用户名: 密码: 验证码:
空间机器人目标捕获的运动规划研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着航天科技和机器人技术的发展,利用空间机器人提供在轨服务成为航天领域的研究热点,而目标捕获作为自主在轨服务的关键技术备受关注。本文围绕自由飘浮空间机器人目标捕获的运动规划问题展开研究。论文在建立空间机器人数学模型的基础上,分别讨论了奇异相容的精确路径跟踪问题、机械臂位形与基座姿态的协同规划问题、目标捕获时基座最小扰动规划问题以及目标捕获后惯性参数不精确情况下的自适应规划问题。
     自由飘浮空间机器人有着与地面固定基座机器人不同的运动特性。在建立运动学模型时,以机械臂末端的位置与速度方程为基础,结合动量守恒方程推导出广义雅可比矩阵;在建立动力学模型时,从机器人的一般动力学模型推导出自由飘浮状态下的动力学方程;最后,给出了本文研究的空间机器人系统,并分析了模型的等效特性、奇异特性以及非完整特性,为后续章节的研究奠定了基础。
     奇异性是机械臂的固有属性,空间机械臂也不例外。当空间机械臂陷入奇异位形的时候,传统的奇异回避方法往往会带来机械臂末端轨迹的偏离。本文采用奇异相容的零空间方法,分析了空间机器人通过奇异区域时精确跟踪期望路径的条件,并将在线规划问题转换为非线性控制问题,提出了一种“零空间投影+非线性控制+指令滤波”的关节速度规划框架,设计了相应的控制律与指令滤波器。仿真结果表明,所设计的规划方法无论是在奇异区域还是在非奇异区域都能实现机械臂末端对期望路径的精确跟踪,而且能够确保所规划的关节速度处于给定范围之内。
     在点到点规划过程中,不仅需要控制机械臂位形,还需要考虑机械臂的运动给基座姿态带来的扰动。本文首先研究机械臂构形与基座姿态的协同规划问题。在分析系统可控性的基础上,构建了对于线性状态反馈的不变流形,分析了不变流形的物理意义,并基于不变流形设计了分段控制器。该控制器先将机械臂构形与基座姿态调整到不变流形之上,然后沿该流形调整到期望状态。最后结合虚拟机械臂建模方法,将机械臂构形与基座姿态的协同规划扩展到机械臂末端位形与基座姿态的协同规划。仿真结果表明,所设计的方法能将机械臂位形与基座姿态同时调整到期望状态。
     在捕获运动目标时,机械臂末端与目标的碰撞可能带来基座角动量的改变。角动量的改变会带来角速度的改变,从而导致基座姿态的扰动。本文着重研究目标捕获时基座角速度的扰动问题。在建立了碰撞动力学模型的基础上,分析了固定位形下碰撞接触点的相对速度与基座角速度扰动量的关系,设计了目标捕获时基座角速度零扰动的关节速度规划方法;然后讨论了采用零扰动规划时碰撞过程中角动量的转移情况,并采用偏移动量方法对零扰动规划进行了优化。仿真结果表明,所设计的规划方法不仅可以避免目标捕获时碰撞给基座带来角速度扰动,同时加快了对目标角动量的吸收速度,有利于捕获后的运动控制。
     与地面固定基座机械臂不同的是,空间机器人的运动学中含有动力学参数。在捕获目标后,动力学参数发生了变化,这给规划带来较大困难。本文详细推导了速度方程和动量守恒方程关于动力学参数的线性化形式,并以机械臂末端位置和基座姿态为输出量,提出了一种不需加速度信息的关节空间自适应规划方法;同时,为了加快参数的收敛速度,增加了跟踪误差的预测环节,设计了利用跟踪误差和预测误差的复合自适应规划方法,并对其稳定性和收敛性进行了证明。仿真结果表明,所设计的自适应规划方法能够有效地对不精确的动力学参数进行调整,并能保证任务空间轨迹跟踪误差的渐近收敛。
     最后,总结了论文的工作析了不足之处,并提出了今后的研究重点。
Along with the developments of aerospace science and technology, On-Orbit Servicing operated with assist of space robots is a hotspot of researches in the field of aerospace, and the target capture attracts much attention of researchers as the key techniques of the OOS. The motion planning of free-floating space robots for target capture is studied in this dissertation. Based on the analysis of kinematics and dynamics, four problems are discussed. The singularity-consistent trajectory tracking are discussed firstly, and then the coordinated planning for the manipulator and the base orientation is discussed. Thirdly, the zero-disturbance planning during the target capture is discussed. At last, the adaptive planning with dynamic parameter uncertainties is discussed during the post-impact phase.
     There are many differences between the motion characteristics of the space robot and that of the fixed-base robot. The position equation and velocity equation are presented at first. And the generalized Jacobian is derived with the momentum conservation equation. Then the dynamics of free-floating space robot is established. At last, space robot systems studied in the dissertation are presented and some characteristics of the system such as equivalences, singularities, and the nonholonomy are discussed, which lay the groundwork for the researches in the following chapters.
     Singularities are the inherent properties of the manipulator, and there are no exceptions for the space robot. With the traditional planning method, the trajectory of the end-effector might be departed from the expected trajectory when the desired path passes through singularities. In this dissertation, based on the singularity-consistent null space approach, conditions for prisely tracking passing through singularities are analyzed firstly, and then trajectory generation is transformed to a nonlinear control problem. The frame for joint velocity planning is constructed as“Null-space Approach + Nonlinear Control + Command Filter”. The control law and the command filter are constructed respectively. Simulation results show that the path following by the end-effector is realized precisely under the limitation of joint velocities whenever the desired path is in or out of the singular region.
     In the process of point-to-point planning, not only the configuration of the manipulator but also attitude disturbances of the base need to be considered. In this dissertation, the coordinated planning for the configuration of the manipulator and the base orientation is studied firstly. An invariant manifold with a linear state feedback is constructed, and its physical meaning is explained. A piecewise controller is designed, stabilizing the system states to the invariant manifold and then to the desired states along the manifold. And then combined with the Virtual Manipulator approach, the planning method is extended to the coordinated planning of the configuration of the end-effector and the base orientation. Simulation results show that the configuration of the manipulator and the base orientation can reach their desired values simultaneously with the designed controller.
     During the capture of a dynamic target, the momentums of the target are transferred to the robot system. The change of angular momentum might bring the change of angular velocity, and the base orientation might be disturbed. In this dissertation, the disturbance of the angular velocity of the base is discussed. The contact dynamics is established firstly. Then the relationship between the relative velocity of the contact points and the variation of the base angular velocity is analyzed. And then the zero-disturbance planning method is designed. At last, the momentum transformation during the capturing phase is discussed, and the full bias momentum approach is applied to optimizing the zero-disturbance planning method. Simulation results show that angular velocity variation of the base is avoided, and the angular momentum transformation is quickened. This facilitates the motion control of the manipulator during the post-impact phase.
     Different from the fixed-base manipulator, the kinematics of the space manipulator should take dynamic parameters into consideration. The dynamic parameters are changed after the capture operation. This brings difficulties to the motion planning of the space robot. In this dissertation, the linearization for the kinematics and the momentum conservation law with respect to dynamic parameters is discussed firstly. Then the output state is constructed as the combination of the end-effector position and the base orientation. The adaptive planning algorithm is designed without the acceleration measurement. In order to improve the convergence, with an additional predicting module, a composite adaptive planning method is presented and the stability and convergence are analyzed. Simulation results show that the tracking error in task space is asymptotically stabilized to zero with the designed planning method.
     Finally, main contents of this dissertation are summarized and key points for future researches are discussed.
引文
[1]陈小前,袁建平,姚雯等.航天器在轨服务技术[M].北京:中国宇航出版社,2009:8~9.
    [2] Hirzinger G, Brunner B, Dietrich J, et al. ROTEX-The First Remotely Controlled Robot in Space[C]. //Proceedings of the IEEE International Conference on Robotics and Automation, San Diega, 1994:2604~2611.
    [3] Oda M, Kibe K, Yamagata F. ETS-VII, Space Robot In-Orbit Experiment Satellite[C]. //Proceedings of the 1996 IEEE International Conference Robotics and Automation, Minneapolis, Minnesota, 1996:739~744.
    [4] NASA Science. Blast Off for Orbital Express[EB/OL]. http://science.nasa.gov/science-news/science-at-nasa/2007/09mar-orbitalexpress, 2007.
    [5]徐文福,强文义,李成等.自由飘浮空间机器人路径规划研究进展[J].哈尔滨工业大学学报,2009, 41(11):1~12.
    [6] Dubowsky S, Papadopoulos E. The Kinematics, Dynamics, and Control of Free-Flying and Free-Floating Space Robotic Systems[J]. IEEE Transactions on Robotics and Automation, 1993, 9(5):531~543.
    [7] Ali S, Moosavian A, Papadopoulos E. Free-Flying Robots in Space: an Overview of Dynamics Modeling, Planning and Control[J]. Robotica, 2007, 25(5):537~547.
    [8] Longman R, Richard W. Tutorial Overview of the Dynamics and Control of Satellite-Mounted Robots[J]. Teleoperation and Robotics in Space. Progress in Astronautics and Aeronautics, 1994, 161:237~258.
    [9]张翼.空间机器人系统的运动学动力学及其控制[D].湖南长沙:国防科技大学,2000:2~3.
    [10] Andary J F, Hinkal S W, Watzin J G. Design Concept for the Flight Telerobotic Servicer[R]. USA: NASA Goddard Space Flight Center, 1988:391-396.
    [11] NASA Technical Reports Server. NASA Space Telerobotics Program[EB/OL]. http://ranier.hq.nasa.gov/telerobotics_page/telerobotics.shtm, 1998.
    [12] Friend R. Orbital Express Program Summary and Mission Overview[C]. //Proceedings of Sensors and Space Applications II, Florida, USA, March, 2008: 695803.1-695803.11.
    [13] Japan Aerospace Exploration Agency. Japanese Experiment Module Remote Manipulator System[EB/OL]. http://kibo.jaxa.jp/en/about/kibo/rms/, 2008-08-20.
    [14] Oda M. Space Robot Experiments on NASDA’s ETS-VII Satellite[C]. //Proceedings of the 1999 IEEE International Conference Robotics andAutomation, Detroit, Michigan, May, 1999:1390~1395.
    [15] Matsumoto S, Wakabayashi Y, Ohkami Y, et al. Reconfigurable Space Manipulator for In-orbit Servicing[C]. //Proceedings of Robotics 2000 Conference, Albuquerque, 2000:88~94.
    [16] Matunaga S, Hodoshima R, Okada H, et al. Ground Experiment System of Reconfigurable Robot Satellites[C]. //Proceedings of the International Conference on Control, Automation, Robotics and Vision, Singapore, 2002, 1:57~62.
    [17] NICT Web. Smart Satellite Technology[EB/OL], http://sstg.nict.go.jp/index-e.html, August, 2010.
    [18] NICT Web. More about OMS[EB/OL]. http://sstg.nict.go.jp/OLIVe/Detail_E.html, August, 2010.
    [19] Wikipedia Web. Canadarm[EB/OL]. http://en.wikipedia.org/wiki/Canadarm, June, 2007.
    [20] Wikipedia Web. Canadarm2[EB/OL]. http://en.wikipedia.org/wiki/Canadarm2, June, 2010.
    [21] Settelmeyer E, Lehrl E, Oesterlin W, et al. The Experimental Servicing Satellite ESS[C]. //Proceedings of the 21st ISTS Symposium, Omiya, Japan, 1998.
    [22] DLR Web. Ongoing Space Robotics Missions: TECSAS/DEOS[EB/OL]. http://www.dlr.de/rm/en/desktopdefault.aspx/tabid-3825/5963_read-8759/, 2001.
    [23] ESA Web. ERA: European Robotic Arm[EB/OL]. http://www.esa.int/esaHS/ESAQEI0VMOC_iss_0.html, 2009-02.
    [24] Didot F, Dettmann J, Losito S, et al. JERICO: A Demonstration of Autonomous Robotic Servicing on the Mir Space Station[J]. Robotics and Autonomous Systems, 1998, 23(1-2):29~36.
    [25]葛景华.双臂空间机器人运动学、动力学及控制[D].福州:福州大学,2005:7-8.
    [26]黄献龙,梁斌,陈建新. EMR系统机器人自主规划技术的研究[J].中国空间科学技术,2001, 3:6~11.
    [27]邵志宇,孙汉旭,贾庆轩,等.一种空间机械臂构造模块的研制[J].宇航学报,2007,28(1):147~151.
    [28]史士财,谢宗武,朱映远,等.空间机械臂地面实验系统[J].哈尔滨工业大学学报,2008,40(3):381~385.
    [29]倪风雷,刘宏,石晶新,等.空间机械臂柔性关节控制器的设计[J].哈尔滨工业大学学报,2008,40(3):376~380.
    [30]徐文福.空间机器人目标捕获的路径规划与实验研究[D].哈尔滨:哈尔滨工业大学,2007.
    [31] Wee L B, Walker M W. Space Based Robot Manipulators: Dynamics of Contactand Trajectory Planning for Impact Minimization[C]. //Proceedings of American Control Conference. USA, 1992:771~776.
    [32] Huang P F, Chen K, Xu Y S. Optimal Path Planning for Minimizing Disturbance of Space Robot[C]. //Proceedings of 9th International Conference on Control, Automation, Robotics and Vision, Singapore, 2006:139~144.
    [33] Huang P F, Xu Y S, Liang B. Tracking Trajectory Planning of Space Manipulator for Capturing Operation[J]. International Journal of Advanced Robotic Systems, 2006, 3(3):211~218.
    [34] Cheng L, Liang B, Xu W F. Autonomous Trajectory Planning of Free-floating Robot for Capturing Space Target[C]. //Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China, October 9-15, 2006:1008~1013.
    [35] Jain R, Pathak P M. Trajectory Planning of 2 DOF Planar Space Robot without Attitude Controller[J]. World Journal of Modelling and Simulation, 2008, 4(3):196~204.
    [36] Papadopoulos E. Path Planning for Space Manipulators Exhibiting Nonholonomic Behavior[C]. //Proceedings of the 1992 IEEE/RSJ International Conference on Intelligent Robots and Systems, Raleigh, NC. 1992:669~675.
    [37] Papadopoulos E. Dynamic Singularities in the Control of Free-Floating Space Manipulators[J]. ASME Journal of Dynamic Systems, Measurement and Control, 1993, 115(1):44~52.
    [38] Nohmi M. Attitude Control of a Tethered Space Robot by Link Motion under Microgravity[C]. //Proceedings of the 2004 IEEE International Conference on Control Applications, Taipei, Taiwan, 2004:424~429.
    [39] Hunt K H. Special configurations of robot arms via Screw Theory, Part 1[J]. Robotica, 1986, 4:171~179.
    [40] Hunt K H. Special configurations of robot arms via Screw Theory, Part 2[J]. Robotica, 1987, 5:17~22.
    [41]胡准庆,房海蓉,方跃法.机器人精确轨迹控制方法的研究[J].中国安全科学学报,2003, 13(3):8~11.
    [42]丁希仑,战强,解玉文.自由飘浮的空间机器人系统的动力学奇异特性分析及其运动规划[J].航空学报,2001, 22(5):474-477.
    [43] Papadopoulos E. Dynamic Singularities in the Control of Free-Floating Space Manipulators[J]. ASME Journal of Dynamic Systems, Measurement and Control, 1993, 115(1):44~52.
    [44] Nokleby S B. Singularity Analysis of the Canadarm2[J]. Mechanism and Machine Theory, 2007, 42:442~454.
    [45] Kim J, Marani G, Chung W K, et al. A General Singularity Avoidance Frameworkfor Robot Manipulators: Task Reconstruction Method[C]. //Proceedings of the 2004 IEEE International Conference on Robotics & Automation, New Orleans, LA, 2004:4809~4814.
    [46] Lloyd J. E. Removing the Singularities of Serial Manipulators by Transforming the Workspace[C]. //Proceedings of the 1998 IEEE International Conference on Robotics &Automation, Leuven, Belgium, 1998:2935~3940.
    [47] Nakamura Y, Hanafusa H. Inverse Kinematic Solutions with Singularity Robustness for Robot Manipulator Control[J]. ASME Journal of Dynamic Systems, Measurement, and Control, 1986, 108:163~171.
    [48] Wampler C, Leifer L J. Applications of Damped Least-Squares Methods to Resolved-Rate and Resolved-Acceleration Control of Manipulators[J]. ASME Journal of Dynamic Systems, Measurement, and Control, 1988, 110:31~38.
    [49] Lin S, Wu S L. Implementation of Damped Resolved Acceleration Control for a Manipulator near Singularity[J]. Journal of Systems Engineering, 1995, 5(3):174~191.
    [50] Chan S K, Lawrence P D. General Inverse Kinematics with the Error Damped Pseudo Inverse[C]. //Proceedings of 1988 IEEE Conference of Robotics and Automation, Philadelphia, PA, 1988:834~839.
    [51] Phuoc L M, Martinet P, Lee S, et al. Damped Least Square based Genetic Algorithm with Gaussian Distribution of Damping Factor for Singularity-Robust Inverse Kinematics[J]. Journal of Mechanical Science and Technology, 2008, 22(7):1330~1338.
    [52] Deo A S, Walker I D. Robot Subtask Performance with Singularity Robustness using Optimal Damped Least-Squares[C]. //Proceedings of the 1992 IEEE international Conference on Robotics and Automation, Nice, France, 1992, Vol.1:434~441.
    [53] Samper M, Furuta K. Robot Control in the Neighborhood of Singular Points[J]. IEEE Journal of Robotics and Automation, 1998, 4(3):303~309.
    [54] Nenchev D, Tsumaki Y, Uchiyama M. Adjoint Jacobian Closed-loop Kinematic Control of Robots[C]. //Proceedings of the 1996 IEEE International Conference on Robotics and Automation, Minneapolis, Minnesota, 1996:1235~1240.
    [55] Nenchev D, Tsumaki Y, Uchiyama M. Singularity-Consistent Parameterization of Robot Motion and Control[J]. The International Journal of Robotics Research, 2000, 19(2):159~182.
    [56] Xi F F, Fenton R G. On the Inverse Kinematics of Space Manipulators for Avoiding Dynamic Singularities[J]. Transactions of the ASME, 1997, 119(2):3460~3465.
    [57]吴立成,孙富春,孙增圻.空间机器人建模、规划与控制研究现状[J].中南大学学报(自然科学版),2005, 36(1):18~24.
    [58] Nakamura Y, Mukherjee R. Nonholonomic Path Planning of Space Robots via a Bidirectional Approach [J]. IEEE Transactions on Robotics and Automation, 1991, 7(4):500~514.
    [59] Chen G, Jia Q X, Sun H X, et al. The Study on Algorithm for Avoiding Dynamics Singularities of Space Robot[C]. //2009 International Conference on Control and Automation, Christchurch, New Zealand, 2009:780~785.
    [60] Slotine J J E, Li W. Composite Adaptive Control of Robot Manipulator[J]. Automatica, 1989, 25(4):509~519.
    [61] Murotsu Y, Tsujio S, Senda K, et al. System Identification and Resolved Acceleration Control of Space Robots by using Experimental System[C]. //Proceedings of International Workshop on Intelligent Robots and Systems, 1991, 3: 1669~1674.
    [62] Murotsu Y, Senda K, Ozaki M. Parameter Identification of Unknown Object Handled by Free Flying Space Robot[J]. Journal of Guidance, Control, and Dynamics, 1994, 17(3):488~494.
    [63]田富洋,吴洪涛,赵大旭等.在轨空间机器人参数辨识研究[J].中国空间科学技术,2010, 1:10~17.
    [64]郭琦,洪炳镕.双臂四自由度空间机器人捕捉未知目标的参数辨识[J].机器人,2005, 27(6):512~526.
    [65]刘宇,夏丹,李瑰贤.基于角动量守恒的空间机器人动力学参数辨识[J].宇航学报,2010, 31(3):695~700.
    [66] Kei S, Hideyuki N, Murotsu Y. Adaptive Control of Free-Flying Space Robot with Position/Attitude Control System[J]. Journal of Guidance, Control, and Dynamics, 1999, 22(3):488~490.
    [67] Michael W, Walker M. Adaptive Control of Space-based Robot Manipulators[J]. IEEE Transactions on Robotics and Automation, 1992, 7(6):828~835.
    [68]马保离,霍伟.空间机器人系统的自适应控制[J].控制理论与应用. 1996,3(2): 191~197.
    [69] Jean J H, Fu L C. On the Adaptive Control of Space Robots[C]. //Proceedings of the 31st Conference on Decision Control, Tucson, Aricona, 1992:1419~1422.
    [70]王浩瀛,王景,吴宏鑫等.空间机器人的目标捕获自适应控制[J].中国空间科学技术,2000, 5:1~9.
    [71] Feng B M, Ma G C, Wen Q Y, et al. Adaptive Robust Control of Space Robot in Task Space[C]. //Proceedings of the 2006 IEEE International Conference on Mechatronics and Automation, Luoyang, China,2006: 1571~1576.
    [72] Huang P F, Yuan J P, Liang B. Adaptive Sliding-Mode Control of Space Robotduring Manipulating Unknown Objects[C]. //Proceedings of the IEEE International Conference on Control and Automation, Guangzhou, China, 2007:2907~2912.
    [73] Wang H L, Xie Y C. Passivity based Adaptive Jacobian Tracking for Free-Floating Space Manipulators without using Spacecraft Acceleration[J]. Automatica, 2009, 49:1510~1517.
    [74] Oda M. Coordinated Control of Spacecraft Attitude and its Manipulator[C]. //Proceedings of the 1996 IEEE International Conference on Robotics and Automation, Minneapolis, Minnesota, USA, 1996:732~738.
    [75] Yoshida K, Kurazume R, Umetani Y. Dual Arm Coordination in Space Free-flying Robot[C]. //Proceedings of the IEEE International Conference on Robotics and Automation, Piscataway: 1991, 3:2516~2512.
    [76] Dubowsky S, Torres M. Path Planning for Space Manipulators to Minimize Spacecraft Attitude Disturbances[C]. //Proceedings of the IEEE International Conference on Robotics and Automation, Sacramento, California, USA, 1991:2522~2528.
    [77] Nenchev D, Umetani Y, Yoshida K. Analysis of a Redundant Free-flying Spacecraft/Manipulator System[J]. IEEE Transactions on Robotics and Automation, 1992, 8(1):1~5.
    [78]何光彩.自由飞行空间机器人姿态控制研究[D].哈尔滨:哈尔滨工业大学,1999:41~43.
    [79] Vafa Z, Dubowsky S. On the Dynamics of Manipulators in Space using the Virtual Manipulator Approach[C]. //Proceedings of the IEEE International Conference on Robotics and Automation, New York, USA, 1987:579~585.
    [80] Matsuno F, Tsurusaki J. Chained Form Transformation Algorithm for a Class of 3-states and 2-inputs Nonholonomic Systems and Attitude Control of a Space Robot[C]. //Proceedings of the 38th Conference on Decision & Control, Phoenix, Arizona, USA, 1999:2126~2131.
    [81] Mukherjee R. Reorientation of a Structure in Space using a Three Link Manipulator[C]. //Proceedings of the 1993 IEEE/RSJ International Conference on Intelligent Robots and Systems, Yokohama, Japan, 1993:2079~2086.
    [82] Mukherjee R, Zurowski M. Attitude Control of a Space Structure Using a 3-R Rigid Manipulator[C]. //AIAA Guidance, Navigation and Control Conference, Technical Papers, Pt.1, Monterey, CA, 1993:165~174.
    [83]徐文福,詹文法,梁斌,等.自由飘浮空间机器人系统基座姿态调整路径规划方法的研究[J].机器人,2006, 28(3):291~296.
    [84]赵晓东,王树国,严艳军,等.基于载体姿态调整的自由飘浮空间机器人路径规划方法的研究[J].高技术通讯,2003, 3:47~51.
    [85] Suzuki T, Nakamura Y. Planning Spiral Motions of Nonholonomic Free-Flying Space Robots[C]. //Proceedings of the 1996 IEEE International Conference on Robotics and Automation, Minneapolis, Minnesota, 1996:718~725.
    [86] Fernades C, Gurvits L, Li Z X. Attitude Control of Space Platform/Manipulator System using Internal Motion[C]. //Proceedings of the 1992 IEEE International Conference on Robotics and Automation, Nice, France, 1992:893~898.
    [87] Matsuda K, Kanemitsu Y, Kijimoto S. Attitude Control of a Space Robot Using the Nonholonomic Structure[C]. //AIAA Guidance, Navigation, and Control Conference, USA, 1998:272~277.
    [88] Mukherjee R, Kamon M. Almost Smooth Time-invariant Control of Planar Space Multibody Systems[J], IEEE Transactions on Robotics and Automation, 1999, 15(2):268~280.
    [89] Hokamoto S, Funasako T. Considerations on a Feedback Control System for a Space Robot Reorientation[C]. //AIAA/AAS Astrodynamics Specialist Conference and Exhibit, Keystone, Colorado, USA, 2006:1:9.
    [90] Kojima H, Kasahara S. Invariant Manifold based Switching Control of Two Dimensional Free-Flying Space Robot[C]. //AIAA/AAS Astrodynamics Specialist Conference and Exhibit, Honolulu, Hawaii, USA, 2008:1:9.
    [91]唐晓腾,陈力.漂浮基双臂空间机器人基于自适应遗传算法的最优非完整运动规划[J].工程力学,2008, 25(2):224~229.
    [92]唐晓腾,陈力.双臂空间机器人姿态调整运动的最优控制规划[J].空间科学学报,2006, 26(5):403~408.
    [93] Satoko A, Roberto L, Gerd H. Impedance Control for a Free-Floating Robot in the Grasping of a Tumbling Target with Parameter Uncertainty[C]. //Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China, 2006:1020~1025.
    [94]洪炳镕,柳长安,刘宏.自由飞行空间机器人运动控制及仿真[D].北京:国防工业出版社,2005:5~6.
    [95] Yoshida K. Space Robot Dynamics and Control: To Orbit, From Orbit, and Future[C]. The 9th International Symposium of Robotics Reaserch, Snowbird, Utah, October 1999:449-456.
    [96] Xu Y S. The Measure of Dynamic Coupling of Space Robot Systems[C]. //Proceedings of the IEEE International Conference on Robotics and Automation, Atlanta, USA, May, 1993:615~620.
    [97] Vafa Z, Dubowsky S. On the Dynamics of Space Manipulators using the Virtual Manipulator, with Applications to Path Planning[J]. The Journal of Astronautical Sciences, 1990, 38(4):441~472.
    [98] Umetani Y, Yoshida K. Resolved Motion Rate Control of Space Manipulators withGeneralized Jacobian Matrix[J]. IEEE Transactions Robotics and Automation, 1989, 5(3):303~314.
    [99] Taira Y, Sagara S. A Design of Digital Adaptive Control Systems for Space Robot Manipulators Using a Transpose of the generalized Jacobian Matrix[J]. Aritf Life Robotics, 2005, 9:41~45.
    [100] Sagara S, Taira Y. Digital Tracking Control of Space Robots Using a Transpose of the Generalized Jacobian Matrix[J]. Artif Life Robotics, 2007, 11:82~86.
    [101] Saha S. A Unified Approach to Space Robot Kinematics[J]. IEEE Transactions on Robotics and Automation, 1996, 12(3): 401~405.
    [102] Papadopoulos E, Dubowsky S. On the Nature of Control Algorithms for Free-Floating Space Manipulators[J]. IEEE Transactions on Robotics and Automation, 1991, 7(6): 750~758.
    [103] Ali S, Moosavian A, Papadopoulos E. On the Kinematics of Multiple Manipulator Space Free-Flyers[J]. Journal of Robotic Systems. 1998, 15(4):207~216.
    [104] Liang B, Xu Y S, Bergerman M. Dynamically Equivalent Manipulator for Space Manipulator System: Part 1[C]. //Proceedings of the 1997 IEEE International Conference on Robotics and Automation, Albuquerque, New Mexico, 1997: 2765~2770.
    [105] Liang B, Xu Y S, Bergerman M, et al. Dynamically equivalent Manipulator for Space Manipulator System: Part 2[C]. //Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, France, 1997:1493~1499.
    [106] Yoshida K, Hashizume K, Nenchev D N, at al. Control of a Space Manipulator for Autonomous Target Capture, ETS-VII Flight Experiments and Analysis[C]. //AIAA Guidance, Navigation, and Control Conference and Exhibit, Denver, USA, 2000:1~10.
    [107]夏进军,金明河,刘宏.一种用VM建模方法的空间机器人逆运动学算法[J].华中科技大学学报,2009, 37(4):5~8.
    [108]丰保民.自由飘浮空间机器人轨迹规划与轨迹跟踪问题研究[D].哈尔滨:哈尔滨工业大学,2007:20~21.
    [109]颜世佐.空间机器人协调控制与地面实验研究[D].哈尔滨:哈尔滨工业大学,2009.
    [110]顾晓勤.空间机械臂动力学奇点与回避[J].宇航学报,1998, 19(4):32~36.
    [111] Tsumaki Y, Nenchev D N. Jacobian Adjoint Matrix based Approach to Teleoperation[C]. //International Symposium On Microsystems, Intelligent Materials and Robots, Sendai, Japan, 1995:532~535.
    [112] Gracia L, Tornero J. Tracking Trajectories with a Robotic Manipulator with Singularities[C]. //Proceedings of the 2nd International Conference on Advances inBrain, Vision and Artificial Intelligence, Naples, Italy, 2007:595~605.
    [113] Nenchev D, Tsumaki Y, Uchiyama M. Singularity-consistent Parameterization of Robot Motion and Control[J]. The International Journal of Robotics Research, 2000, 19(2):159~182.
    [114] Papadopoulos E, Dubowsky S. Coordinated Manipulator/Spacecraft Motion Control for Space Robotic Systems[C]. //Proceedings of the 1991 IEEE International Conference on Robotics and Automation, Sacramento, Califomia, USA, 1991:1696~1701.
    [115] Brockett R W. Asymptotic Stability and Feedback Stabilization[M]. In: Differential Geometric Control Theory, Birkhauser, Boston, 1983:181~191.
    [116]王家军.非完整控制系统的非线性控制策略研究[D].天津:天津大学,2003:11~12.
    [117] Song Z S, Yi J Q, Zhao D B, et al. Smooth Time-Varying Regulation of Nonholonomic Chained Systems[C]. //8th International Conference on Control, Automation, Robotics and Vision, Kunmin, China, 2004:1437~1442.
    [118] Lin W, Radom P, Qian C. Control of High-order Nonholonomic Systems in Power Chained Rorm using Discontinuous Feedback[J]. IEEE Transactions on Automatic Control, 2002, 47(1):108~114.
    [119] Prieur C, Astolfi A. Robust Stabilization of Chained Systems via Hybrid Control[C]. //Proceedings of the 41st IEEE Conference on Decision and Control, Las Vegas, Nevada, USA, 2002:522~527.
    [120]理查德·莫雷,李泽湘,夏恩·卡萨斯特里.机器人操作的数学导论[M].徐卫良,钱瑞明译.北京:机械工业出版社,1998:216~217.
    [121] Cai H, Li S, Hu W L. A Hybrid Controller based on Invariant Manifolds for the Stabilization of Chained Form Systems[C]. //Proceedings of the 2006 IEEE International Conference on Mechatronics and Automation, Luoyang, China, 2006:690~694.
    [122]张贤达.矩阵分析与应用[M].北京,清华大学出版社,2004:85~89.
    [123]柳柱.非完整约束轮式移动机器人反馈控制研究[D].南京:南京航空航天大学,2004:12~14.
    [124]马海涛.非完整轮式移动机器人的运动控制[D].合肥:中国科技大学,2009:6~7.
    [125] Mukherjee R. Pseudo-holonomic Behavior of Planar Space Robot[J]. AIAA Journal of Guidance, Control and Dynamics, 1996, 19(1):251~253.
    [126] Shui H T, Peng S J, Li X, et al. Coordinated Manipulator and Spacecraft Motion Planning for Free-Floating Space Robots[C]. //Proceedings of the 2009 IEEE International Conference on Robotics and Biomimetics, Guilin, China, 2009:371~375.
    [127] Matsuno F, Saito K. Attitude Control of a Space Robot with Initial Angular Momentum[C]. //Proceedings of the 2001 IEEE International Conference on Robotics & Automation, Seoul, Korea, 2001:1400-~1405.
    [128] Nenchev D N, Yoshida K. Impact Analysis and Post-impact Motion Control Issues of a Free-Floating Space Robot subject to a Force Impulse[J]. IEEE Transactions on Robotics and Automation, June, 1999, 15(3):548~557.
    [129] Wang H Y, Wu H X, Liang B. Adaptive Control for Capture Object of Space Robot[C]. //Proceedings of 3rd World Congress on Intelligent Control and Automation, Hefei, China, 2000:1275~1279.
    [130] Huang P F, Xu W F, Liang B, et al. Configuration Control of Space Robots for Impact Minimization[C]. //Proceedings fo the 2006 IEEE International Conference on Robotics and Biomimetics, Kunming, China, 2006:357~362.
    [131] Yoshida K, Sashida N. Modeling of Impact Dynamics and Impulse Minimization[C]. //Proceedings of the 1993 IEEE/RSJ International Conference on Intelligent Robots and Systems, Yokohama, Japan, 1993:2064~2069.
    [132] Wee L B, Wlaker M W. On the Dynamics of Contact between Space Robots and Configuration Control for Impact Minimization[J]. IEEE Transactions on Robotics and Automation, 1993, 9:581~591.
    [133] Yoshida K, Nenchev D N. Space Robot Impact Analysis and Satellite-base Impulse Minimization using Reaction Null Space[C]. //Proceedings of IEEE International Conference on Robotics and Automation, Nagoya, Japan, 1995:1271~1277.
    [134] Yoshida K, Dimitrov D, Nakanishi H. On the Capture of Tumbling Satellite by a Space Robot[C]. //Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China, 2006:4127~4132.
    [135]丛佩超,孙兆伟.单臂式空间机械臂捕捉空间目标问题研究[J].动力学与控制学报,2009, 7(1):45~49.
    [136] Yoshida K. The Spacedyn: a MATLAB Toolbox for space and mobile robots[R]. Japan, 1999.
    [137] Nenchev D N, Yoshida K. Impact Analysis and Post-Impact Motion Control Issues of a Free-Floating Space Robot Contacting a Tumbling Object[C]. //Proceedings of the 1998 IEEE International Conference on Robotics & Automation, Leuven, Belgium, 1998:913~919.
    [138] Nenchev D N, Yoshida K.Momentum Distribution in a Space Manipulator for Facilitating the Post-Impact Control[C]. //Proceedings of 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems, Sendai, Japan, 2004: 3345~3350.
    [139] Wang H L, Xie Y C. Stability Analysis of Adaptive Jacobian Controller forFree-Floating Space Manipulators[C]. 48th IEEE Conference on Decision and Control and 28th Chinese Control Conference, Shanghai, China, 2009:8174~8179.
    [140] Wang H L, Xie Y C. Adaptive Jacobian Position/Force Tracking Control of Free-Flying Manipulators[J]. Robotics and Autonomous Systems, 2009, 57:173~181.
    [141] Dixon W E. Adaptive Regulation of Amplitude Limited Robot Manipulators with Uncertain Kinematics and Dynamics[J]. IEEE Transactions on Automatic Control, March 2007, 52(3):488~493.
    [142] Cheah C C, Liu C, Slotine J J E. Adaptive Jacobian Tracking Control of Robots with Uncertainties in Kinematic, Dynamic and Actuator Models[J]. IEEE Transactions on Automatic Control, 2006, 51(6):1024~1029.
    [143]洪昭斌,陈力.参数未知双臂空间机器人姿态、关节运动的自适应控制[J].工程力学,2009, 26(3):251~256.
    [144] Xu Y S, Shum H Y, Lee J J, et al. Adaptive Control of Space Robot System with Attitude Controlled Base[C]. //Proceeding of IEEE Internal Conference on Robotics and Automation, France, 1992:2005~2010.
    [145]李华忠,洪炳熔,杨维萍等.基于广义雅可比矩阵的空间机器人运动学建模与仿真研究[J].中南工业大学学报,1998,29:237~239.
    [146]高海波,朱利民,熊有伦.空间机器人系统的简化动力学模型与应用研究[J].华中科技大学学报,2001,29(3):64~66.
    [147]张翼,唐乾刚,张青斌.自由浮动空间机械臂的最优控制[J].上海航天,1999,6:15~17.
    [148] Woerkom P V, Guelman M, Ehrenwald L. Integrated Adaptive Control for Space Manipulators[J]. Acta Astronautica, 1996, 38(3):161~174.
    [149] Parlaktuna O, Ozkan M. Adaptive Control of Free-Floating Space Robots in Cartesian Coordinates[J]. Advanced Robotics, 2004, 18(9):943~959.
    [150] Wang H L, Xie Y C. Adaptive Inverse Dynamics Control of Robots with Uncertain Kinematics and Dynamics[J]. Automatica, 2009, 45:2114-2119.
    [151] Slotine J E, Li W P.应用非线性控制[M].程代展等译,北京:机械工业出版社,2006:259~263.
    [152]韩大鹏.基于四元数代数和李群框架的任务空间控制方法研究[D].长沙:国防科技大学,2008:114~115 .
    [153] Ehrenwald L, Guelman M. Stability and Convergence of Integrated Adaptive Control for Space Manipulator[J]. Acta Astronautica, 1997, 39(8):623~629.
    [154] Xu W F, Cheng L, Wang X Q. Study on Nonholonomic Cartesian Path Planning of Free-Floating Space Robotic System[J]. Advanced Robotics, 2009, 23:113~143.
    [155] Andrew H F, Lewis M A, James F M, et al. The USC Autonomous Flying Vehicle: An Experimental in Real-Time Behavior-Based Control[C]. //Proceedings of the 1993 IEEE/RSJ International Conference on Intelligent Robots and Systems, Yokohama, Japan, 1993: 1173~1180.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700