低温等离子体辅助催化型颗粒物捕集器净化柴油机尾气污染物的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
低温等离子体辅助催化型颗粒物捕集器(NTP/CDPF)技术具有协同脱除PM和NOx的优势,是柴油机尾气后处理领域的研究热点之一。本文通过对钙钛矿La-K-Co-Fe体系催化剂的表征和活性评价,筛选出活性较高的模型催化剂,并探讨了催化反应机理;同时,研究了NTP对柴油机尾气的净化规律。为考查实际净化效果,在柴油机台架上研究了NTP/CDPF催化净化系统对柴油机有害污染物的净化效果及NTP和催化剂对颗粒物捕集器再生温度的影响,为NTP/CDPF系统的推广应用奠定了理论基础。论文主要结论如下:
     1. K、Fe分别对LaCoO_3中La和Co的部分取代会导致催化剂晶格发生畸变,同时可使部分B位Co~(2+)~~(3+)氧化为Co~(3+)。
     2. La_(1-x)K_xCoO_3能大幅降低碳烟与O2反应的最大燃烧速率温度(Tmax)和活化能(Ea),而LaFeyCo1-yO_3对反应的影响不显著,其中La0.6K0.4CoO_3可将Tmax降低至400℃,Ea降低至41.6kJ/mol;钙钛矿催化剂La_(1-x)K_xCoO_3(x≤_(0.5))和LaFeyCo1-yO_3(y≤_(0.8))均能降低碳烟在NOx气氛中的起燃温度(Ti)和峰值温度(Tp),其中La_(0.9)K0.1CoO_3可使碳烟的起燃温度降低至100℃,峰值温度降低至105℃。
     3.取代元素与取代量的不同对催化剂去除柴油机尾气中NOx的净化效率及最佳效率温度范围影响极大。La_(1-x)K_xCoO_3(0.1≤x≤_(0.5))在375℃~525℃范围内具有较高的催化活性,而LaFeyCo1-yO_3(0.1≤y≤0.6)在275℃~375℃范围内具有较高催化活性,其中La_(0.8)K0.3CoO_3和LaFe_(0.5)Co_(0.5)O_3对NOx的净化效率可达50%。
     4.当输入能量较低(电压:7.5kV)时,NTP对NOx的净化效率可达75%,但对PM和CO的净化效率较低。当输入能量较高(电压:10kV)时,NOx的浓度增大,PM的净化效率却高达86%,干碳烟的净化效率接近100%,SOF的净化效率达80%,饱和烷烃和芳香烃的净化效率分别为90%和65%,THC的净化效率可达83%。NTP在柴油机排气污染物净化过程中存在输入能量窗口问题。
     5. NTP/CDPF(钙钛矿型)催化净化系统能有效净化柴油机尾气中NOx、PM、HC和CO等污染物。在实验工况范围内,对PM的去除效率可达82%,对NOx的净化效率可达31%,对HC的净化效率可达88%,对CO的净化效率可达12%。催化净化系统的空速越高,净化效率越低。
     6.再生措施、颗粒物加载程度和催化剂种类是控制CDPF再生温度的重要因素,NTP可使钙钛矿CDPF的再生温度降低至30_(0.5)℃。
Due to the potential of simultaneously reducing particulate matter (PM) and nitrogen oxides (NOx) emissions, non-thermal plasma coupled with catalytic diesel particulate filter technology (NTP/CDPF) has been given more attentions for its application on the exhaust aftertreatment systems. In the present study, the prototype catalyst combined with highest activity was screened out through the characterization and catalytic activity evaluation of La-K-Co-Fe perovskite-type catalysts and catalytic reaction mechanism was discussed. Also, the removal effects of NTP on diesel exhaust emissions are investigated. The practical application of NTP/CDPF system on diesel exhaust emissions are performed on a bench test, and the influences of NTP and the catalysts on the regeneration temperature of diesel particulate matters were studied The investigations will benefit the further use of NTP/CDPF system and provide a theoretical foundation.The major conclusions of this dissertation can be summarized as follows:
     1. The partial substitution of K, Fe for La, Co in LaCoO_3 respectively results in perovskite cell deformation and can oxidize a part of Co~(2+)~~(3+) at B site to Co~(3+).
     2. La_(1-x)K_xCoO_3 is able to significantly reduce the temperature at which the soot combustion rate is maximum (Tmax) and reaction activation energy (Ea) of soot oxidation with O2, while LaFeyCo1-yO_3 has little influence on the reaction. Among them, La0.6K0.4CoO_3 can decrease Tmax to 400℃and Ea to 41.6kJ/mol. Both La_(1-x)K_xCo1-yFeyO_3 (x≤0.5) and LaFeyCo1-yO_3 (y≤0.7) can decrease Ti (temperature at which the soot ignites) and Tp (temperature at which CO2 concentration is the highest) values in NOx atomsphere. Among all the developed perovskite-type catalysts, La_(0.9)K0.1CoO_3 is discovered to have the highest catalytic activity in simultaneous reduction of PM and NOx emissions, it could decrease Ti to 100℃and Tp to 105℃
     3. For NOx removal, the dopant and doping amount play an important role on the reduction efficiency and the effective temperature window of these catalysts. La_(1-x)K_xCoO_3 (0.1≤x≤0.5) exhibits higher catalytic activity in the range of 375℃~ 525℃, while LaFeyCo1-yO_3 (0.1≤y≤0.6) shows higher catalystic activity in the range of 275℃~375℃. La0.7K0.3CoO_3 and LaFe_(0.5)Co_(0.5)O_3 could produce 50% reduction in NOx respectively.
     4. By means of NTP,75% reduction in NOx occur at lower input energy (voltage: 7.5kV), while the removal efficiencies of PM and CO are rather low. With increasing of the input energy to 10kV, the use of NTP leads to an increase of NOx concentration in exhaust gas, however PM, dry soot, SOF, aromatic, PAHs and HC are efficiently removed with removal efficiencies of 86%, 100%, 80%, 90%, 65% and 83% respectively. The trade-off between NOx and other pollutants exists when altering the input energy of NTP.
     5. NTP/CDPF system is available to abate the toxic exhaust emissions, such as NOx、PM、HC and CO, from diesel engine. Under the engine operation conditions selected, the reductions in PM, NOx, HC and CO reach 82%, 31%, 88% and 12% respectively. Meanwhile, the removal efficiencies decrease with enhancing the space velocity in the system.
     6. Regeneration method, PM mass trapped in the DPF and catalyst type are the most important factors to control the Treg of DPF, and NTP could decrease the Treg of perovskite-type DPF to 30_(0.5)℃.
引文
[1] www.chinaenergy.gov.cn
    [2] Cowland C., Gutmann P., Herzog P. L.,美国客车用柴油机,国外内燃机,2005,2:1~8
    [3]周龙保,刘巽俊,高宗英,内燃机学(M),北京:机械工业出版社,1999.
    [4] Maric D., Burrows J. P. , Formation of N2O in the Photolysis/Photoexcitation of NO, NO2 and Air [J]. Journal of Photochemistry and Photobiology A: Chemistry,1992,66(2):291~312
    [5]张延峰,宋崇林,成存玉等,车用柴油机排气颗粒物中有机组分和无机组分的分析,燃烧科学与技术,2004,10(3):197~201
    [6] Wang Yafen; Huang Kuolin.,Emission of Fuel Metals Content From a Diesel Vehicle Engine [J],Atmopheric Environment,2003,37):4637~4643
    [7] Miyabara Y., Hashimoto S., Sayai M et al.,PCDDs and PCDFs in Vehicle Exhaust Particulates in Japan [J],Chemosphere,1999,39(1):143~150
    [8] Broz J., Grabic R., Marklund S. et al.,The Effect of Oils on PAH, PCDD, PCDF and PCB Emssions From a Spark Ignition Engine Fueled with Leaded Gasoline [J],Chemosphere,2000,41:1905~1991
    [9] Bosch R., Stuttgart G.,Gasoline-Engine Management "SAE Society for Automotive Engineers", 1st edition, 1999
    [10] Bosch,Automotive Handbook, "SAE Society for Automotive Engineers", 6th Edition,2004
    [11] Vogt E. T. C. , van Dillen A. J., Geus J. W. et al.,Selective Catalytic Reduction of NOx with NH3 over a V2O5/TiO2 on Silica Catalyst [J],Catalysis Today,1988,2(5):569~579
    [12] Iwamoto M.,Proceedings of Meeting of Catalytic Technology for Removal of Nitrogen Monoxide,Tokyo, Japan:1990,17
    [13] Held W.,Koenig A.,Richter T.et al.,Catalytic NOx Reduction in Net Oxidizing Exhaust Gas [J],SAE Paper,1990,900496
    [14] Iwamoto M.,Yahiro H.,Novel Catalytic Decomposition and Reduction of NO [J],Catalysis Today,1994,22(1):5~18
    [15] Tamaru K.,Mills G. A.,Chapter 8 Catalysts for Control of Exhaust Emissions,Catalysis Today,1994,22(2):349~360
    [16] Amirnazmi A.,Benson J. E.,Boudart M.,Oxygen Inhibition in the Decomposition of NO on Metal Oxides and Platinum [J],Journal of Catalysis,1973,30(1):55~65
    [17] Spoto G., Zecchina A., Borgida A.S. et al., Cu(I)-ZSM-5 Zeolites Prepared by Reaction of H-ZSM-5 with Gaseous CuCl :Spectroscopic Characterization and Reactivity towards Carbon Monoxide and Nitric Oxide [J],Applied catalysis. B, Environmental,1994,3(2):151~172
    [18]谢有畅,朱月香,DeNOx催化剂研究进展[J],化学通报,1996,2:6~11
    [19] R. J. H. Voorhoeveet al.,Nitric Oxide and Perovskite Catalyst & Solid State and Catalytic Chemistry & The Catalytic of Nitrogen Oxides,Rl Klimisch et al ed. New York,1977,215
    [20] J. M. D. Tascón, L. G. Tejuca, C. H. Rochester, Surface Interactions of NO and CO with LaMO3 Oxides [J],Journal of Catalysis,1985,95(2):558~566
    [21]赵震,杨向光,吴越,在Nd(2-x)SrxNiO(4±λ)系催化剂上NO分解反应的研究[J],科学通报,1995,40(21):1961~1964
    [22] Shimada H.,Miyama S.,Kuroda H.,Chemistry Letters,1988,1797
    [23] J. W. Hoard, L. Worsley W. C. F.,Electrical Characterization of a Dielectic Barrier Discharge Plasma Device [J],SAE Paper,1999,1999-01-3635
    [24]裴梅香,等离子体/催化同时去除氮氧化物和微粒的基础研究,[博士学位论文],上海交通大学,2004
    [25] B.M. Penetrante, R. N. Brusasco, B. T. Merritt et al.,Sulfur Tolerance of Selective Partial Oxiadation of NO to NO2 in a Plasma,SAE Paper,1999,1999-01-3687
    [26] S. E. Thomas, A. R. Martin, D.Rarbone et al.,Non-Thermal Plasma Aftertreatment of Particulates-Theoretical Limits and Impact on Reactor Design,2000,2000-01-1926
    [27] M. L. Balmer, R. Tonkyn, G. Maupin et al.,Non-thermal Plasma System Development for CIDI Exhaust Aftertreatment,SAE Paper,2000,2000-01-1601
    [28]林赫,高翔,骆仲泱等,烟气湿度对自由基簇射脱除烟气中NOx的影响[J],中国电机工程学报,2002,22(8):150~155
    [29] Neeft J. P. A.,Makkee M.,Moulijn J. A.,Diesel Particulate Emission Control [J],Feul Processing Technology,1996,47):1~69
    [30] Howard J. B.,Kausch J. W. J.,Soot Control by Fuel Additives [J],Progress in Energy and Combustion Science,1980,6:263
    [31] Truex T. J.,Pierson W. R.,mckee et al.,Effects of Barium Fuel Additive and Fuel Sulfur Level on Particulate Emissions [J],Environmental Science & Technology,1980,14:1121
    [32] Okada H.,Effects of Barium Compounds on Soot Formation in Single Spray Combustion [J],Oxidation Communications,1983,4:273
    [33] Miyamoto, Z.Hou, H.Ogawa , Catalytic Effects of Metallic Fuel Additives on Oxidation Characteristics of Trapped Diesel Soot [J],SAE Paper,1988,881224
    [34] Salvat O.,Passenger Car Serial Application of a Particulate Filter System on a Common Rail Direct Injection Diesel Engine [J],SAE Paper,2000,2000-01-0473
    [35] Coroller P.,Performances and Durability of a Fleet of Five PSA 607 Taxis with DPF,Hars der Technik,Munich:2002,4~5
    [36] (日)中山修,柴油机排放颗粒物的泡沫陶瓷催化剂及其催化反应特性[J],小型内燃机,1989,5
    [37]张广龙,柴油机碳烟微粒催化转化研究,[博士学位论文],大连理工大学,1993
    [38] Guo G., Xu N., Liang P.M. et al.,Performance of a Catalyzed Diesel Particulate Filter System During Soot Accumulation and Regeneration,SAE Paper,2003,2003-01-0047
    [39] J.R. Warner, J.H. Johnson, S.T. Bagley et al.,Effects of a Catalyzed Particulate Filter on Emissions From a Diesel Engine: Chemical Characterization Data and Particulate Emissions Measured with Thermal Optical and Gravimetric Methods,SAE Paper,2003,2003-01-0049
    [40] Min J.S., lee C.Q., Kim S.H., et al.,Development and Performance of Catalytic Diesel Particulate Filter Systems for Heavy-Duty Diesel Vehicles,SAE Paper,2005,2005-01-0664
    [41] Hardenberg H. O.,Urban Bus Application of a Ceramic Fiber Coil Particulate Trap,SAE Paper,1987,870011
    [42]张春润,姜大海,资新运等,柴油机排气微粒捕捉器燃气再生技术研究[J],内燃机学报,2000,20(5)
    [43] Kitagawa J., Hijikata T., Yamada S.,Electric Heating Regeneration of Large Wall-Flow Type DPF,SAE Paper,1991,910136
    [44]段家修,龚晓辉,许斯都等,柴油机微粒过滤器电加热再生技术的试验研究[J],内燃机学报,1998,17(1)
    [45] Ohno K. , Taoka N., Ninomiya T. et al.,SiC Diesel Particulate Filter Application to Electric Heater System,SAE Paper,1999,1999-01-0464
    [46] M. D. Rumminger, Zhou X., K. Balakrishnan et al,Regeneration Behavior and Transient Thermal Response of Diesel Particulate Filters,SAE Paper,2001,2001~11342
    [47]杨德胜,高希彦,王宪成等,柴油机微粒过滤器电加热再生时机的研究[J],内燃机工程,2003,24(4):42~44
    [48] Garner C. P.,Dent J. C.,Microwave Assisted Regeneration of DieselParticulate Traps,SAE Paper,1989,890174
    [49]张春润,微波能应用于柴油机排气微粒过滤体再生机理的研究[J],内燃机学报,1992,9(4)
    [50]张春润,柴油机排气微粒泡沫陶瓷过滤体微波再生温度场的研究[J],内燃机学报,1995,12(4)
    [51]宁智,资新运,泡沫陶瓷过滤体微波再生过程的理论分析[J],燃烧科学与技术,1998,17(3)
    [52]宁智,资新运,刘军民,过滤体微波多模箱式再生系统的理论分析[J],内燃机学报,1998,17(1)
    [53] Gautam M. , Popuri S. , Rankin B.et al. , Development of a Microwave-Assisted Regeneration System for a Ceramic Diesel Particulate System [J],SAE Paper,1999,1999-01-3565
    [54] Nixdorf R.D., Green J.B., M. Story J. et al.,Microwave-Regenerated Diesel Exhaust Particulate Filter [J],SAE Paper,2001,2001-01-0930
    [55]邵玉平,柴油机微粒捕集器逆向喷气再生技术研究,[博士学位论文],天津大学,2005
    [56]张洪韬,减少载货车柴油机排放物[J],国外汽车,1993,(1):20~24
    [57] Pataky G. M.,Effects of an Oxidation Catalytic Converter on Regulated and Unregulated Diesel Emission,SAE Paper,1994,940243
    [58] B.Wiedemann et al,Application of Particulate Traps and Fuel Additives for Reduction of Exhaust Emissions,SAE Paper,1984,840078
    [59] O.A. Ludecke et al,Diesel Exhaust Particulate Control by Monolith Trap and Fuel Additive Regeneration,SAE Paper,1984,840077
    [60] Simon G.M. et al,Diesel Pariculate Trap Regeneration Using Ceramic Wall-Flow Traps, Fuel Additive, and Supplemental Electrical Igniters [J],SAE Paper,1985,850016
    [61] William I. et al,Reliable Catalytic Particulate Trap Regeneration by Exhaust Hydrocarbon Enrichment [J],SAE Paper,1993,932661
    [62] T. Yamaguchi et al,Simultanoes Reduction of NOx and Soot ExhaustedFrom Diesel Engine,SAE Paper,1994,940457
    [63] B.Ernstwendelin et al,Combustion of Different Regeneration Methods for Diesel Pariculate Trap,SAE Paper,1998,980541
    [64] Yoshida K., Makino S., Sumiya et al.,Simultaneous Reduction of NOx and Particulate Emissions From Diesel Engine Exhaust,SAE Paper,1989,892046
    [65] R. Allansson et al.,The Use of the Cotinuously Regenerating Trap (CRT) System to Control Diesel Emissions.,Better Air Quality Motor Vehicle Control and Technology Workshop 2000,2000
    [66]苏庆运,柴油机微粒过滤器连续再生的试验研究,[硕士学位论文],大连理工大学,2001
    [67] Cooper Barry; Thoss James E.,Role of NO in Diesel Particulate Emission Control,SAE Paper,1989,890404
    [68] Hammerle P.H., Ketcher D., Horrocks R.W.,Emissions from Diesel Vehicle with and without Lean NOx and Oxidation Catalysts and Particulate Traps,SAE Paper,1995,952391
    [69] Page D. L.,Macdonald R. J.,Edgar B. L.,The QuadCATTM Four-Way Catalytic Converter: An Integrated Aftertreatment System for Diesel Engines,SAE Paper,1999,1999-01-2924
    [70] Martin A.R. et al,An Integrated SCR and Continuously Regenerating Trap System to Meet Future NO and PM Legislation,SAE Paper,2000,2000-01-0188
    [71]裴梅香,林赫,上官文峰等,等离子体在同时去除Nox和碳烟催化反应中的作用[J],物理化学学报,2005,21(3):255~260
    [72] Yamazoe N; Teraoka Y , Oxidation Catalysis of Perovskites - Relationships to Bulk Structure and Composition (Valency, Defect, etc.) [J],Catalysis Today,1990,(8):175~199
    [73] J. P. A. Neeft, M. Makkee, J. A. Moulijn,Catalysts for the Oxidation of Soot from Diesel Exhaust Gases.Ⅰ. An Exploratory Study [J],AplliedCatalysis B: Environmental,1996,8(1):57~78
    [74] J. P. A. Neeft, O. P. V. Pruissen, M. Makkee et al.,Catalysts for the Oxidation of Soot from Diesel Exhaust GasesⅡ. Contact Between Soot and Catalyst under Practical Conditions [J] , Applied Catalysis B: Environmental,1997,12(1):21~31
    [75] N. Nejar, M. Makkee, M. J. Illan-Gomez, Catalytic Removal of NOx and Soot from Diesel Exhaust: Oxidation Behaviour of Carbon Materials Used as Model Soot [J],Applied Catalysis B: Environmental,2007,75(1-2):11~16
    [76] N. Nejar, M. J. Illan-Gomez,Potassium-Copper and Potassium-Cobalt Catalysts Supported on Alumina for Simultaneous NOx and Soot Removal from Simulated Diesel Engine Exhaust [J],Applied Catalysis B: Environmental,2007,70(1-4):261~268
    [77] N. Nejar, M. J. Illan-Gomez,Noble-Free Potassium-Bimetallic Catalysts Supported on Beta-Zeolite for the Simultaneous Removal of NOx and Soot from Simulated Diesel Exhaust [J],Catalysis Today,2007,119(1-4):262~266
    [78] Teraoka Y., Nakano K., Kagawa K et al.,Simultaneous Removal of Nitrogen Oxides and Diesel Soot Particulates Catalyzed by Perovskite-Type Oxides [J],Applied Catlsysis B: Environmental,1995,(5):181~185
    [79] Shangguan W. F.; Teraoka Y.; Kagawa S.,Simulatneous Catalytic Removal of NOx and Diesel Soot Particulates over Ternary AB2O4 Spinel-Type Oxides [J],Apllied Catlysis B,1996,(8):217~227
    [80] Teraoka Y., Nakano K., Shangguan W. F. et al.,Simultaneous Catalytic Removal of Nitrogen Oxides and Diesel Soot Particulate over Perovslite-related Oxides [J],Catalysis Today,1996,(27):107~113
    [81] Shangguan W. F., Teroka Y., Kagawa S., Promotion Effect of Potassium on the Catalytic Property of CuFe2O4 for the Simulteous Removal of NOxand Diesel Soot Pariculate [J],Apllied Ctalysis,1998,(16):149~154
    [82] Teroka Y.,Shangguan W. F.,Kagawa S.,Reaction Mechanism of Simultaneous Catalytic Removal of NOx and Diesel Soot Particulates [J],Research on Chemical Intermediates,2000,(26):201~206
    [83] Biamino S., Fino P., Fino D. et al.,Catalyzed Traps for Diesel Soot Abatement: in Situ Processing and Deposition of Perovskite Catalyst [J],Applied Catalysis B: Environmental,2005,61(3-4):297~305
    [84]刘光辉,催化过滤器同时去除柴油机微粒和氮氧化物的基础研究,[博士学位论文],上海交通大学,2002
    [85] S. S. Hong, G. D. Lee,Simultaneous Removal of NO and Carbon Particulates over Lanthanoid Perovskite-Type Catalysts [J],Catalysis Today,2000,63(2-4):397~404
    [86] Penetrante B. M.,Hsiao M. C.,Merritt B.T. et al.,Fundamental Limits on NOx Reduction by Plasma,SAE Paper,1997,971715
    [87] Yamamoto T.,Yang C. L.,Plasma Chemical Hybrid Process for NOx Control [J],SAE Paper,1998,982432
    [88] Penetrante B. M.,Brusasco R. M.,Merritt B. T. et al.,Feasibility of Plasma Aftertreatment for Simultaneous Control of NOx and Pariculates,SAE Paper,1999,1999-01-3637
    [89] Chun B. H., Lee H.S., Nam Ch. S. et al.,Plasma/Catalyst System for Reduction of NOx in Diesel Engine Exhaust,SAE Paper,2000,2000-01-2897
    [90] Dorai R.,Hassouni K.,Kushner M. J.,Interaction between Soot Particulates and NOx during Dielectric Barrier Discharge Plasma Remediation of Simulated Diesel Exhaust [J] , Journal of Applied Physics,2000,88(10):6060~6071
    [91] Tonkyn R., Yoon S., Barlow S. E. et al.,Lean NOx Reduction in Two Stages: Non-Thermal Plasma Followed by Heterogeneous Catalysis,SAE Paper,2000,2000-01-2896
    [92] Tthomas S. E.,Martin A. R.,Raybone D.et al.,Non-Thermal Plasma Aftertreatment of Particulates, Theoretical Limits and Impact on Reactor Design (Warrendale ed.),2000
    [93] Hoard J.,Plasma-Catalysis for Diesel Exhaust Treatment: Current State of the Art,SAE Paper,2001,2001-01-0185
    [94] Yao S.,Suzuki E.,Nakayama A.,Oxidation of Activated Carbon and Methane Using a High-Frequency Pulsed Plasma [J] , Journal of Harzardous Materials,2001,B83:237
    [95] Matsui Y.,Hahimoto M.,Sakaguchi A.et al.,Oxidation of Carbon Soot Layer Using Pulsed Discharge Plasma,SAE Paper,2001,2001-01-3511
    [96] Yao S.,Okumoto M.,Madokoro K.et al.,Pulsed Diesel Barrier Discharge Reactor for Diesel Particulate Matter Removal,AIChe Journal,2004,50(8):1901~1907
    [97] Yao S.,Okumoto M.,Yashima T.et al.,Diesel Particulate Matter and NOx Removal Using a Pulsed Corona Surface Discharge,AIChe Journal,2004,50(3):715~721
    [98] Libby W. F.,Promising Catalyst for Auto Exhaust,Science,1971,171:499~500
    [99] Voorhoeve R. J. H.,Remeika J. P.,Freeland P. E.et al.,Rare Earth Oxides of Manganese and Cobalt Rival Platinum for the Treatment of Carbonmonoxide in Auto Exhaust,Science,1972,177:353~354
    [100] Voorhoeve R. J. H.,Remeika J. P.,Johnson D. W.,Rare Earth Manganites Catalysts with Low Ammonia Yield in the Reduction of Nitrogen Oxides,Science,1973,180:62~64
    [101] Baran E J.,Structural Chemistry and Physiochemical Properties of Perovskite - Like Materials [J],Catalysis Today,1990,(8):133~151
    [102] Fierro J. L. G.,Structure and Composition of Perovskite Surface in Relation to Adsorption and Catalytic Properties [J],Catalysis Today,1990,(8):153~174
    [103] Petunchi J. O., Lombardo E. A.,The Effect of Bulk and Surface Reduction upon the Catalytic Behavior of Perovskite Oxides [J],Catalysis Today,1990,(8):201~219
    [104] Tabata K., Misono M.,Elimination of Pollutant Gases - Oxidation of CO, Reduction and Decomposition of NO [J],Catalysis Today,1990,(8):249~261
    [105] Yamazve N., Teraoka Y., Seiyama T.,TPD and XPS Study on Thermal Behavior of Absorbed Oxygen in La1-xSrxCoO3 [J],Chemistry Letters,1981,120:1767~1770
    [106] Teraoka Y., Yoshimatsu M., Yamazve N. et al.,Oxygen-Sorptive Properties and Defect Structure of Perovskite-Type Oxides [J],Chemistry Letters,1984,150:893~896
    [107] Teraoka Y., Fukuda H., Kagama S. et al. , Catalytic Activity of Perovskite-Type Oxides for the Direct Decomposition of Nitrogen Monoxide [J],Chemistry Letters,1990,217:1~4
    [108] Ishihara T., Matsuda H., Takita Y.,Doped LaGaO3 Perovskite Type Oxide as a New Oxide Ionic Conductor [J],Journal of the American Chemical Society,1994,16:3801
    [109] Ciambelli P., Cimino S., Rossi D. et al.,AMnO3 (A=La, Nd, Sm) and Sm1-xSrxMnO3 Perovskite as Combustion Catalyst: Structural, Redox and Catalytic Properties [J],Applied Catalysis B: Environmental,2000,324(24):243~253
    [110] Ishihara T., Ando M., Sada K. et al.,Direct Decomposition of NO into N2 and O2 over La(Ba)Mn(In)O3 Perovskite Oxide [J],Journal of Catalysis,2003,220:104~114

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700