高斯过程的KL展开及随机Logistic方程最优停时的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要研究一些Gaussian过程的Karhunen-Loeve展开(以下简称KL展开)及随机Logistic模型的最优停时。本文第一部分研究了一些Gaussian过程的KL展开问题。KL展开是研究Gaussian过程的重要工具之一,最早由Karhunen和Loeve分别于1946和1955年提出。KL展开理论在研究Gaussian过程的再生核Hilbert空间,小偏差估计(又称小球概率)以及在统计等方面都有重要的应用。如果已知Gaussian过程的KL展开,就相当于给出了对应的再生核Hilbert空间的一组正交基,相应的再生核Hilbert空间自然就找到了。Gaussian过程的KL展开方法提供的简洁的特征值能够帮助给出精确的小概率估计。在统计上,许多统计量的计算往往要用到与之相关的Gaussian过程协方差函数的特征值,KL展开方法很好的解决了这个问题,然而即使有Mercer定理保证了Gaussian过程特征值的存在性,大多数Gaussian过程的KL展开仍然是未知的,因此,本文研究的几类Gaussian过程的KL展开不仅扩大了已知Gaussian过程KL展开的集合,而且具有一定的理论价值和应用价值。本文研究了Detrended Brownian运动,m阶Detrended Brownian运动以及双变量Brownian桥的KL展开等问题,所得结果如下:
     1.研究了Detrended Brownian运动的KL展开,并推得此Gaussian过程和二阶Brownian桥在分布意义上相等的结论。此外,作为应用,利用得到的Detrended Brownian运动协方差的特征值及Fredholm行列式,给出了DetrendedBrownian运动L2范数意义下精确的Laplace变换以及大,小偏差的精确估计。
     2.研究了m阶Detrended Brownian运动的KL展开,利用KL展开的结论和随机Fubini定理两种途径,推得此Gaussian过程和广义Brownian桥在分布意义上相等的结论。此外,作为应用部分,利用得到的m阶Detrended Brownian运动协方差的特征值及Fredholm行列式,给出了Detrended Brownian运动L2范数意义下精确的Laplace变换以及大小偏差的精确估计。
     3.研究了一个非张量的Gaussian过程,即由Brownian单定义的双变量Brownian桥的KL展开问题。利用Dirichlet级数和质数分解讨论了KL展开完备性,并得出结论,即部分的得到了此Gaussian过程的协方差函数的精确的特征值和相应的特征向量。讨论了Slepian过程的KL展开,虽然没有给出其精确的展开形式,但是还是发现了困难所在,对于将来的研究会有很多的帮助。
     本文的第二部分讨论了随机Logistic模型的最优捕获问题。在生物系统中,生态平衡和保持可持续发展一直是研究的重点,其中对于生物种群的最优捕获问题一直是一个恒久的研究问题,所以本文从最简单的单种群模型,随机Logistic模型出发研究问题,做了以下两方面工作,所得结果如下:
     1.把Gilpin-Ayala模型(广义Logistic模型)的最优捕获问题形成为一个最优停时去研究,利用光滑相切技术,得到了精确的最优停止边界和最优停止区域。
     2.把Levy过程驱动的Logistic模型的最优捕获问题形成为一个最优停时去研究,利用光滑相切技术,得到了精确的最优停止边界和最优停止区域。
Karhunen-Loeve(KL for short) for some Gaussian processes and the optimal stop-ping problem for the stochastic Logistic models are studied in this dissertation.The firstpart is about some research on the KL expansion for Gaussian processes. KL expansionis one of the important tool for the study of Gaussian processes. There are a lot of appli-cations, such as reproducing kernel Hilbert space, small deviation(small ball probability),statistics and so on. If the KL expansion for the Gaussian process is known, an orthogo-nal basis are given for the associated reproducing kernel Hilbert space. Furthermore, thereproducing kernel Hilbert space is known immediately. In statistics, the eigenvalues ofthe covariance function of the Gaussian processes associated with statistics are used in thecalculation. KL expansion provides the pretty good way to solve the problem, while eventhe Mercer theorem guarantees the existence of the eigenvalues of the Gaussian processes,KL expansions of many Gaussian processes are unknown. Therefore, KL expansion inthis dissertation not only extends the family, but also plays an important role in theory andapplication. The dissertation concentrates on KL expansion for the Detrended Brownianmotion, the mth Detrended Brownian motion, bivariate Brownian bridge and so on. Theresults are as follows:
     1. KL expansion for the Detrended Brownian motion is studied. Distribution identi-ties are established in connection with the second order Brownian bridge. In addition, asapplication, by using the eigenvalues of the covariance of the Detrended Brownian mo-tion, Laplace transform, large and small deviation asymptotic behaviors for the L2normof the Detrended Brownian motion are given.
     2. KL expansion for the mth order Detrended Brownian motion is studied. Distri-bution identities are established in connection with the mth order Brownian bridge by KLexpansion and stochastic Fubini approach. In addition, as application, by using the eigen-values of the covariance of the mth order Detrended Brownian motion, Laplace transform,large and small deviation asymptotic behaviors for the L2norm of the mth order DetrendedBrownian motion are given.
     3. KL expansion for the bivariate Brownian bridge defined by a Brownian sheet,which is a non-tensored Gaussian Field, is studied. By using Dirichlet series and prime decomposition, we claim the conclusion, that is, the eigenvalues and the associated eigen-functions are given for the covariance function of the Gaussian processes partly. KL ex-pansion for Slepian process are discussed. Although the exact expansions are not given,the key troubles are found and will be helpful for further research.
     The optimal harvesting problems for stochastic Logistic model are discussed in thesecond part of the dissertation. In the biological system, ecological balance and sustain-able development are always the important aspect, among which, the optimal harvestingproblems for biological populations are always permanent research problem. Therefore,Starting from the easiest single population model, stochastic Logistic model, the paperprovides two aspects, results are as follows:
     1. An optimal stopping problem is formulated for the optimal harvesting problemfor Gilpin-Ayala(a generated Logistic) population model. By applying the smooth pastingtechnique, the optimal stopping boundary and region are given.
     2. An optimal stopping problem is formulated for the optimal harvesting problemfor Logistic population model driven by Levy process. By applying the smooth pastingtechnique, the optimal stopping boundary and region are given.
引文
[1] Kailath T. RKHS Approach to Detection and Estimation Problems–I: Determinis-tic Signals in Gaussian Noise[J]. IEEE Transactions on Information Theory,1971,17(5):530–549.
    [2] Chen X, Li V W. Large and Moderate Deviations for Intersection Local Times[J].Probability Theory and Related Fields,2004,128:213-254.
    [3] Li V W, Shao Q M. Gaussian Processes: Inequalities, Small Ball Probabilities andApplications[J]. Stochastic Processes: Theory and Methods,2001,19:533–598.
    [4] Kac M, Siegert A J F. An Explicit Representation of A Stationary Gaussian Pro-cess[J]. The Annals of Mathematical Statistics,1947,18(3):438–442.
    [5] Pearson K. On Lines and Planes of Closest Fit to Systems of Points in Space[J].Philosophical Magazine,1901,2(11):559–572.
    [6] Abdi H, Williams L. Principal Component Analysis[J]. Wiley Interdisciplinary Re-views: Computational Statistics,2010,2:433–459.
    [7] Marzouk M Y, Najm N H. Dimensionality Reduction and Polynomial Chaos Ac-celeration of Bayesian Inference in Inverse Problems[J]. Journal of ComputationalPhysics,2009,228(6),1862–1902.
    [8] Ghanem R, Spanos P. Stochastic Finite Element: A Spectral Approach[M]. NewYork: Springer-Verlag,1991.
    [9] Shang S, Gun J Y. Stochastic Finite Element with Material Uncertainties: Implemen-tation in A General Purpose Simulation Program[J]. Finite Elements in Analysis andDesign,2013,64:65–78.
    [10] Tamilselvan G M, Valarmathy S, Brindha M, etal. Evaluation of Face Recogni-tion Using Principle Component Analysis and Two Dimensional Component Anal-ysis[J]. Indian Journal of Advanced Communication Engineering,2013,1(1):1-7.
    [11] Perrina G, Soizeb C, Duhamela D, etal. Karhunen–Loe`ve Expansion Revisited forVector-Valued Random Fields: Scaling, Errors and Optimal Basis[J]. Journal ofComputational Physics,2013,242(1):607–622.
    [12] Adhikari S, Friswell M I. Distributed Parameter Model Updating Using theKarhunen–Loeve Expansion[J]. Mechanical Systems and Signal Processing,2010,24(2):326–339.
    [13] Sclavounos D P. Karhunen–Loeve Representation of Stochastic Ocean Waves. Pro-ceedings of the Royal Society A,2012,468(2145):2574-2594
    [14] Chen J D, Benesty J and Huang Y T. Study of the Noise-Reduction Problem in theKarhunen–Loeve Expansion Domain[J]. IEEE Transactions on Audio, Speech, andLanguage Processing,2009,17(4):787-802.
    [15] Xu F X. Stochastic Computation Based on Orthogonal Expansion of RandomFields[J]. Computer Methods in Applied Mechanics and Engineering,2011,200:2871–2881.
    [16] Bellizzia S, Sampaio R. Karhunen–Loeve Modes Obtained from Displacement andVelocity Fields: Assessments and Comparisons[J]. Mechanical Systems and SignalProcessing,2009,23(4):1218–1222.
    [17] Bellizzia S, Sampaio R. Smooth Karhunen–Loeve Decomposition to AnalyzeRrandomly Vibrating Systems[J]. Journal of Sound and Vibration,2009,325(3):491–498.
    [18] Dong Q, Xu C J. Generalized Polynomial Chaos Decomposition and Spectral Meth-ods for the Stochastic Stokes Equations[J]. Computers&Fluids,2013,71:250–260.
    [19] Samanta G, Beris N A and Handler A R. Velocity and Conformation Statistics Basedon Reduced Karhunen–Loeve Projection Data from DNS of Viscoelastic TurbulentChannel Flow[J]. Journal of Non-Newtonian Fluid Mechanics,2009,160:55–63.
    [20] Ding Y, Chung Y C and Raman V S. Application of the Karhunen–Loeve TransformTemporal Image Filter to Reduce Noise in Real-Time Cardiac Cine MRI[J]. Physicsin Medicine and Biology,2009,54(12):3909–3922.
    [21] Glo¨smann P. Reduction of Discrete Element Models by Karhunen–Loeve Trans-form: A Hybrid Model Approach[J]. Computational Mechanics,2010,45(4):375-385.
    [22] Greitans M, Aristov V, Laimina T. Application of the Karhunen-Loeve Transforma-tion in Bio-radiolocation: Breath Simulation[J]. Automatic Control and ComputerSciences,2012,46(1):18-24.
    [23] Ding Y, Chung Y C, Jekic M, etal. A New Approach to Autocalibrated DynamicParallel Imaging Based on the Karhunen-Loeve Transform: KL-Tsense and KL-Tgrappa[J]. Magnetic Resonance in Medicine,2011,65(6):1786–1792.
    [24] Kang H H, Shin D H and Kim E S. Efcient Compression of Motion-CompensatedSub-images with Karhunen–Loeve Transform in Three-Dimensional Integral Imag-ing[J]. Optics Communications,2010,283(6):920–928.
    [25] Turchetti C. Biagetti G and Gianfelici F. Nonlinear System Identification: An Efec-tive Framework Based on the Karhunen–Loeve Transform[J]. IEEE Transactions onSignal Processing,2009,57(2):536–550.
    [26] Amar A, Leshem A and Gastpar M. Recursive Implementation of the DistributedKarhunen-Loeve Transform[J]. IEEE Transactions on Signal Processing,2010,58(10):5320–5330.
    [27] Navarro-Moreno J, Ferna′ndez-Alcala′M R, Ruiz-Molina C J, etal. Linear and Non-linear Filters Based on the Improper Karhunen–Loeve Expansion[J]. Signal Process-ing,2012,92(10):2422–2431.
    [28] Benesty J, Chen J D and Huang Y A. On Noise Reduction in the Karhunen-LoeveExpansion Domain[C]. IEEE International Conference on Acoustics, Speech andSignal Processing,2009:25–28.
    [29] Zeng L Z, Zhang D X. A Stochastic Collocation Based Kalman Filter for Data As-similation[J]. Computational Geosciences,2010,14(4):721–744.
    [30] Nigam A, Indoria A and Tripathi R C. Fuzzy Clustering of Image TrademarkDatabase and Pre-processing Using Adaptive Filter and Karhunen-Loeve Trans-form[J]. Intelligent Interactive Technologies and Multimedia Communications inComputer and Information Science,2013,276:297–305.
    [31] Maccone C. The KLT (Karhunen–Loe`ve Transform) to Extend SETI Searches toBroad-Band and Extremely Feeble Signals[J]. Acta Astronautica,2010,67:1427–1439.
    [32] Karhunen K.U¨ber Lineare Methoden in Der Wahrscheinlichkeitsrechnung[J]. An-nales Academi Scientiarum Fennic Mathematica,1947,37:1–79.
    [33] Loeve M. Probability Theory[M]. New York: Springer-Verlag,1978.
    [34] Hotelling H. Analisys of A Complex of Statistical Variables into Principal Compo-nents[J]. Journal of Educational Psychology,1933,24:417–441.
    [35] Stewart G W. On the Early History of the Singular Value Decomposition[J]. SIAMReview,1993,35:551–566.
    [36] Harman H. Modern Factor Analysis[M]. Chicago: University of Chicago Press,1960.
    [37] Lifshits M. Lectures on Gaussian Processes[M]. New York: Springer,2012.
    [38] Berlinet A, Thomas-Agnan C. Reproducing Kernel Hilbert Spaces in Probabilityand Statistics[M]. Boston: Kluwer Academic Publishers,2004.
    [39] Mercer J. Functions of Positive and Negative Type and their Connection with theTheory of Integral Equations[J]. Philosophical Transactions of the Royal Society A,1909,209,441–458.
    [40] Riesz F, Sz-Nagy B. Functional Analysis[M]. New York: Frederick Ungar,1955.
    [41] Renardy M, Rogers R C. An Introduction to Partial Diferential Equations[M]. Textsin Applied Mathematics[M]. New York: Springer-Verlag,2004.
    [42] V.K. Jandhyala, I.B. MacNeill. Residual Partial Sum Limit Process for Regres-sion Models with Applications to Detecting Parameter Changes at Unknown Times,1989,33(2):309–323.
    [43] Tanaka K. Time Series Analysis: Nonstationary and Noninvertible DistributionTheory[M]. Cambridge: Wiley Series in Probability and Statistics,1996.
    [44] Cameron R H, Martin W T. Evaluation of Various Wiener Integrals by Use of Cer-tain Sturm-Liouville Diferential Equations. Bulletin of the American MathematicalSociety,1945,51:73–90.
    [45] Donati-Martin C, Yor M. Fubini’s Theorem for Double Wiener Integrals and theVariance of the Brownian Path[J]. Annales De l’Institut Henri Poincare′-Institute ofMathematical Statistics,1991,27:181–200.
    [46] Ash R B, Gardner M F. Topic in Stochastic Process[M]. New York: Academic Press,1975.
    [47] Darling D A. The Crame′r–Smirnov Test in the Parametric Case[J]. The Annals ofMathematical Statistics,1955,26:1–20.
    [48] Darling D A. The Kolmogorov–Smirnov, Crame′r–Von Mises Tests[J]. The Annalsof Mathematical Statistics,1957,28:823–838.
    [49] Durbin J. Distribution Theory for Tests Based Upon the Sample Distribution Func-tion[M]. Philadelphia: Regional Conference Series in Applied Mathematics,1973.
    [50] Shorack G R, Wellner J A. Empirical Processes with Applications to Statistics[M].New York: Wiley,1986.
    [51] Smirnov N V. Table for Estimating the Goodness of Fit of Empirical Distributions[J].The Annals of Mathematical Statistics,1945,19:279–281.
    [52] Anderson T W, Darling D A. A Test of Goodness of Fit[J]. Journal of the AmericanStatistical Association,1954,49:765–769.
    [53] Watson G S. Goodness of Fit Test on A Circle[J]. Biometrika,1961,48:109–114.
    [54] Watson G S. Another Test for the Uniformity of A Circular Distribution[J].Biometrika,1967,54:675–676.
    [55] Deheuvels P, Martynov G V. Karhunen-Loeve Expansions for Weighted Wiener Pro-cesses and Brownian Bridges via Bessel Functions[J]. Progress in Probability,2003,55:57–93.
    [56] Beghin L, Nikitin Y and Orsingher E. Exact Small Ball Constants for Some GaussianProcesses under the L2-norm[J]. Biometrika,2005,128:2493–2502.
    [57] Istas J. Karhunen–Loeve Expansion of Spherical Fractional Brownian Motions[J].Statistics and Probability Letters,2006,76:1578–1583.
    [58] Gao F, Li V W. Small Ball Probabilities for the Slepian Gaussian Fields[J]. Trans-actions of the American Mathematical Society,2007,359(3):1339–1350.
    [59] Deheuvels P, Orsingher E. Karhunen-Loeve Expansion for A Mean-Centered Brow-nian Bridge[J]. Statistics&Probability Letters,2007,77:1190–1200.
    [60] Deheuvels P, Martynov V G. A Karhunen–Loeve Decomposition of A Gaussian Pro-cess Generated by Independent Pairs of Exponential Random Variables[J]. Journalof Functional Analysis,2008,255:2363–2394.
    [61] Barczy M, Igloi E. Karhunen-Loeve Expansions ofα-Wiener Bridges[J]. CentralEuropean Journal of Mathematics,2011,9:65–84.
    [62] Berlinet A, Thomas-Agnan C. An Introduction to Continuity, Extrema, and RelatedTopics for General Gaussian Processes[M]. Hayward: IMS Lecture Notes,1990.
    [63] Kirby M J. The Application of the Karhunen-Loeve Expansion to the Analysis ofCoherent Structures[D]. Rhode Island: Brown University,1989.
    [64] Maccone C. The Karhunen-Loeve Expansion of the Zero-Mean Square Process ofA Time-Rescaled Gaussian Process[J]. Bollettino della Unione Matematica ItalianaSerie VIII. Sezione A,1988,2:221–229.
    [65] Zelepugina I N, Kozachenko Y V. Rate of Convergence of Karhunen-Loeve Expan-sions of Gaussian Random Processes[J]. Probability and Mathematical Statistics,1989,38:41–51.
    [66] Maccone C. Special Relativity and the Karhunen-Loeve Expansion of BrownianMotion[J]. Probability and Mathematical Statistics,1989,11:329–341.
    [67] Groves M D P. Applications of the Karhunen-Loeve Expansion[D]. Houston: RiceUniversity,1989.
    [68] Stanislav K. A Note on Supremum of A Kiefer Process[J]. Statistics&ProbabilityLetters,1997,35(1):59–63.
    [69] Deheuvels P. Weighted Multivariate Cramer-Von Mises-Type Statistics[J]. AfrikaStatistika,2005,1(1):1-14.
    [70]陈兰荪.数学生态模型与研究方法[M].北京:科学出版社,1998.
    [71] Zhang X Y, Shuai Z S and Wang K. Optimal Impulsive Harvesting Policy for SinglePopulation[J]. Nonlinear Analysis: Real World Applications,2003,4:639–651.
    [72] Anders S, Niels V and Martin Q. Optimal Harvest in An Age Structured Model withDiferent Fishing Selectivity[J]. Environmental and Resource Economics,2012,51(4):525-544.
    [73] Li W X, Wang K. Optimal Harvesting Policy for General Stochastic Logistic Popu-lation Model[J]. Journal of Mathematical Analysis and Applications,2010,368:420-428.
    [74] Dayanik S, Karatzas I. On the Optimal Stopping Problem for One-dimensional Dif-fusions[J]. Stochastic Processes and their Applications,2003,107:173-212.
    [75] Dai M, Kwok Y K. Characterization of Optimal Stopping Regions of AmericanAsian and Lookback Options[J]. Mathematical Finance,2006,16:63-82.
    [76] Presman E L, Sonin I M. On One Problem of Optimal Stopping for Random Vari-ables Given on A Markov Chain[J]. Theory of Probability and Its Applications,2009,54(3):534-542.
    [77] Christensen S, Irle A. A Harmonic Function Technique for the Optimal Stoppingof Difusions[J]. Stochastics: An International Journal of Probability and StochasticProcesses,2011,83:347-363.
    [78] ksendal B. Stochastic Diferential Equations[M]. New York: Springer-Verlag,2005.
    [79] Karatzas I, Shreve S. Brownian Motion and Stochastic Calculus[M]. New York:Springer,1988.
    [80] Applebaum D. Levy Processes and Stochastic Calculus[M]. Cambridge: CambridgeUniversity Press,2004.
    [81] Karol A, Nazarov A and Nikitin Y. Small Ball Probabilities for Gaussian RandomFields and Tensor Products of Compact Operators[J]. Transactions of the AmericanMathematical Society,2008,360:1443–1474.
    [82] Nyblom J, Harvey A C. Tests of Common Stochastic Trends[J]. Econometric The-ory,2000,16:176–199.
    [83] Hobijn B, Franses P H and Ooms M. Generalization of the KPSS-test for Stationar-ity[J]. Statistica Neerlandica,2004,58(4):483–502.
    [84] Taylor A M R. Locally Optimal Tests Against Unit Roots in Seasonal Time SeriesProcesses[J]. Journal of Time Series Analysis,2003,24:591–612.
    [85] Ahlgren N, Nyblom J. Tests Against Stationary and Explosive Alternatives in VectorAutoregressive Models[J]. Journal of Time Series Analysis,2008,29(3):421–443.
    [86] Watson G N. A Treatise on the Theory of Bessel Functions[J]. Cambridge:Cambridge University Press,1952.
    [87] Macneill I B. Properties of Sequences of Partial Sums of Polynomial Regres-sion Residuals with Applications to Tests for Change of Regression at UnknownTimes[J]. The Annals of Statistics,1978,6(2):422–433.
    [88] Martynov G V. Generalization of the Smirnov Formula for the Quadratic FormsDistributions[J]. Theory of Probability and its Applications,1977,22:614–620.
    [89] Korenev B G. Bessel Functions and their Applications[M]. London: Taylor&Fran-cis,2002.
    [90] Li V W. Comparison Results for the Lower Tail of Gaussian Seminorms[J]. Journalof Theoretical Probability,1992,5:1–31.
    [91] Zeilberger D. The Method of Creative Telescoping[J]. Journal of Symbolic Compu-tation,1991,11:195–204.
    [92] Zeilberger D. A fast Algorithm for Proving Terminating Hypergeometric Identi-ties[J]. Discrete Mathematics,2006,306:1072–1075.
    [93] Wilf H S, Zeilberger D. Rational Functions Certify Combinatorial Identities[J]. Jour-nal of the American Mathematical Society,1990,3:147–158.
    [94] Choi M D. Tricks or Treats with the Hilbert Matrix[J]. American MathematicalMonthly,1983,90(5):301–312.
    [95] Jandhyala V K, Minogue C D. Distributions of Bayes-type Change-Point Statisticsunder Polynomial Regression[J]. Journal of Statistical Planning and Inference,1993,37(3):271–290.
    [96] Olver F W J, Lozier D W, Boisvert R F, etal. NIST Handbook of MathematicalFunctions[M]. Cambridge: Cambridge University Press,2010.
    [97] Hitotumatu S. Cholesky Decomposition of the Hilbert Matrix[J]. Japan Journal ofIndustrial and Applied Mathematics,1988,5:135–144.
    [98] Deheuvels P, Peccati G and Yor M. On Quadratic Functionals of the BrownianSheet and Related Processes[J]. Stochastic Processes and their Applications,2006,116(3):493–538.
    [99] Somayasa W. Model-Checks Based on Least Squares Residual Partial Sums Pro-cesses[D]. Karlsruhe: Karlsruhe Institute of Technology,2007.
    [100] Somayasa W. Model-Check Based on Residual Partial Sums Process of Het-eroscedastic Spatial Linear Regression Models[J]. Jurnal Matematika,2011,2(1):11-17.
    [101] MacNeill I B, Jandhyala V K. Multivariate Environmental Statistics[J]. AfrikaStatistika,1993,1(1):298-306.
    [102] Ayoub R G. An Introduction to the Analytic Theory of Numbers[M]. Rhode Island:American Mathematical Society,1963.
    [103]王克.随机生物数学模型[M].北京:科学出版社,2010.
    [104] Abramovitz M, Stegun I A. Handbook of Mathematical Functions with Formulas,Graphs, and Mathematical Tables[M]. New York: Wiley,1972.
    [105] Dixit A. The Art of Smooth Pasting[M]. Switzerland: Harwood Academic Pub-lishers,1993.
    [106] Dixit A, Pindyck R. Investment Lrnder Uncertainty[M]. New Jersey: PrincetonUniversity Press,1994.
    [107] Gapeev V P, ReiX M. An Optimal Stopping Problem in A Difusion-Type Modelwith Delay[J]. Statistics and Probability Letters,2006,76:601–608.
    [108] Kunita H. Ito’s Stochastic Calculus: Its Surprising Power for Applications[J].Stochastic Processes and their Applications,2010,120(5):622–652.
    [109] Bao J H, Mao X R, Yin G, etal. Competitive Lotka-Volterra Population Dynam-ics with Jumps[J]. Nonlinear Analysis: Theory, Methods and Applications,2011,74(17):6601–6616.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700