钢筋混凝土异形柱框架抗震性能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着生活水平的不断提高,人们对住宅建筑的要求越来越高。传统的砖混结构住宅由于房屋分隔单一,开间受到限制,可变性及抗震性均相对较差,已无法满足人们对建筑使用功能的不同要求。因此在住宅设计上较普遍地采用了异形柱框架这种新型结构,该结构不但具有一般框架结构整体性较强,抗震延性好的优点,而且在住宅房间内可完全消除柱楞角,增加了使用面积,便于家具布置,满足使用要求,同时可以提供大空间及住户拆改装修的便利条件。广州,深圳等大中型城市已经广使用这种结构,并已获得很好的社会效益和经济效益。
     本文利用ANSYS有限元分析软件,对等肢异形柱、不等肢异形柱和底层加支撑的等肢异形柱三种不同结构建立有限元模型,进行模态分析,对比三种结构的动力特性(频率、振型)作为动力分析的基础。对模型输入天津波、EI-Centro波、人工合成波进行动力时程分析,对比在不同地震波作用下各结构侧向最大位移、层间位移、层间位移角以及各柱子的轴力、弯矩、轴压比等特性。分析各框架结构在地震作用下的变形特性及内力分布规律。结论如下:
     1.在同一地震波作用下等肢异形柱结构刚度最小,其次是不等肢异形柱结构,加支撑的异形柱结构刚度最大,且轴压比依次减小,抗震性能依次提高。
     2.异形柱结构的薄弱层在第二层,增大异形柱的肢长可以减小底层位移值但作用不十分明显,在底层加支撑则可以有效地控制底层薄弱现象。
     3.在同一结构中,角柱、边柱、中柱在地震作用下轴力依次增加,所以在同样的地震强度下,应加大中柱的截面或配筋率,以此来增加其截面承载力。
In recent years, with the continuous improvement of living standards, the demand for high-rise residential growed. The traditional brick structure single-room so the residential segregation are limited, aseismatic performance and variability are relatively poor. It has failed to meet the requirements of the building different functions. So the new structure with special-shaped column are more widespread used in residential design. It is not only strong in general and the advantages of aseismatic ductility as framework structure, but also Residential rooms can be completely eliminated in the corner-corner of column to increase the area and facilitate the use of furniture and meet the requirements of design.It can provide larger room and the convenience of decoration demolition,renovation.In Guangzhou, Shenzhen and other large and medium-sized cities,this structure has been widespread used, and get a good social and economic.
     Filed using finite element analysis software, structure finite element model for the modal analysis ,such as the equal limb special-shaped columns,inequiaxial special-shaped columns and the special-shaped column with support in the bottom three different special-shaped columns structure. Contrast of the dynamic properties of three different structure (frequency, vibration mode) as the basic of dynamic analysis. Importing tianjin wave ,EI-Centro wave ,and synthetic wave and do dynamic analysis. In contrast the largest lateral displacement of the structure under different seismic waves, story drift, the angle of story drift and the axial force, moment, axial compression ratio and other characteristics, aseismatic analysis of the structural framework ,the internal force distribution and variability characteristics. Conclusion as follows:
     1.Under the same seismic wave ,The equal limbs special-shaped columns has minimum stiffness, followed unequal special-shaped column structure, and the special-shaped column with supported is the largest, the axial compression ratio decreasing in order but the aseismatic performance improve followed.
     2.The weakness tier of the special-shaped column structure is in the second floor , enhancing the limb of the special-shaped column often can diminish the value of bottom displacement but the effect is not very obvious ,adds supporting in the bottom being able to control weak phenomenon of bottom effectively.
     3.In the same structure, the axil stress of column increases in order of corner column , edge column, and middle column under earthquake effect, so under same earthquake intensity,in order to increase the carrying capacity of cross section,respond to enlarging the cross section of middle column or match bar rates .
引文
[1] 刘大海,杨翠如,钟锡根.高层建筑抗震设计.北京:中国建筑出版社,1993.
    [2] 朱镜清 结构抗震分析原理 地震出版社,2002.11.
    [3] 朱伯龙,等 结构抗震实验[M]地震出版社,1989.2.
    [4] 中国土木工程学会.中国土木工程指南. 科学出版社,2000.
    [5] 吕西林,周德源,李思明,陈以一,陆浩高. 建筑结构抗震设计理论与实例[M] 山东:同济大学出版社,2002.81.
    [6] 丰定国,等 1 工程结构抗震[M] 地震出版社,2002.101.
    [7] 韩传峰,李春祥,张群慧.基础和屋顶隔震混凝土结构的地震振动台实验研究.地震工程与工程振动,2004:24(1):141~14.
    [8] 瞿伟廉,陈静,徐幼麟,等.带裙房高层建筑地震反应控制振动台试验研究.地震工程与工程振动,2004:24(3):64~72.
    [9] 吕西林,邹昀,卢文胜,等.上海环球金融中心大厦结构模型振动台抗震试验.地震工程与工程振动,2004:24(3):57~63.
    [10] 沈聚敏,周锡元,高小旺,等.抗震工程学.北京:中国建筑工业出版社,2000.
    [11] Rairrao R, Vaz Ct Shaking tabletesting of civil engineering structures-the LNEC 3D simulator experience[A]. Paper2129,12th World Conference on Earthquake Engineering. Elsevier Science, 2000.
    [12] Ogawa N, OhtaniK, Nakamura etal Development of core technology for 3-d 1200 tonne large shaking table[A]. Paper 2156 12th World Conference on Earthquake Engineering. Auckland, New Zealand 2000.
    [13] Ogawa N, Ohtani K, Katayama T, etal Construction of a three-dimensional large-scale shaking table and development of core technology Philo T Roy Soc A 2001; 359( 1786):1725- 1751.
    [14] Bmneau M, Reinhom A, Constantinou M, etal the UB-Node of the NEES network.
    [15] Hakuno M, Shidawara M, Hara T Dynamic destructive test of a cantileverbeam, controlled by an analog-com-puters controlled by an analog-com-puter.transactions of Japan Society of Civil Engineering 1969,171: 1-9.
    [16] takanashi K Seismic failure analysis of structures by computer pulsator on-line system{J}. d Inst Of industrial Sci 1974 26( 11): 13-25.
    [17] takanashi K, Nakashima M. Japanese activities on on-line testing. Journal of Engineering Mechanics 1987, 113(7): 1014-1032.
    [18] Mahin SA, Shing PSB,the tewalt CR, etal Psudo dynamic testing method-current status and future directions. Journal of Structural Engineering 1989, 115( 8): 2113-2128.
    [19] Chung WJ Yun CB Kim NS eta1 Shaking table and pseudodynam is tests for the evaluation of the seism is perform ante of base-isolated structures. Engineering Structure 1999, 21(4): 365-379.
    [20] Nakashima M, Kato H, Takaoka E Development of real-time pseudo dynam is testing[ J]. Earthquake Engineering and Structural Dynamics.1992, 21: 79-92.
    [21] Horiuch iT Nakagawa M, Sugano M, etal on Earthquake Development of a real-time hybridexperimental system with actuator delay compensation[A]. Paper 660, 11th World Conference Engineering. Elsevier Science, 1996 [19].
    [22] Horiuch iT moue M, Konno etal Real-time hybrid experimental system with actuator delay compensation and its application to a piping system with energy absorbers . Earthquake Engineering and Structural Dynamic 1999 28(10): 1121-1141.
    [23] Daroy AP, Blakeborough A, Williams MS Real-time substructure tests using hydraulic actuators Journal of Engineering Mechanics ASCE 1999 125( 10): 1133-1139.
    [24] Nakashima M, Masaoka, Real-time on-line test for MDOF system. Earthquake Engineering and Structural Dynamic 1999, 28(4): 393-420.
    [25] Horiuch iT moue M, Konno T, etal Development of a real-time Hybrid experimental system using a shaking table [A]. Paper 0843 12th World Conference on Earthquake Engineering. Auckland New Zealand 2000.
    [26] Igarashi A, Iemura H, Suwa T Development of substructured shaking table test method [A]. Paper 1775, 12th World Conference on Earthquake Engineering {C}. Auckland, New Zealand, 2000.
    [27] Kobayashi H, Tamara K Tanimoto S Hybrid vibration experiments with a bridge foundation system model. Soil Dynamics and Earthquake Engineering 2002 ( 9-12): 1135-1141.
    [28] Blakeborough A, W illiams MS Darby AP, etal The development of gal-time substructure testing [J]. Philos T Roy Soc A, 2001, 359( 1786):1869-1891.
    [29] Nakashima M. Development potential and limitations of real-time online (pseudo-dynamic)testing. Philos T Roy Soc A, 2001, 359(1786) 1851-1867.
    [30] 茹继平,肖岩.美国地震工程模拟网系统计划及在我国实现远程协同结构试验的设想.建筑结构学报,2002,23(6):91-94.
    [31] Zeng Xiangwu. Earthquake simulation in geotechnical engineering.中国土木工程学会第九届土力学与岩土工程学术会议论文集.北京,清华大学,1993.228-233.
    [32] Bleiweis P, Holmes W, Isenberg J etal Network for earthquake engineering simulation.
    [33] Dyke S Caicedo JM. The university consortium on instructional shake tables. Proceedings of the ICANCEER Conference. Harbin,china, 2002,15 - 20.
    [34] Cewe AJ Severn RT.the European collaborative programme on evaluating the perfom}ance ofshaking tables. Philos T Roy Soc A, 2001,359(1786) 1671-1696
    [35] 曹万林 钢筋混凝土 L 形柱的非线性分析 世界地震工程,1995,11(4).
    [36] 郭培成 钢筋混凝土异形柱框架结构抗震性能分析研究[M] 河北工业大学 2006,2.
    [37] 高向宇 多层异形柱框架结构隔震性能的实验研究 世界地震工程 1997 年 12 月,13 卷 4 期.
    [38] 曹万林 不同方向周期反复荷载作用下 T 形柱的性能。地震工程与工程振动,15 卷 4 期.
    [39] 天津市工程建设标准 钢筋混凝土异形柱结构技术规程(GB29-16-2003),天津市建设管理委员会.
    [40] 黄竞 异形柱大开间框架结构抗震时程分析[M] 河北工业大学 2005,1.
    [41] 赵西安.现代高层建筑结构设计.北京:科学出版社,2000:206-286.
    [42] 焦俊婷,李淑春 异形柱框架结构的弹塑性时程分析. 北京航空航天大学嘉应学院学报,2006,24(3).
    [43] 沈聚敏,周锡元,高小旺,刘晶波.抗震工程学. 北京:中国建筑工业出版社,2000.
    [44] GB5001122001,建筑抗震设计规范[S].2001.
    [45] 王勖成,邵 敏.有限单元法基本原理和数值方法第 2 版[M].北京:清华大学出版社,1997.
    [46] 黄 怡,王元清,石永久 框架支撑钢结构抗震性能的有限元分析。 四川建筑科学研究,2005,31(6).
    [47] 高兑现,柯江,王莲花 异形柱框架结构抗震性能分析 西安理工大学学报 2005,21(3).
    [48] 傅剑平.钢筋混凝土框架节点抗震性能与设计方法研究. 重庆:重庆大学学报,2002.
    [49] 傅剑平 , 张川 , 白绍良 . 钢筋混凝土抗震框架节点各机构传递剪力的定量分析 . 建筑结构,2005,(1):91-96.
    [50] 傅剑平,陈小英,陈滔,等.中低剪压比框架节点抗震机理的试验研究 12.重庆建筑大学学报,2005,27,(1):41-46.
    [51] 傅剑平,张笛川,陈滔,等.中等偏高剪压比抗震框架节点传力机理及非弹性反应性能的试验研究.重庆建筑大学学报,2005,27(6):84-90.
    [52] 林东.高轴压比下钢筋混凝土框架中间层中节点抗震性能试验研究.重庆:重庆建筑大学,2000.
    [53] 易日.使用 ansys6.1 进行结构力学分析 北京大学出版社.
    [54] 尚晓江 邱峰 赵海峰 李文颖等 Ansys 结构有限元高级分析方法与范例应用 中国水利水电出版社.
    [55] 郝文化 叶裕明 刘春山 沈火明 肖新标 等 Ansys 土木工程应用实例 中国水利水电出版社.
    [56] 李权 Ansys 在土木工程中的应用 人民邮电出版社.
    [57] 过镇海,时旭东.钢筋混凝土原理和分析[M].北京:清华大学出版社,2003.56271.
    [58] 方鄂华,钱家茹.我国高层建筑抗震设计的若干问题[J].土木工程学报,1999,(1).
    [59] 曹万林,王光远.不同方向周期反复荷载作用下 L 形柱的性能[J].地震工程与工程振动,1995,15(1).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700