用户名: 密码: 验证码:
磷硅杂化与含磷壳聚糖阻燃剂的制备及其阻燃聚合物的性能和机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多糖类天然高分子材料具有来源广、价格低廉、可生物降解、可再生而且可替代化石资源、减少环境污染等优点,多年来得到了广泛的研究和应用。本文基于其含碳多羟基分子结构,开展了两个方面的研究。首先研究了广泛使用的传统多糖类天然高分子制品-棉纤维素织物的新型无卤阻燃方法,设计制备了含磷、硅的有机无机杂化阻燃剂,探讨其对于棉纤维织物的热稳定性、燃烧性能和阻燃性能的影响,以及无机协效剂对于棉纤维织物性能的影响。其次系统研究了一种多糖类天然高分子材料-壳聚糖的阻燃改性,将其作为反应起始物,引入磷或氮等阻燃元素或官能团,设计制备出多源一体的单组份天然高分子基阻燃剂,并将其应用于阻燃高聚物材料,研究了其热性能和燃烧性能,探讨了其阻燃机理。研究表明,杂化阻燃剂和含磷壳聚糖阻燃剂提高了材料高温区热稳定性,降低了其燃烧性能。具体研究工作内容如下:
     1.采用含磷化合物9,10-二氢-9-氧杂-10-磷杂菲-10-氧化物和二氯代磷酸苯酯与硅烷偶联剂γ-氨丙基三乙氧基硅烷反应,合成出两种含磷硅氧烷单体DIA和PEA,使用溶胶凝胶法制备出两种含磷硅有机无机杂化阻燃剂。利用其分别对棉纤维织物进行阻燃整理,在其表面形成了杂化阻燃涂层。热重分析表明,杂化阻燃涂层可以提高织物在高温区的热稳定性,并使其成炭性能大幅度上升。热重红外联用分析结果表明,阻燃涂层的存在使得可燃的挥发性降解产物含量下降。燃烧性能结果表明,阻燃涂层可以使织物的热释放速率峰值下降,燃烧性能显著降低,而且织物的极限氧指数上升。以上研究表明含磷硅有机无机杂化阻燃剂可以提高棉纤维的阻燃性能
     2.在上述研究的基础上将焦磷酸铁(FePP)作为阻燃协效剂引入阻燃体系,研究其对于阻燃棉纤维织物热性能和燃烧性能的影响。研究结果表明:FePP促进成炭,提高了样品在高温阶段(>300℃)的热稳定性。同时,FePP延缓了样品的热降解,推迟了热解产生的挥发性物质释放的时间。FePP的存在可以进一步降低样品的热释放速率峰值、总热释放量和热释放容量。
     3.采用多糖类天然高分子壳聚糖为反应起始物,与五氧化二磷和三聚氰胺反应,合成了集酸源、炭源和气源于一体的天然高分子基膨胀型阻燃剂(MPCS),并将其应用于阻燃聚乙烯醇材料。热重分析数据表明MPCS可以提高聚乙烯醇的成炭量,提高了材料的热稳定性。材料热降解过程的研究结果表明MPCS执解脱氨,生成了不燃的挥发性产物-氨气,降低了环境气氛中的氧浓度,延缓了PVA的热氧化进程。同时,MPCS在升温降解的过程中生成了大量致密的含磷炭化层覆盖在材料表面。该炭化层可以作为物理阻隔层,不仅可以起到隔热隔氧的作用,同时还限制可燃的热解产物向材料表面迁移,从而延缓了材料的进一步热解与燃烧。燃烧性能研究表明MPCS降低了材料的热释放速率。
     4.以壳聚糖与五氧化二磷及硝酸镍为原料制备出集阻燃和协效单元于一体的高效天然高分子基阻燃剂壳聚糖磷酸镍(NiPCS)。热重分析表明NiPCS在700℃的成炭量可以达到60.4wt%。燃烧性能研究表明,添加20wt%NiPCS后材料的总热释放速率降低40%。材料的热性能研究结果表明,NiPCS的加入提高了聚乙烯醇在高温阶段的热稳定性,增加了残炭量。NiPCS促进了材料在低温区的脱水作用,促进了含磷炭层的形成,同时降低了材料热解过程中产生的可燃性挥发性产物含量减少。对比含镍和不含镍阻燃剂处理聚乙烯醇后的数据可知,镍元素的存在延缓了材料的热降解,并使得材料中可燃性挥发产物的浓度进一步降低。
     5.以甲基丙烯酸缩水甘油酯、壳聚糖和五氧化二磷为原料,合成了具有丙烯酸双键官能团的天然高分子基阻燃剂(GPCS)。并将其与环氧丙烯酸酯(EA)混合,通过紫外光固化,制备出紫外光固化阻燃材料(GPCS/EA)。燃烧性能研究表明,当添加20wt%的GPCS后,材料的最大热释放速率下降56%。热降解过程研究结果表明,材料中的磷氧官能团先降解生成了聚磷酸结构,催化环氧丙烯酸酯的降解、交联成炭。动态热机械性能分析表明低添加量下阻燃剂的增强作用显著,弥补了交联密度下降所带的负面影响;然而,伴随着GPCS含量的进一步增加,交联密度下降所带来的影响占据主导地位,导致储能模量下降。体系交联密度的下降和阻燃剂磷酸酯基团具有的良好柔韧性使得GPCS/EA材料的玻璃化温度下降。
How to reduce the human impact on the environment has been a focus around the world. Today, special attention has been paid on the natural polysaccharide materials, which is owning to their various merits, such as abundant yield and low cost. In this dissertation, we combined the natural polysaccharide materials with flame retardant technology. On one hand, the novel halogen free flame retardant, organic/inorganic hybrid flame retardant has been prepared to investigate its impact on thermal properties and flame retardancy of cotton fabrics. On the other hand, chitosan has been used to synthesize the novel natural resources based flame retardants and study their effect on thermal and combustible properites. The research work of this dissertation is composed of the following parts:
     1. Two kinds of phosphorus modified siloxane (DIA and PEA) have been synthesized. Then the organic/inorganic hybrid flame retardant coatings were prepared with sol-gel method. They were applied on cellulose fabrics to investigate their effects on thermal properties and flame retardancy. Thermogravimetric analysis (TGA) showed that coatings can improve the thermal stability of cellulose fabrics in high temperature and enhance the residual char. Thermogravimetric analysis/infrared spectrometry (TGA-FTIR) data exhibited that organic/inorganic hybrid flame retardant coatings can reduce the flammable volatile degradation product. The combustion performance was examined by the microscale combustion calorimeter (MCC). Its resultes showed that the heat release rate decreased with the increase of the content of coatings. The result of LOI indicated that coatings improved the flame retardancy of cellulose fabircs.
     2. Ferric pyrophosphate (FePP) was used as additive to study its synergistic effect of thermal degradation on cotton fabrics. MCC, TGA, TGA-IR, Real Time Fourier transform infrared spectroscopy (RT-FTIR) and Raman spectroscopy were utilized to evaluate the synergistic effects of FePP on DIA/cotton. TGA results showed that presence of FePP improved the thermal stability of materials after300℃. The MCC results revealed that FePP/DIA/cotton generated less combustion heat during heating than that of DIA/cotton. TGA-FTIR results showed that FePP can delay the thermal degradation process. RT-FTIR data revealed the mechanism of the influence of FePP, which can catalyze the break of the flame retardant as well as promote the char forming.
     3. A novel nature material based flame retardant melamine chitosan phosphate (MPCS) has been prepared with chitosan, phosphorus pentoxide and melamine. Its impact on thermal properties and flammability performance of polyvinyl alcohol (PVA) was analyzed. Thermogravimetric analysis data exhibited that MPCS enhanced the thermal stability of materials at high temperature as well as the residual char at700℃. RT-FTIR revealed that MPCS promoted the thermal degradation of materials at a lower temperature and accelerated the char forming at high temperature. MCC was used to evaluate the combustion properties. The results showed that peak heat release rate (PHRR), total heat release (THR) and heat release capacity (HRC) all reduced.
     4. Nickel chitosan phosphate (NiPCS) has been prepared, which was the combination of flame retardant and synergist. Its effect on thermal properties and flammability of PVA has been investigated. MCC test proved that NiPCS can decrease the PHRR and THR greatly. TGA results indicated that NiPCS possessed a high formation of char. With the increase of the flame retardant, the thermal stability of materials enhanced at high temperature. RT-FTIR data confirmed that the flame retardant can promoted the dehydration effect as well as accelerated the char forming. The volatilized products and the synergistic effect of nickel on thermal properties were both investigated with TGA-FTIR and laser Raman spectroscopy (LRS). The results revealed that nickel restained the thermal degradation of materials as well as improved the structural organization level of char.
     5. Chitosan phosphate acrylate (GPCS) containing phosphorus and acrylate structure has been prepared. Its effect on flammability and thermal properties of epoxy acrylate (EA) has been investigated. MCC data showed that addition of20wt%GPCS reduced56%PHRR. Investigation of RT-FTIR and TGA-IR revealed that GPCS promoted the formation of char and reduced the release of combustible gas. Thermomechanical properties results showed that the storage modulus of samples increased then decreased with increasing GPCS content while the glass transition temperature showed the inverse trend.
引文
[1]张俐娜.天然高分子改性材料及应用.北京:化学工业出版,2006
    [2]张俐娜.天然高分子科学与材料.北京:科学出版社,2007
    [3]王永强主编.阻燃材料及技术.北京:化学工业出版社,2003.4
    [4]欧育湘主编.实用阻燃技术.北京:化学工业出版社,2002.1
    [5]Hastie JW, Bonnell DW. NBS Research Report NBSIR 80-2169. National Bureau of Standards, Gaithersburg, MD 1980.
    [6]Babushok V, Tsang,W. Combust.Flame,2000,124,488-506.
    [7]Ebdon JR, Jones MS. Flame retardants:An overview, in Polymeric Materials Encyclopaedia, CRC Press,1995.
    [8]Kandola B, Horrocks AR, Price D, Coleman G, Revs. Macromol. Chem. Phys.,1996, C36, 721-794.
    [9]Green J. Phosphorus-containing flame retardants, in Fire Retardancy of Polymeric Materials, Grand, Marcel Dekker,2000,147-170.
    [10]Levchik S, Piotrowski A, Weil E, Yao, Q. New developments in flame retardancy of epoxy resins. Polymer Degradation and Stability,2005,88,57-62
    [11]Ebdon JR., Hunt BJ, Joseph P, Konkel CS, Price D, Pyrah K, Hull TR, Milnes GJ, Hill SB, Lindsay CI. Thermal degradation and flame retardance in copolymers of methyl methacrylate with diethyl (methacryloyloxymethyl) phosphonate Polymer Degradation and Stability 2000,70, 425-436.
    [12]Lewin M. Synergism and catalysis in flame retardancy of polymers. Polymers for Advanced Technologies,2001,12,215-222
    [13]Reimschuessel HK, Shalaby SW, Pearce EM.. On the oxygen index of nylon 6. Journal of Fire and Flammability,1973,4,299-308
    [14]Leu TS, Wang CS. Synergistic effect of a phosphorus-nitrogen flame retardant on engineering plastics. Journal of Applied Polymer Science.2004,92,410-417
    [15]Ma H, Tong L, Xu Z, Fang Z, Jin Y, Lu F. A novel intumescent flame retardant:Synthesis and application in ABS copolymer. Polymer Degradation and Stability 2007,92,720-726.
    [16]Tsafack M, J. Levalois-Gr tzmacher, Surface and Coatings Technology 2006,200, 3503-3510.
    [17]Wu CS, Liu Y L, Chiu Y C. Thermal stability of epoxy resins containing flame retardant components:an evaluation with thermogravimetric analysis. Polymer Degradation and Stability 2002,78,41-48
    [18]Wu WD, Yang CQ. Correlation between limiting oxygen index and phosphorus/nitrogen content of cotton fabrics treatedwith a hydroxy functional organophosphorus flame-retarding agent and dimethy M dihydrxyethyleneurea. Journal of Applied Polymer Science,2003,90,1 885-1890
    [19]Wu WD, Yang CQ. Statistical analysis of the performance of the flame retardant finishing system consisting of a hydroxy-functional organophosphorus oligomer and the mixture of DMDHEU and melamineefbrmaldehvde resin. Polymer Degradation and Stability,2004,85, 623-632.
    [20]Yang H, Yang CQ. Durable flame retardant finishing of the rlylon/cotton blend fabric using a hydroxyl-functional organophosphorus oligomer. Polymer Degradation and Stability,2005,88, 363-370.
    [21]Wu WD, Yang CQ. Comparison of different reactive organophosphorus flame retardant agents for cotton:Part Ⅰ. The bonding of the flame retardant agents to cotton. Polymer Degradation and Stability,2006,91,2541-2548.
    [22]Wu WD, Yang CQ. Comparison of different reactive organophosphorus flame retardant agents for cotton:Part Ⅱ:Fabric flame resistant performance and physical properties. Polymer Degradation and Stability,2007,92,363-369
    [23]Chang SC, Sachinvala ND, Sawhney P, et cl. Epoxy phosphonate crosslinkers for providing flame resistance to cotton textiles. Polymers for Advanced Technologies,2007,18,611-619
    [24]Blanchard EJ, Graves EE. Phosphorylation of Cellulose with Some Phosphonic Acid Derivatives. Textile Research Journal,2005,73,22-26
    [25]Hong PD, Chung WT, Hsu CF. Crystallization kinetics and morphology of poly(trimethylene terephthalate). Polymer,2002,43,3335-3343
    [26]Sayari A, Hamoudi S. Periodic mesoporous silica-based organic-Inorganic nanocomposite materials. Chemistry of Materials.2001,13,3151-3168.
    [27]Gomez-Romero P. Hybrid organic-inorganic materials In search of synergic activity. Advanced Materials.2001,13,163-174
    [28]Mackenzie JD, Bescher EP. Structures, properties and potential applications of Ormosils. Journal of Sol-Gel Science and Technology,1998,13,371-377.
    [29]Wen JY, Wilkes GL. Organic/inorganic hybrid network materials by the sol-gel approach Chemistry of Materials,1996,8,1667-1681
    [30]Judeinstein P, Sanchez C. Hybrid organic-inorganic materials:A land of multi-disciplinarity Journal of Materials Chemistry.1996,6,511-525
    [31]Lin XY, Li XD, Fan HS, Wen XT, Lu H, Zhang XD. In situ synthesis of bone-like apatite/collagen nano-composite at low temperature. Materials Letters,2004,58,3569-3572.
    [32]Liao SS, Cui FZ, Zhang W, Feng QL. Hierarchically biomimetic bone scaffold materials: Nano-HA/collagen/PLA composite Journal of Biomedical Materials Research Part B:Applied Biomaterials.2004,69B,158-165.
    [33]Cui DX, Gao HJ. Advance and prospect of bionanomaterials. Biotechnology Progress.2003, 19,683-692.
    [34]Fujiwara,S, Sakamoto KT. Application on polyamide 6-montmorillonite. Pat 109998,1976.
    [35]周顺,膨胀阻燃和硅烷接枝交联聚丙烯及其三元乙丙橡胶材料的制备和性能研究,中国科学技术大学博士学位论文,2009年
    [36]Chen YJ, Zhan J, Zhang P, Nie S, Lu H, Song L, Hu Y. Preparation of Intumescent Flame Retardant Poly(butylene succinate) Using Fumed Silica as Synergistic Agent. Industrial & Engineering Chemistry Research.2010,49,8200-8208
    [37]Wang ZY, Han EH, Ke W. Effect of acrylic polymer and nanocomposite with nano-SiO2 on thermal degradation and fire resistance of APP-DPER-MEL coating. Polymer Degradation and Stability,2006,91,1937-1947.
    [38]Wang ZY, Han EH, Ke W. An investigation into fire protection and water resistance of intumescent nano-coatings. Surface & Coatings Technology.2006,201,1528-1535
    [39]Wang ZY, Han EH, Liu FC, Ke W. Thermal behavior of nano-TiO2 in fire-resistant coating. Journal of Materials Science and Technology.2007,23,547-550.
    [40]Marosi C, Mfiaon A. Fire retardancy effect of migration in polypropylene nanocomposites induced by modified interlayer. Polymer Degradation and Stability,2003,82,379-385.
    [41]Noell JLW, Wilkes GL, Mohanty DK, McGrath JE. The preparation and characterization of new polyether ketone-tetraethylorthosilicate hybrid glassess by the sol-gel method. Journal of Applied Polymer Science.1990,40,1177-1194.
    [42]Jesionowski T, Krysztafkiewicz A. Comparison of the techniques used to modify amorphous hydrated silicas. Journal of Non-Crystalline Solids.2000,277,45-57
    [43]Macan J, Ivankovic H, Ivankovic M, Mencer HJ. Synthesis and characterization of organic-inorganic hybrids based on epoxy resin and 3-glycidyloxypropyltrimethoxysilane. Journal of Applied Polymer Science.2004,92,498-505
    [44]Messori M, Toselli M, Pilati F, Fabbri E, Fabbri P, Busoli S. Flame retarding poly(methyl methacrylate) with nanostructured organic-inorganic hybrids coatings. Polymer,2003,44, 4463-4470
    [45]Hsiue GH, Liu YL, Liao HH, Flame-retardant epoxy resins:An approach from organic-inorganic hybrid nanocomposites. Journal of Polymer Science Part A:Polymer Chemistry. 2001,39,986-996
    [46]Liu YL, Chou CI. The effect of silicon sources on the mechanism of phosphorus-silicon synergism of flame retardation of epoxy resins. Polymer Degradation and Stability,2005,90, 515-522
    [47]Liu J, Gao Y, Wang F, Wu M, Preparation and characteristics of nonflammable polyimide materials. Journal of Applied Polymer Science.2000,75,384-389
    [48]Chung CM, Cho SY, Kim JG, Oh SY. Preparation of unsaturated polyester-silica nanocomposites. Journal of Applied Polymer Science.2007,106,2442-2447
    [49]Guo R, Ma X, Hu C, Jiang Z. Novel PVA-silica nanocomposite membrane for pervaporative dehydration of ethylene glycol aqueous solution. Polymer.2007,2939-2945
    [50]Chiang CL, Chang RC. Synthesis, characterization and properties of novel self-extinguishing organic-inorganic nanocomposites containing nitrogen, silicon and phosphorus via sol-gel method. Composites Science and Technology,2008,14,2849-2857
    [51]Chiang CL, Chiu SL. Synthesis, characterization and properties of halogen-free flame retardant PMMA nanocomposites containing nitrogen/silicon prepared from the Sol-Gel method. Journal of Polymer Research,2009,16,637-646
    [52]Alongi J, Ciobanu M, Malucelli G. Sol-gel treatments on cotton fabrics for improving thermal and flame stability:Effect of the structure of the alkoxysilane precursor. Carbohydrate Polymers,2012,87,627-635
    [53]Cireli A, Onar N, FarukEbeoglugil M, Kayatekin I, Kutlu B, Culha O, Celik E. Development of Flame Retardancy Properties of New Halogen-Free Phosphorous Doped SiO2 Thin Films on Fabrics. Journal of Applied Polymer Science,2007,105,3747-3756
    [54]Tramn H, Clar C, Kuhnel P, Schu W. Fireproofing of wood. US patent 2106938,1938.
    [55]Olsen JW, Bechle CW. Wire covering machine. US patent 2442706,1948.
    [56]Jones G, Soil S. Fire retardant composition and process. US patent 2452054,1948.
    [57]Zhan J, Song L, Nie SB, Hu Y. Combustion properties and thermal degradation behavior of polylactide with an effective intumescent flame retardant. Polymer Degradation and Stability, 2009,94,291-296.
    [58]Wang X, Hu Y, Song L, Xing W, Lu H, Lv P, Jie G. Effect of a triazine ring-containing charring agent on fire retardancy and thermal degradation of intumescent flame retardant epoxy resins. Polymers for Advanced Technologies,2011,222480-2487
    [59]Wang H, Li B. Synergistic effects of beta-cyclodextrin containing silicone oligomer on intumescent flame retardant polypropylene system. Polymers for Advanced Technologies,2010, 21,691-697.
    [60]Nie S, Hu Y, Song L, He Q, Yang D, Chen H. Synergistic effect between a char forming agent (CFA) and micro encapsulated ammonium polyphosphate on the thermal and flame retardant properties of polypropylene. Polymers for Advanced Technologies,2008,19,1077-1083
    [61]Li B, Xu M. Effect of a novel charring-foaming agent on flame retardancy and thermal degradation of intumescent flame retardant polypropylene. Polymer Degradation and Stability, 2006,91,1380-1386.
    [62]Feng JX, Sub SP, Zhua J. An intumescent flame retardant system using beta-cyclodextrin as a carbon source in poly lactic acid (PLA), Polymers for Advanced Technologies,2011,22, 1115-1122.
    [63]Reti C, Casetta M, Duquesne S, Bourbigot S, Delobel R. Flammability properties of intumescent PLA including starch and lignin. Polymers for Advanced Technologies.2008,19, 628-635.
    [64]Nie SB, Song L, Guo YQ, Wu K, Xing WY, Lu HD, Hu Y. Intumescent Flame Retardation of Starch Containing Polypropylene Semibiocomposites:Flame Retardancy and Thermal Degradation. Industrial & Engineering Chemistry Research.2009,48,10751-10758.
    [65]Li B, Sun CY, Zhang XC, Chem. J. Chin. Univ.-Chin.1999,20,146.
    [1]朱平,隋淑英,安平林,我国纺织品阻燃整理技术的现状及发展趋势,山东纺织科技,1997,1:41-45
    [2]Stowell JK, Weil ED, Coble WL, Yang, CQ. US Patent 6,365,070 B1, Apr.2,2002.
    [3]Yang CQ, Wu W. Combination ofa Hydroxy-functional Organophosphorus Oligomer and a Multifunctional Carboxylic Acids As a Flame Retardant Finishing System for Cotton:Part I. The Chemical Reaction. Fire and Materials,2003,27:223-237.
    [4]Yang CQ, Wu W, Combination of a Hydroxy-functional Organophosphorus Oligomer and a Multifunctional Carboxylic Acids As Flame Retardant Finishing System for Cotton:PartⅡ Formation Calcium Salt During Launderring. Fire and Materials,2003,27:239-251.
    [5]Stevens MP. Phenol-, Urea-, and Melamine-formaldehyde Polymers, in Polymer Chemistry, 2rid edition, Oxford University Press, New York..1990:483-484.
    [6]Horrocks AR, Davies P. Char Formation in Flame-Retarded Wool Fibres. Part 1. Effect of Intumescent on Thermogravimetric Behaviour. Fire and Materials,2000,24:151-157.
    [7]Fujiwara S, Sakamoto KT. Application on polyamide 6-montmorillonite. Pat 109998,1976
    [8]Alongi J, Ciobanu M, Malucelli G. Sol-gel treatments on cotton fabrics for improving thermal and flame stability:Effect of the structure of the alkoxysilane precursor. Carbohydrate Polymers 2012,87:627-635.
    [9]Cireli A, Onar N, Ebeoglugil MF, Kayatekin I, Kutlu B, Culha O, Celik E. Development of flame retardancy properties of new halogen-free phosphorous doped SiO2 thin films on fabrics. Journal of Applied Polymer Science,2007,105:3748-3756
    [10]Alongi J, Ciobanu M, Malucelli G. Sol-gel treatments for enhancing flame retardancy and thermal stability of cotton fabrics:optimisation of the process and evaluation of the durability. Cellulose,2011,18:167-177
    [11]Lin CH, Feng CC, Hwang TY. Preparation, thermal properties, morphology, and microstructure of phosphorus-containing epoxy/SiO2 and polyimide/SiO2 nanocomposites. European Polymer Journal,2007,43:725-742.
    [12]Cheng XE, Liu SY, Shi WE Synthesis and properties of silsesquioxane-based hybrid urethane acrylate applied to UV-curable flame-retardant coatings. Progress in Organic Coatings,2009; 1: 1-9.
    [13]D. Price, A.R. Horrocks and M. Akalin, British Polymer Journal.20,61 (1988)
    [14]Bradbury AGW, Sakai Y, Shafizadeh F. A kinetic model for pyrolysis of cellulose. Journal of Applied Polymer Science,1979,23:3271-3280.
    [15]Faroq AA, Price D, Milnes GJ. Thermogravimetric analysis study of the mechanism of pyrolysis of untreated and flame retardant treated cotton fabrics under a continuous flow of nitrogen. Polymer Degradation and Stability,1994,44:323-333.
    [16]Faroq AA, Price D, Milnes GJ. Use of gas chromatographic analysis of volatile products to investigate the mechanisms underlying the influence of flame retardants on the pyrolysis of cellulose in air. Polymer Degradation and Stability,1991,33:155-170.
    [17]Gaan S, Rupper P, Salimova V. Thermal decomposition and burning behavior of cellulose treated with ethyl ester phosphoramidates:Effect of alkyl substituent on nitrogen atom. Polymer Degradation and Stability,2009,94:1125-1134.
    [18]Wang S, Liu Q, Luo Z, Wen L, Cen K. Mechanism study on cellulose pyrolysis using thermogravimetric analysis coupled with infrared spectroscopy Frontiers of Energy and Power Engineering in China,2007,1:413-419.
    [19]Shafizadeh F, Fu YL. Pyrolysis of cellulose. Carbohydrate Research,1973,29:113-122.
    [20]Wang JQ, Beijing:Industry of National Defence Press; 1992.
    [21]Nakayama Y, Soeda F, Ishitani A. XPS study of the carbon fiber matrix interface. Carbon, 1990,28:21-26.
    [22]Jansen RJJ, Vanbekkum H. XPS of nitrogen-containing functional groups on activated carbon. Carbon,1995; 33:1021-1027.
    [23]Clark DT, Fok T, Roberrts GG, Sykes RW. An investigation by electron spectroscopy for chemical analysis of chemical treatments of the (100) surface of n-type InP epitaxial layers for Langmuir film deposition. Thin Solid Films,1980; 70:261-283.
    [24]Beamson G, Briggs D. Chichester:Wiley; 1992.
    [25]Bourbigot S, LeBras M, Delobel R, Gengembre L. XPS study of an intumescent coating:II. Application to the ammonium polyphosphate/pentaerythritol/ethylenic terpolymer fire retardant system with and without synergistic agent. Applied Surface Science,1997; 120:15-29.
    [26]Bourbigot S, Lebras M, Delobel R. Carbonization mechanisms resulting from intumescence association with the ammonium polyphosphate-pentaerythritol fire retardant system. Carbon,1993; 31:1219-1230.
    [27]Chen XL, Hu Y, Jiao CM, Song L. Preparation and thermal properties of a novel flame-retardant coating. Polymer Degradation and Stability,2007,92:1141-1150.
    [28]S. Gaan and G. Sun. Effect of phosphorus flame retardants on thermo-oxidative decomposition of cotton. Polymer Degradation and Stability,2007,92:968-974.
    [29]Horrocks AR, Kandola BK, Camino G, Bourbigot S, Delobel R. Fire retardancy of polymers-the use of intumescence, Cambridge, UK, Royal Chemical Society Pub,1998,343.
    [30]Kaur B, Gur IS, Bhatnagar HL. Thermal degradation studies of cellulose phosphates and cellulose thiosulphates. Angewandte Makromolecular Chemie,1986,147:157.
    [1]Kaur B, Jain RK, Gur IS. Thermal stability of phosphorylated cellulose modified with various transition metals. Journal of Analytical and Applied Pyrolysis,1986,9:173-206.
    [2]Kaur B, Jain RK. Studies on the flame-retardant properties of transition metal complexes of cellulose ammonium phosphate. Journal of Analytical and Applied Pyrolysis,1987,11:465-498.
    [3]Mostashari SM, Baghi O. Thermogravimetric analysis of cotton fabric incorporated by magnesium sulfate as a flame retardant, Journal of Applied Fire Science,2003,12:203-208.
    [4]Mostashari SM, Y. K. Nia, S. Baie, Thermogravimetric studies of deposited potash impregnated for flame retardancy into a cotton fabric, Chinese Journal of Chemistry,2007,25: 926-929.
    [5]S. M. Mostashari, Y. K. Nia, F. Fayyaz, Thermogravimetry of deposited caustic soda used as a flame retardant for cotton fabric, Journal of Thermal Analysis and Calorimetry,2008,91:237-241.
    [6]Mostashari SM, Moafi HF. Thermal decomposition pathway of a cellulosic fabric impregnated by magnesium chloride hexahydrate as a flame retardant. Journal of Thermal Analysis and Calorimetry,2008,93:589-594.
    [7]Tain CM, Guo HZ, Zhang HY Study on the thermal degradation of cotton ammonium phosphate and its metal complexes Thermochimica Acta,1995,253:243-251
    [8]石建兵,棉纤维的阻燃改性及其热降解研究,河北大学硕士论,2004年
    [9]Lewin M, Endo M. Catalysis of intumescent flame retardancy of polypropylene by metallic compounds. Polymers for Advanced Technologies,2003,14:3-11.
    [10]Wu ZP, Shu WY, Hu YC. Synergist flame retarding effect of ultra free zinc borate on LDPE/FR system. Journal of Applied Polymer Science,2007,1.-3667-3674.
    [11]Ebdon JR, Guisti L, Hunt BJ, Jones MS. The effects of some transition-metal compounds on the flame retardance of poly(styrene-co-4-vinyl pyridine) and poly(methyl methacrylate-co-4-vinyl pyridine). Polymer Degradation and Stability.1998,60:401-407.
    [12]Hanna AA, Basta AH, El-Saied H, Abadir IF. Thermal properties of cellulose acetate and its complexes with some transition metals. Angewandte Makromolekulare Chemie,1998,260:1-4.
    [13]Wang CS, Shieh JY. Synthesis and properties of epoxy resins containing bis(3-hydroxyphenyl) phenyl phosphate. European Polymer Journal.2000,36:443-452.
    [14]Tian M, Xie JX, Guo HZ, Xu JZ. The effect of metal ions on thermal oxidative degradation of cotton cellulose ammonium phosphate. Journal of Thermal Analysis and Calorimetry.2003,73: 827-834.
    [15]Tamor MA, Vassell WC. Raman fingerprinting of amorphous Carbon Films. Journal of Applied Physics.1994,76:3823-3830.
    [16]Lespade P, Al-Jishi R, Dresselhaus MS. Model for Raman scattering from incompletely graphitized carbons. Carbon.1982,20:427-31.
    [1]Vandersall HL, Intumescent Coating Systems, Their Development and Chemistry. Journal of Fire and Flammability.171,2:97-140
    [2]Horacek H, Stefan P. The importance of intumescent systems for fire protection of plastic materials Polymer International 2000; 49:1106-1114.
    [3]Reshetnikov I, Antonov A, Rudakova T, Aleksjuk G, Khalturinskij N. Some aspects of intumescent fire retardant systems. Polymer Degradation and Stability.1996; 54:137-141.
    [4]Camino G, Costa L, Martinaddo G. INTUMESCENT FIRE-RETARDANT SYSTEMS. Polymer Degradation and Stability 1989; 23:359-376.
    [5]G. Montaudo, E. J. Scamporrino, Intumescent flame-retardant for polymers.3. The polypropylene-ammonium polyphosphane system. Journal of Applied Polymer Science.1985,30: 1449-1460.
    [6]X. Almeras, F. Dabrowski, BrasM. Le, Using polyamide-6 as charring agent in intumescent polypropylene formulations II. Thermal degradation, Polymer Degradation and Stability.2002,77: 315-323.
    [7]Reti C, Casetta M, Duquesne S, Bourbigot S, Delobel R, Flammability properties of intumescent PLA including starch and lignin. Polymers for Advanced Technologies 2008,19: 628-635.
    [8]Anna P, Zimonyi E, Marton A, Szep A, Matko S, Keszei S, Bertalan G, Marosi G, Surface treated cellulose fibres in flame retarded PP composites. Macromolecular Symposia.2003,202: 245-254.
    [9]Reti C, Casetta M, Duquesne S, Delobel R, Soulestin J, Bourbigot S. mtumescent Biobased-Polylactide Films to Flame Retard Nonwovens, Journal of Engineered Fibers and Fabrics.2009,4:33-39.
    [10]Feng JX, Sub SP, Zhua J, An intumescent flame retardant system using beta-cyclodextrin as a carbon source in polylactic acid (PLA). Polymers for Advanced Technologies.2011,22: 1115-1122.
    [11]Horrocks AR, Zhang S, Enhancing polymer flame retardancy by reaction with phosphorylated polyols. Part 2. Cellulose treated with a phosphonium salt urea condensate (Proban CC9) flame retardant, Fire and Materials.2002,26:173-182.
    [12]Nishi N, Ebina A, Nishimura S, Tsutsumi A, Hasegawa O, Tokura S, Highly phosphorylated derivatives of chitin, partially deacetylated chitin and chitosan as new functional polymers: preparation and characterization. International Journal of Biological Macromolecules.1986,8: 311-317.
    [13]Yi YJ, Luo XY, Cui JF, Wang CY, Guo XM, Yao KD. A Study on Biomineralization Behavior of N-Methylene Phosphochitosan Scaffolds. Macromolecular Bioscience,2004,4:971-977
    [14]Kawashita M, Nakan M, Minoda M, Kim HM, Beppu T, Miyamoto T, Kokubo T, Nakamura T, Apatite-forming ability of carboxyl group-containing polymer gels in a simulated body fluid. Biomaterials,2003,24:2477-2484.
    [15]Kokubo T, Hanakawa M, Kawashita M, Minoda M, Beppu T, Miyamoto T, Nakamura T. Apatite formation on non-woven fabric of carboxymethylated chitin in SBF. Biomaterials,2004, 25:4485-4488
    [16]Zhang R, Peter X. Ma Biomimetic Polymer/Apatite Composite Seaflblds lbr Mineralized Tissue Engineering. Macromolecular Bioscience,2004,4:100-111.
    [17]Stupp SI, Ciegler GW. Organoapatites:Materials for artificial bone.l. Synthesis and microstructure. Journal of Biomedical Materials Research,1992,26:169-183.
    [18]Stupp SI, Mejieano GC, Hanson JA. Organoapatites:Materials for artificial bone.Ⅱ. Hardening reactions and properties. Journal of Biomedical Materials Research 1993,27:289-299.
    [19]Tokura S, Nishi N, Tsutsumi A, Somorin O. Studies on Chitin Ⅷ. Some Properties of Water Soluble Chitin Derivatives. Polymer Journal,1983,15:485-489.
    [20]Thomas PS, Guerbois JP, Russell GF, Briscoe BJ. FTIR study of the thermal degradation of poly(vinyl alcohol). Journal of Thermal Analysis and Calorimetry,2001,64:501-508.
    [21]Budrugeac P. Kinetics of the complex process of thermo-oxidative degradation of poly(vinyl alcohol). Journal of Thermal Analysis and Calorimetry,2008,92:291-296.
    [22]Costa L, Camino G. Fire and Polymers, in:G. Nelson (Ed.), ACS Symposium Ser., vol.425, ACS, Washington, DC,1990:211-238
    [23]Camino G, Martinasso G, Costa L, Gobetto R. Thermal degradation of pentaerythritol diphosphate, model compound for fire retardant intumescent systems.2. intumescence step. Polymer Degradation and Stability,1990,28:17-38.
    [24]Levchik SV, Levchik GF, Camino G, Costa L. Mechanism of Action of Phosphorus-Based Flame Retardants in Nylon-6.2. Ammonium Polyphosphate Talc. Journal of Fire Sciences,1995, 13:43-58.
    [25]Weil ED, Zhu W., Patel N, Mukhopadhyay S.M. A systems approach to flame retardancy and comments on modes of action. Polymer Degradation and Stability,1996,54:125-136.
    [26]Zhan J, Song L, Nie SB, Hu Y. Combustion Properties and Thermal Degradation Behavior of Polylactide with An Effective Intumescent Flame Retardant. Polymer Degradation and Stability, 2009,94:291-296.
    [27]Zhou S, Wang ZZ, Gui Z, Hu Y. A Study of the Novel Intumescent Flame-Retardant PP/EPDM Copolymer Blends. Journal of Applied Polymer Science,2008,110:3804-3811.
    [28]Bugajny M, Bourbigot S, Bras ML, Delobel R. The Origin and Nature of Flame Retardance in Ethylene-Vinyl Acetate Copolymers Containing Hostaflam AP 750. Polymer International, 1999,48:264-270.
    [29]Liu W, Chen DQ, Wang YZ, Wang DY, Qu MH. Char-Forming Mechanism of A Novel Polymeric Flame Retardant with Char Agent. Polymer Degradation and Stability,2007,92: 1046-1052.
    [30]Zhao CX, Liu Y, Wang DY, Wang DL, Wang YZ. Synergistic effect of ammonium polyphosphate and layered double hydroxide on flame retardant properties of poly(vinyl alcohol). Polymer Degradation and Stability,2008,93:1323-1331.
    [31]Lyon RE, Seventh international symposium on fire safety science, Worcester, MA, Worcester Polytechnic Institute,2002
    [1]Lewin M. Catalysis of intumescent flame retardancy of polypropylene by metallic compounds. Polymers for Advanced Technologies,2003,14:3-11.
    [2]Wang XL> Song Y, Bao JC. Synergistic effects of nano-Mn0.4Zn06Fe2O4 on intumescent flame-retarded polypropylene. Journal of Vinyl and Additive Technology,2008,4:120-125.
    [3]Wu N, Yang IU. Synergistic effect of metal oxides on intumescent flame-retardant PP systems. Acta Polymerica Sinica,2009,12:1205-1210.
    [4]Li YT, Li B. Synergistic Effect of Lanthanum Oxideoll a Novel Intumescent Flame Retardant Polypropylene System. Polymer Degradation and Stability,2008,93:9-16.
    [5]Wu J, Hu Y, Song L. Synergistic effect of lanthanum oxide on intumescent flame-retardant polypropylene-based formulations. Journal of Fire Sciences,2008,26:399-414.
    [6]Hassan MA, Shehatale AB. Effect of Some Polymeric Metal Chelates on the Flammability Properties of Polypropylene. Polymer Degradation and Stability,2004,85:733-740.
    [7]Yang DD, Hu Y. Catalyzing carbonization function of alpha-ZrP based intumescent fire retardant polypropylene nanocomposites. Polymer Degradation and Stability,2008,93: 2014-2018.
    [8]Zhang P, Song L. Synergistic effect of nanoflaky manganese phosphate on thermal degradation and flame retardant properties of intumescent flame retardant polypropylene system. Polymer Degradation and Stability,2009,94:201-207.
    [9]Lv P, Wang ZZ. Effect of metallic oxides in polypropylene composites containing melamine phosphate and pentaerythrit. Plastics Rubber and Composites,2008,37:311-318.
    [10]Chen XC. Ding Y P, Tang T. Synergistic efect of nickel formate on the thermal and flame retardant properties of polypropylene. Polymer International,2005,54:904-908.
    [11]Song RJ, Zhang BY. Synergistic Effect of Supported Nickel Catalyst with Intumescent Flame-Retardants on Flame Retardancy and Thermal Stability of Polypropylene. Journal of Applied Polymer Science,2006,102:5988-5993.
    [12]Nie S, Song L, Hu Y. Study on a novel and efficient flame retardant synergist-nanoporous nickel phosphates VSB-1 with intumescent flame retardants in polypropylene. Polymers for Advanced Technologies,2008,19:489-495.
    [13]Shan XY, Zhan P, Song L, Hu Y. Compound of Nickel Phosphate with Layers and Synergistic Application with Intumescent Flame Retardants in Thermoplastic Polyurethane Elastomer. Industrial & Engineering Chemistry Research,2011,50:7201-7209.
    [14]NishiN, Nishimura S, Ebina A, Tsutsumi A, Tokura S. Preparation and characterization of water-soluble chitin phosphate. International Journal of Biological Macromolecules,1984,6: 53-54.
    [15]Nishi N, Ebina A, Nishimura S, Tsutsumi A, Hasegawa O, Tokura S. Highly phosphorylated derivatives of chitin, partaially deacetylated chitin and chitosan as new functional polymers-preparation and characterization. International Journal of Biological Macromolecules,1986,8:311-317.
    [16]Nishi N, Maekita Y, Nishimura SIO, Hasegawa O, Tokura S. Highly phosphorylated derivatives of chitin, partaially deacetylated chitin and chitosan as new functional polymers-metal-binding property of the insolubilized materials. International Journal of Biological Macromolecules 1987,9:109-114.
    [17]Hsiue G.H, Shiao SJ, We HF, Kuo WJ, Sha YA. Novel phosphorus-containing dicyclopentadiene-modified phenolic resins for flame-retardancy applications. Journal of Applied Polymer Science,2001,79:342-349.
    [18]Bugajny M, Bourbigot S, Le Bras M, Delobel R. The origin and nature of flame retardance in ethylene-vinyl acetate copolymers containing Hostaflam AP 750. Polymer International,1999, 48:264-270.
    [19]Lewin M, Endo M. Catalysis of intumescent flame retardancy of polypropylene by metallic compounds. Polymers for Advanced Technologies,2003,14:3-11.
    [20]Setnescu R, Jipa S, Setnescu T, Kappel W, Kobayashi S, Osawa Z. IR and X-ray characterization of the ferromagnetic phase of pyrolysed polyacrylonitrile. Carbon 1999,37: 1-6.
    [21]Lu HD, Wilkie CA, Ding M, Song L. Thermal properties and flammability performance of poly (vinyl alcohol)/a-zirconium phosphate nanocomposites. Polymer Degradation and Stability,2011,96:885-891.
    [22]Tamor MA, Vassell WC. Raman Fingerprinting of Amorphous-Carbon Films. Journal of Applied Physics,1994,76:3823-3830.
    [23]Lespade P. Al-Jishi R, Dresselhaus MS. Model for Raman scattering from incompletely graphitized carbons. Carbon 1982,20:427-431.
    [24]Tuinstra F, Koenig JL. Raman Spectrum of Graphite. Journal of Chemical Physics,1970, 53:1126-1130.
    [25]Bourbigot S, Le Bras M, Delobel R, Tremillon JM. Synergistic effect of zeolite in an intumescence process. Study of the interactions between the polymer and the additives. Journal of the Chemical Society, Faraday Transactions,1996,92:3435-3444.
    [1]Liang HB, Asif A, Shi WF.2005. Photopolymerization and Thermal Behavior of Phosphate Diacrylate and Triacrylate Used as Reactive-Type Flame-Retardant Monomers in Ultraviolet-Curable Resins. Journal of Applied Polymer Science,97:185.
    [2]Liang HB, Asif A, Shi WF.2005. Thermal degradation and flame retardancy of a novel methacrylated phenolic melamine used for UV curable flame retardant coatings. Polymer Degradation and Stability,87:495.
    [3]Xing WY, Hu Y, Song L, et al.2009. Thermal Degradation and combustion of a novel UV curable coating containing phosphorus. Polymer Degradation and Stability,94:1176.
    [4]Wang QF, Shi WF.2006. Photopolymerization and thermal behaviors of acrylated benzenephosphonates/epoxy acrylate as flame retardant resins. European Polymer Journal,42: 2261.
    [5]Chen XL, Hu Y, Song L, et al.2008. Preparation and thermal properties of a novel UV-cured star polyurethane acrylate coating. Polymers for Advanced Technologies,19:322.
    [6]Huang ZG, Shi WF.2007. Synthesis and properties of a novel hyperbranched polyphosphate acrylate applied to UV curable flame retardant coatings. European Polymer Journal,43:1302.
    [7]H. B. Liang, J. Ding, W. F. Shi, Kinetics and mechanism of thermal oxidative degradation of UV cured epoxy acrylate/phosphate triacrylate blends. Polymer Degradation and Stability,2004, 86:217-223.
    [8]J. M. Nieto, C. Peniche-Covas, G.. Padron, Characterization of chitosan by pyrolysis-mass spectrometry, thermal analysis and differential scanning calorimetry. Thermochimica Acta,1999, 176:63-68.
    [9]G. H. Hsiue, S. J. Shiao, H. F. We, W. J. Kuo, Y. Sha, Novel phosphorus-containing dicyclopentadiene-modified phenolic resins for flame-retardancy applications. Journal of Applied Polymer Science,2001,79:342-349.
    [10]M. Bugajny, S. Bourbigot, Bras. M. Le, R. Delobel, Use of polyurethanes as char-forming agents in polypropylene intumescent formulations. Polymer International,1999,48:264-270.
    [11]X. L. Chen, C. M. Jiao, Thermal degradation characteristics of a novel flame retardant coating using TG-IR technique. Polymer Degradation and Stability,2008,93:2222-2225.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700