敌对与非敌对环境下无人机群的协同搜索路径与策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无人机群的协同搜索是无人机协同控制的重要内容之一,本文研究了现实环境下协同搜索时难以避免的通讯延迟问题并实现了分布式算法,之后研究了在敌对环境下的搜索路径及搜索策略。
     针对无人机群的特点,本文提出了‘种以分布式模型预测算法为基础的搜索算法。通过引入合适的缓冲周期,安排不同的无人机分别对未来的不同的时间范围进行规划,以此来解决多机分布式计算的问题和通讯延迟问题。
     在敌对情况下固定性的路径容易被敌方预测到而失去搜索效果,本文提出了一种以随机策略为基础的路径规划方法来解决这一问题,之后用混合路径的办法来提高路径的性能。
     本文用Stackelberg博弈模型来处理敌对环境下的搜索策略问题,并研究了建立收益矩阵的方法。
UVA cooperative searching is an important research area in cooperative control. An approach of distributed algorithm is presented to solve the time delay problem and a framework of path planning in adversarial environments is studied.
     MDMPC is an approach based on Decentralized Model Predictive Control theory. By using this method the searching problem is decoupled completely. This method is useful in distributed environments.
     In the presence of an adversary, an efficient patrolling path requires enough unpredictability in order to prevent the adversary to predict the schedule. This paper presents an approach of stochastic path planning with Stackelberg games theory based strategy.
引文
[1]孙仕祺,马杰.历史与现实:无人机发展历程,现状及其所面临的挑战[J].飞航导弹,2005,1.
    [2]Office of the Secretary of Defense. Unmanned Aircraft Systems Roadmap 2005-2030[J].2005.
    [3]Vachtsevanos G, Ludington B, Reimann J, et al. Modeling and Control of Unmanned Aerial Vehicles Current Status and Future Directions[J]. Modeling And Control of Complex Systems,2008.
    [4]Wooldridge M. An introduction to multiagent systems[M]. Wiley, 2009.
    [5]Bullo F, Cortes J, Martinez S. Distributed Control of Robotic Networks[M]. Applied Mathematics Series, Princeton University Press,2009.
    [6]Dias M B, Zlot R, Kalra N, et al. Market-Based Multirobot Coordination:A Survey and Analysis[J]. Proceedings of the IEEE,2006,94: 1257-1270.
    [7]Hsieh M, Halasz A, Berman S, et al. Biologically inspired redistribution of a swarm of robots among multiple sites[J]. Swarm Intelligence, 2008,2:121-141.
    [8]Sujit P B, Sinha A, Ghose D, et al. Team, Game, and Negotiation based Intelligent Autonomous UAV Task Allocation for Wide Area Applications[J]. Innovations in Intelligent Machines--1,2007.
    [9]Panait L, Luke S. Cooperative Multi-Agent Learning:The State of the Art[J]. Autonomous Agents and Multi-Agent Systems,2005,11(3):387-434.
    [10]Reynolds C W. Flocks, herds and schools:A distributed behavioral model[J]. ACM SIGGRAPH Computer Graphics,1987,21:25-34.
    [11]Fax J A, Murray R M. Information flow and cooperative control of vehicle formations[J]. Automatic Control, IEEE Transactions on,2004,49: 1465-1476.
    [12]Olfati-Saber R, Fax J A, Murray R M. Consensus and Cooperation in Networked Multi-Agent Systems[J]. Proceedings of the IEEE,2007,95: 215-233.
    [13]Olfati-Saber R, Murray R M. Consensus problems in networks of agents with switching topology and time-delays[J]. Automatic Control, IEEE Transactions on,2004,49:1520-1533.
    [14]Olfati-Saber R. Flocking for multi-agent dynamic systems: algorithms and theory[J]. Automatic Control, IEEE Transactions on,2006,51: 401-420.
    [15]李建增,田庆民,陈自力.无人机在电子战中的作用[J].现代防御技术,2003,31(006):6-9.
    [16]Edmonds J. Paths, trees, and flowers[J]. Canadian Journal of Mathematics,1965,17:449-467.
    [17]彭辉,沈林成,霍霄华.多UAV协同区域覆盖搜索研究[J].系统仿真学报,2007,19(011):2472-2476.
    [18]Choset H. Coverage for robotics-A survey of recent results[J]. Annals of Mathematics and Artificial Intelligence,2001,31:113-126.
    [19]Sujit P B, Ghose D. Multiple agent search of an unknown environment using game theoretical models[A]. American Control Conference, 2004. Proceedings of the 2004[C].2004,6:5564-5569 vol.6.
    [20]Maza I, Ollero A. Multiple UAV cooperative searching operation using polygon area decomposition and efficient coverage algorithms[A]. Springer,2004.
    [21]Elor Y, Bruckstein A M. Multi-a(ge)nt Graph Patrolling and Partitioning[A]. Web Intelligence and Intelligent Agent Technologies,2009. WI-IAT'09. IEEE/WIC/ACM International Joint Conferences on[C].2009,2: 52-57.
    [22]Comellas F, Sapena E. A Multiagent Algorithm for Graph Partitioning[A]. Applications of Evolutionary Computing[M].2006:279-285.
    [23]Gabriely Y, Rimon E. Spanning-tree based coverage of continuous areas by a mobile robot[J]. Annals of Mathematics and Artificial Intelligence, 2001,31:77-98.
    [24]Hazon N, Kaminka G A. On redundancy, efficiency, and robustness in coverage for multiple robots[J]. Robotics and Autonomous Systems,2008,56: 1102-1114.
    [25]Hazon N, Kaminka G A. Redundancy, Efficiency and Robustness in Multi-Robot Coverage[A]. Robotics and Automation,2005. ICRA 2005. Proceedings of the 2005 IEEE International Conference on[C].2005:735-741.
    [26]Agmon N, Hazon N, Kaminka G A. Constructing spanning trees for efficient multi-robot coverage[A]. Robotics and Automation,2006. ICRA 2006. Proceedings 2006 IEEE International Conference on[C].2006:1698-1703.
    [27]Agmon N, Hazon N, Kaminka G, et al. The giving tree:constructing trees for efficient offline and online multi-robot coverage[J]. Annals of Mathematics and Artificial Intelligence,2008,52:143-168.
    [28]Xiaoming Z, Sonal J, Koenig S, et al. Multi-robot forest coverage[A]. Intelligent Robots and Systems,2005. (IROS 2005).2005 IEEE/RSJ International Conference on[C].2005:3852-3857.
    [29]Xiaoming Z, Koenig S. Robot coverage of terrain with non-uniform traversability[A]. Intelligent Robots and Systems,2007. IROS 2007. IEEE/RSJ International Conference on[C].2007:3757-3764.
    [30]Tarjan R E. Data structures and network algorithms[M]. Society for Industrial Mathematics,1983.
    [31]Polycarpou M M, Yanli Y, Passino K M. A cooperative search framework for distributed agents[A]. Intelligent Control,2001. (ISIC'01). Proceedings of the 2001 IEEE International Symposium on[C].2001:1-6.
    [32]Sujit P B, Beard R. Cooperative Path Planning for Multiple UAVs Exploring an Unknown Region[A]. American Control Conference,2007. ACC '07[C].2007:347-352.
    [33]任博,潘景余,苏畅,et al.不确定环境下的侦察无人机自主航路规划仿真[J].电光与控制,2008,15(001):31-34.
    [34]Sujit P B, Ghose D. Multiple UAV search using agent based negotiation scheme[A]. American Control Conference,2005. Proceedings of the 2005[C].2005:2995-3000 vol.5.
    [35]Sujit P B, Ghose D. Search using multiple UAVs with flight time constraints[J]. Aerospace and Electronic Systems, IEEE Transactions on,2004, 40:491-509.
    [36]Yanli Y, Polycarpou M M, Minai A A. Opportunistically cooperative neural learning in mobile agents[A]. Neural Networks,2002. IJCNN '02. Proceedings of the 2002 International Joint Conference on[C].2002,3: 2638-2643.
    [37]Yanli Y, Minai A A, Polycarpou M M. Decentralized cooperative search by networked UAVs in an uncertain environment[A]. American Control Conference,2004. Proceedings of the 2004[C].2004,6:5558-5563 vol.6.
    [38]Bertuccelli L F, How J P. Search for dynamic targets with uncertain probability maps[A]. American Control Conference,2006[C].2006:737-742.
    [39]Bertuccelli L F, How J P. Robust UAV Search for Environments with Imprecise Probability Maps[A]. Decision and Control,2005 and 2005 European Control Conference. CDC-ECC'05.44th IEEE Conference on[C]. 2005:5680-5685.
    [40]Shem A G, Mazzuchi T A, Sarkani S. Addressing Uncertainty in UAV Navigation Decision-Making[J]. Aerospace and Electronic Systems, IEEE Transactions on,2008,44:295-313.
    [41]Beard R W, McLain T W. Multiple UAV Cooperative Search under Collision Avoidance and Limited range Communication Constraints[A]. Decision and Control,2003. Proceedings.42nd IEEE Conference on[C].2003,1: 25-30 Vol.1.
    [42]Caiti A, Casalino G, Munafo A, et al. Cooperating Auv teams: Adaptive area coverage with space-varying communication constraints[A]. OCEANS 2009-EUROPE,2009. OCEANS'09.[C].2009:1-7.
    [43]田菁,陈岩,成沈林.不确定环境中多无人机协同搜索算法[J].电子与信息学报,2007,29:2325-2328.
    [44]田菁,沈林成.多基地多无人机协同侦察问题研究[J].航空学报,2007:04.
    [45]Richards A, How J. A decentralized algorithm for robust constrained model predictive control[A]. American Control Conference,2004. Proceedings of the 2004[C].2004,5:4261-4266 vol.5.
    [46]Richards A, How J. Decentralized model predictive control of cooperating UAVs[A]. Decision and Control,2004. CDC.43rd IEEE Conference on[C].2004,4:4286-4291 Vol.4.
    [47]Morari M, H. Lee J. Model predictive control:past, present and future[J]. Computers and Chemical Engineering,1999,23:667-682.
    [48]Qin S J, Badgwell T A. An overview of industrial model predictive control technology[A].1997,93:232-256.
    [49]Almeida A, Ramalho G, Santana H, et al. Recent Advances on Multi-agent Patrolling[A]. Advances in Artificial Intelligence-SBIA 2004[M]. 2004:474-483.
    [50]Machado A, Ramalho G, Zucker J, et al. Multi-agent Patrolling:An Empirical Analysis of Alternative Architectures[A]. Multi-Agent-Based Simulation Ⅱ[M].2003:81-97.
    [51]Santana H, Ramalho G, Corruble V, et al. Multi-agent patrolling with reinforcement learning[A]. Autonomous Agents and Multiagent Systems, 2004. AAMAS 2004. Proceedings of the Third International Joint Conference on[C].2004:1122-1129.
    [52]Menezes T, Tedesco P, Ramalho G. Negotiator Agents for the Patrolling Task[A].2006:48-57.
    [53]Sak T, Wainer J, Goldenstein S. Probabilistic Multiagent Patrolling[A]. Advances in Artificial Intelligence-SBIA 2008[M].2008: 124-133.
    [54]Agmon N, Sadov V, Kaminka G A, et al. The impact of adversarial knowledge on adversarial planning in perimeter patrol[A]. Proceedings of the 7th international joint conference on Autonomous agents and multiagent systems -Volume 1[C]. Estoril, Portugal:International Foundation for Autonomous Agents and Multiagent Systems,2008:55-62.
    [55]Agmon N, Kraus S, Kaminka G A. Multi-robot perimeter patrol in adversarial settings[A]. Robotics and Automation,2008. ICRA 2008. IEEE International Conference on[C].2008:2339-2345.
    [56]Agmon N, Kraus S, Kaminka G A. Uncertainties in adversarial patrol[A]. Proceedings of The 8th International Conference on Autonomous Agents and Multiagent Systems-Volume 2[C]. Budapest, Hungary: International Foundation for Autonomous Agents and Multiagent Systems,2009: 1267-1268.
    [57]Agmon N, Kraus S, Kaminka G A, et al. Adversarial uncertainty in multi-robot patrol[A]. Proceedings of the 21st international jont conference on Artifical intelligence[C]. Pasadena, California, USA:Morgan Kaufmann Publishers Inc.,2009:1811-1817.
    [58]Noa Agmon. Multi-Robot Patrolling and Other Multi-Robot Cooperative Tasks:An Algorithmic Approach[D].
    [59]Paruchuri P, Tambe M, Ordonez F, et al. Security in multiagent systems by policy randomization[A]. Proceedings of the fifth international joint conference on Autonomous agents and multiagent systems[C]. Hakodate, Japan: ACM,2006:273-280.
    [60]Paruchuri P, Pearce J P, Tambe M, et al. An efficient heuristic approach for security against multiple adversaries[A]. Proceedings of the 6th international joint conference on Autonomous agents and multiagent systems[C]. Honolulu, Hawaii:ACM,2007:1-8.
    [61]Paruchuri P, Pearce J P, Marecki J, et al. Playing games for security: an efficient exact algorithm for solving Bayesian Stackelberg games[A]. Proceedings of the 7th international joint conference on Autonomous agents and multiagent systems-Volume 2[C]. Estoril, Portugal:International Foundation for Autonomous Agents and Multiagent Systems,2008:895-902.
    [62]Paruchuri P, Pearce J, Marecki J, et al. Coordinating randomized policies for increasing security of agent systems[J]. Information Technology and Management,2009,10(1):67-79.
    [63]Pita J, Jain M, Marecki J, et al. Deployed ARMOR protection:the application of a game theoretic model for security at the Los Angeles International Airport[A]. Proceedings of the 7th international joint conference on Autonomous agents and multiagent systems:industrial track[C]. Estoril, Portugal:International Foundation for Autonomous Agents and Multiagent Systems,2008:125-132.
    [64]Basilico N, Gatti N, Amigoni F. Leader-follower strategies for robotic patrolling in environments with arbitrary topologies[A]. Proceedings of The 8th International Conference on Autonomous Agents and Multiagent Systems-Volume 1[C]. Budapest, Hungary:International Foundation for Autonomous Agents and Multiagent Systems,2009:57-64.
    [65]Basilico N. Developing a Deterministic Patrolling Strategy for Security Agents[A]. Proceedings of the 2009 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology-Volume 02[C]. IEEE Computer Society,2009:565-572.
    [66]Basilico N, Gatti N, Amigoni F. A Formal Framework for Mobile Robot Patrolling in Arbitrary Environments with Adversaries[J]. Arxiv preprint arXiv:0912.3275,2009.
    [67]Basilico N, Gatti N, Rossi T, et al. Extending Algorithms for Mobile Robot Patrolling in the Presence of Adversaries to More Realistic Settings[A]. Proceedings of the 2009 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology-Volume 02[C]. IEEE Computer Society,2009:557-564.
    [68]Berman S, Halasz A, Hsieh M A, et al. Optimized Stochastic Policies for Task Allocation in Swarms of Robots[J]. Robotics, IEEE Transactions on,2009,25:927-937.
    [69]许智辉,李执力.无人机武器化趋势及其对未来战争的影响[J].飞航导弹,2004,6:44-46.
    [70]徐树方.矩阵计算的理论与方法[M].北京大学出版社,1995.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700