.Wie. New Approach to Halo Orbit Determination and Control. Journal of Guidance, Control and Dynamics, March-April 1996, 19(2):266-273
    83 G. Gomez, J.Masdemont and C.Simo. Lissajous Orbit around Halo Orbits. Advances in Astronautical Sciences, 1997, 95(1):117-134
    84 B.T. Barden and K.C.Howell. Fundamental Motions Near Collinear Libration Points and Their Transitions. The Journal of the Astronautical Sciences, October-December 1998, 46(4):361-378
    85 A.Jorba and J. Masdemont. Dynamics in the Center Manifold of the Collinear Points of the Restricted Three Body Problem. Physica D, 1999, 132:266-273
    86 R.W.Farquhar, D.P.Muhonen, et al. Mission Design for a Halo Orbiter of the Earth. Journal of Spacecraft and Rocket, 1977, 14(3):170-177
    87 R.W.Farquhar. Halo-Orbit and Lunar Swingby Missions of the 1990’s. Acta Astronautica, 1991, 24:24-52
    88 K.C.Howell and J.V.Breakwell. Almost Rectilinear Halo Orbits. Celestial Mechanics, 1984, 32:24-52
    89 D.L.Mains. Transfer Trajectories from Earth Parking Orbits to L1 Halo orbits. M.S. Thesis, Dept. of Aeronautics and Astronautics, Purdue Univ. Lafayette, IN, May. 1993
    90 E.L.Stiefel and G. Scheifele. Linear and Regular Celestial Mechanics. Springer-Verlag, New York, 1971
    91 J.A.Kechichian. Computational Aspects of Transfer Trajectories to Halo Orbits. Journal of Guidance, Control and Dynamic, July-August 2001, 24(4):796-804
    92 J.V.Breakwell, A.A.Kamel and M.J.Ratner. Station-keeping for a Translunar Communication Station. Celestial Mechanics, 1974, 10(3):357-373
    93 C. Simo, G. Gomez, J. Llibre and R.Martinez. Station Keeping of a Quasiperiodic Halo Orbit Using Invariant Manifolds. Proceedings of the Second International Symposium on Spacecraft Flight Dynamics (Darmstadt, Germany), Oct. 1986, 65-70
    94 C.Simo, G. Gomez, J. Llibre, R.Martinez and J.Rodriguez. On the Optimal Station Keeping Control of Halo Orbits. Acta Astronautica, 1987, 15(6/7): 391-397
    95 J. Rodriguez and M.Hechler. Orbital Aspects of the SOHO Mission Design, Orbital Mechanics and Mission Design. Edited by Jerome Teles, Advances In the Astronautical Sciences, Univelt, San Diego, CA, 1989, 69:347-357
    96 G. Gomez, and J. Llibre. Station-keeping of Libration Point Orbits. European Space Agency Contract Report, Executive Summary Final Rept. N87-14363
    97 K.C.Howell, H.J.Pernicka. Station-keeping Method for Libration Point Trajectories. Journal of Guidance, Control and Dynamics, January-February 1993, 16(1):151-159
    98 P.D. Giamberardino and S. Monaco. On Halo Orbits Spacecraft Stabilization. Acta Astronautica, 1996, 38(12):903-925
    99 M.Henon. Vertical Stability of Periodic Orbits in the Restricted Problem. Astronomy and Astrophysics, 1973, 28:415-426
    100 J.V.Breakwell and J.V.Brown. The Halo Family of 3-Dimensional Periodic Orbits in the Earth-Moon Restricted 3-Body Problem. Celestial Mechanics, 1979, 20(2):389-404
    101 K.C. Howell. Three Dimensional Periodic Halo Orbits. AAS/AIAA Astrodynamics Specialist Conference, Lake Tahoe, NV, Aug. 1981, Paper81-147
    102 M.Popescu. The Study of the Critical Case of Motion Stability around Equilateral Lagrangian Points of the Earth-Moon System. Thirty-Second Congress, Rome, International Astronautical Federation, Sept., 1981, Paper IAF-81-330
    103 M.Popescu. Stability of Motion on Three-Dimensional Halo Orbit. Journal of Guidance, Control and Dynamics, September-October, 1995, 18(5):1119-1125
    104 G.A.McCue. Optimum Two-impulse Orbiter Transfer and Rendezvous Between Inclined Elliptical Orbits. AIAA Journal, Aug.1963, 1:1865-1872
    105 G.A.McCue and D.F.Bender. Numerical Investigation of Minimum Impulse Orbital Transfer. AIAA Journal, Dec. 1965, 3:2328-2334
    106 N.D.Hulkower, C.O.Lau and D.F.Bender. Optimum Two-Impulse Transfer for Preliminary Interplanetary Trajectory Design. Journal of Guidance, Control and Dynamic, 1984, 7:458-461
    107 E.F.Helin, N.D.Hulkower, D.F.Bender. The Discovery of 1982 DB, the Most Accessible Asteroid Known. Icarus, 1984, 57:42-47
    108 C.O.Lau, N.D. Hulkower. Accessibility of Near-Earth Asteroids. Journal of Guidance, Control and Dynamic, May-June 1987, 10(3):225-232
    109 P. Farinella, C. Froeschle, C. Froeschl, et al. Asteroids Falling into the Sun. Nature, 1994,371:314-317
    110 R.P. Binzel, W. Kofman. Internal Structure of Near-Earth Objects. Comptes Rendus Physique, Apr. 2005, 6(3):321-326
    111 I. Ferrin. Secular Light Curves of Comets, II : 133P/Elst-Pizarro, anAsteroid Belt Comet, Icarus, Dec. 2006, 185(2):523-543
    112 G. Sitarski. Generating of “Clones” of an Impact Orbit for the Earth Asteroid Collision. Acta Astronomica, 2006, 56(3):283-292
    113 P. J. Gutierrez. B.J.R. Davidsson, J.L. Ortiz, et al. Comments on the Amplitude Phase Relationship of Asteroid Lightcurves – Effects of Topography, Surface Scattering Properties, and Obliquity. Astronomy & Astrophysics, Jul. 2006, 454(1):367-377
    114 S.J. Ostro, J.L. Margot, L.A.M. Benner, et al. Radar Imaging of Binary NEAR-Earth Asteroid (66391)1999KW4. Science, Nov. 2006, 314(5803): 1276-1280
    115 P.B. Babadzhanov. Meteor Showers Associated with the Near-Earth Asteroid (2101) Adonis. Astronomy & Astrophysics Jan. 2003, 397(1):319-323
    116 R.S. Hudson, S.J.Ostro, D.J. Scheeres. High-Resolution Model of Asteroid 4179 Toutatis. Icarus, Feb. 2003, 161(2):346-355
    117 R.P. Binzel, M. Birlan, S.J. Bus, et al. Spectral Observations for Near-Earth Objects including Potential Target 4660 Nereus: Results from Meudon Remote Observations at the NASA Infrared Telecope Facility. Planetary and Space Science, Apr. 2004, 52(4): 291-296
    118 A.C. Levasseur, M. Fulchignoni, M. Delbo, et al. NEO Sizes, Shapes and Surface Physical Properties. Comptes Rendus Physique, Apr. 2005, 6(3):313-320
    119 R. Duffard, J. Leon, J. Licandro, et al. Basaltic Asteroid in the Near-Earth Objects Population: A Mineralogical Analysis. Astronomy & Astrophysics, Sep. 2006, 456(2):775-781
    120 N.E.B. Zellner, S. Gibbard, I. Pater. NEAR – IR Imaging of Asteroid 4 Vesta. Icarus, Sep. 2005, 177(1):190-195
    121 S. Marchi, M. Lazzarin, P. Paolicchi, et al. New V-type Asteroids in Near-Earth Space. Icarus, May 2005, 175(1):170-174
    122 F.Migliorini, A.Morbidelli, V.Zappala, et al. Vesta Fragments form V6 and 3:1 Resonances: Implications for V-type Near-Earth Asteroids and Howardite, Eucrite and Diogenite Meteorites. Meteoritics & Planets Science, 1997, 32: 903-916
    123 A.Yanez, M.Hechler, and J.L.Cano. SMART-1 Asteroid Option: Selected Asteroids. ESOC, 1998, 3, 26
    124 E. Perozzi, A. Rossi, G.B. Valsecchi. Basic Targeting Strategies for Rendezvous and Flyby Missions to the Near-Earth Asteroids. Planetary and Space Science, 2001, 49(1):3-22
    125 R.P.Binzel, E.Perozzi, A.S.Rivkin, A. Rossi, et al. Dynamical and Compositional Assessment of Near-Earth Object Mission Targets. Meteoritics & Planetary Science, Mar.2004, 39(3):351-366
    126 M. Okutsu, J.M. Longuski. Mars Free Returns via Gravity Assist from Venus. Journal of Spacecraft and Rockets. 2002, 39(1):31-36
    127 C. Chiconc. Ordinary Differential Equations with Applications. Springer-Verlag, 1999:162-197
    128 L. Perko. Differential Equations and Dynamical Systems. 3rd Edition, Springer-Verlag, 2000: 65-162, 181-243

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700