Niaspan对1型糖尿病大鼠脑缺血再灌注损伤的保护作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:研究1型糖尿病大鼠脑缺血再灌注损伤后脑血管的改变及其潜在的可能机制,探讨Niaspan对1型糖尿病大鼠脑缺血再灌注损伤的保护作用。
     方法:首先使用链脲霉素诱导1型糖尿病大鼠模型,并在此基础上进行大脑中动脉缺血再灌注模型(T1DM-MCAo),同时也在健康大鼠上进行大脑中动脉缺血再灌注模型(WT-MCAo),造模成功后给予Niaspan药物干预1型糖尿病大鼠脑缺血再灌注模型,然后比较各组大鼠之间的神经功能缺损评分、血脑屏障通透性、微血管开放性及相关免疫染色指标检测,同时进行体外颈动脉细胞及大脑微血管内皮细胞培养,并比较药物干预对他们的影响。
     结果:和WT-MCAo大鼠相比,T1DM-MCAo大鼠脑梗塞面积没有增加,但是脑出血的发生率和血脑屏障的通透性明显增加,同时血管的破坏也明显增加,微血管开放性明显降低,神经功能恢复明显变差。Niaspan治疗T1DM-MCAo大鼠可以明显提高微血管的开放性,降低血脑屏障的通透性,促进血管的重塑和成熟,促进脑梗塞后神经功能恢复。同时,我们也发现,和WT-MCAo大鼠相比,T1DM-MCAo大鼠缺血半暗带区Ang2的表达明显增加而Ang1的表达则降低,而Niaspan治疗可以明显提高T1DM-MCAo大鼠缺血半暗带区Ang1的表达并降低Ang2的表达。体外试验表明,和WT-MCAo大鼠相比,T1DM-MCAo起源的颈动脉细胞迁移能力明显降低,而Niacin和Ang1干预后可以明显提高T1DM-MCAo起源的颈动脉细胞迁移能力,中和Ang1后能够降低颈动脉细胞的迁移能力。类似的结果我们在大脑微血管内皮细胞集落形成试验中也观察到了。
     结论:Niaspan能够促进TlDM-MCAo大鼠脑新生血管的重塑和成熟,改善脑梗塞后神经功能的恢复。Angl/Ang2信号通路在Niaspan诱导的脑保护作用中起一定作用。
Introduction:We investigated the changes and the molecular mechanisms of cerebral vascular damage and tested the therapeutic effects of Niaspan in type-1streptozotocin induced diabetic (T1DM) rats after stroke.
     Methods:T1DM-rats were subjected to transient middle cerebral artery occlusion (MCAo) and treated without or with Niaspan. Non-streptozotocin rats (WT) were also subjected to MCAo. Functional outcome, blood-brain-barrier (BBB) leakage, microvascular patency, immunostaining and in vitro arterial explant cell culture were performed.
     Results:Compared to WT-MCAo-rats, T1DM-MCAo-rats did not show an increase lesion volume, but exhibited significantly increased brain hemorrhage, BBB leakage and vascular damage as well as decreased microvascular patency and functional outcome after stroke. Niaspan treatment of stroke in T1DM-MCAo-rats significantly increased microvascular patency, attenuated BBB damage, promoted vascular remodeling and improved functional outcome after stroke. T1DM-MCAo-rats exhibited significantly increased Angiopoietin2(Ang2) expression, but decreased Angl expression in the ischemic brain compared to WT-MCAo-rats. Niaspan treatment attenuated Ang2, but increased Angl expression in the ischemic brain in T1DM-MCAo-rats. In vitro data show that arterial explant cell migration significantly decreased in arteries derived from T1DM-MCAo-rats compared to arteries from WT-MCAo-rats. Niacin and Angl treatment increased arterial explant cell migration in T1DM-artery. Anti-Angl significantly attenuated Niacin-induced arterial cell migration.
     Conclusions:Niaspan treatment of stroke in T1DM-rats promotes vascular remodeling and improves functional outcome. The Angl/Ang2pathway may contribute to Niaspan induced brain plasticity. Niaspan warrants further investigation as a therapeutic agent for the treatment of stroke in diabetics.
引文
1. Bomont, L. and E.T. MacKenzie, Neuroprotection after focal cerebral ischaemia in hyperglycaemic and diabetic rats. Neurosci Lett,1995.197(1):p.53-6.
    2. Liang, W., et al., Reductions in mRNA of the neuroprotective agent, neuroserpin, after cerebral ischemia/reperfusion in diabetic rats. Brain Res,2004.1015(1-2):p. 175-80.
    3. Rizk, N.N., et al., Insulin like growth factor-1 (IGF-1) decreases ischemia-reperfusion induced apoptosis and necrosis in diabetic rats. Endocrine,2007. 31(1):p.66-71.
    4. Li, W., et al., Adaptive cerebral neovascularization in a model of type 2 diabetes: relevance to focal cerebral ischemia. Diabetes.59(1):p.228-35.
    5. Suri, C., et al., Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis. Cell,1996.87(7):p.1171-80.
    6. Sato, T.N., et al., Distinct roles of the receptor tyrosine kinases Tie-1 and Tie-2 in blood vessel formation. Nature,1995.376(6535):p.70-4.
    7. Zhang, Z.G., et al., Angiopoietin-1 reduces cerebral blood vessel leakage and ischemic lesion volume after focal cerebral embolic ischemia in mice. Neuroscience, 2002.113(3):p.683-7.
    8. Thurston, G, et al., Angiopoietin-1 protects the adult vasculature against plasma leakage. Nat Med,2000.6(4):p.460-3.
    9. Pfister, F., et al., Retinal overexpression of angiopoietin-2 mimics diabetic retinopathy and enhances vascular damages in hyperglycemia. Acta Diabetol.47(1):p. 59-64.
    10. Like, A.A. and A.A. Rossini, Streptozotocin-induced pancreatic insulitis:new model of diabetes mellitus. Science,1976.193(4251):p.415-7.
    11. Wu, K.K. and Y. Huan, Streptozotocin-induced diabetic models in mice and rats. Curr. Protoc. Pharmacol.,2008.40:p.5.47.1-5.47.14.
    12. Chen, J., et al., Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemia in rats. Stroke,2001.32(4):p.1005-11.
    13. Swanson, R.A., et al., A semiautomated method for measuring brain infarct volume. J Cereb Blood Flow Metab,1990.10(2):p.290-3.
    14. Chen, J., et al., Intravenous administration of human bone marrow stromal cells induces angiogenesis in the ischemic boundary zone after stroke in rats. Circ Res, 2003.92(6):p.692-9.
    15. Calza, L., et al., Nerve growth factor control of neuronal expression of angiogenetic and vasoactive factors. Proc Natl Acad Sci U S A,2001.98(7):p. 4160-5.
    16. Ho, T.K., et al., Increased angiogenic response but deficient arteriolization and abnormal microvessel ultrastructure in critical leg ischaemia. Br J Surg,2006.93(11): p.1368-76.
    17. Zhang, L., et al., Adjuvant treatment with a glycoprotein Ⅱb/Ⅲa receptor inhibitor increases the therapeutic window for low-dose tissue plasminogen activator administration in a rat model of embolic stroke. Circulation,2003.107(22):p. 2837-43.
    18. Yong, M. and M. Kaste, Dynamic of hyperglycemia as a predictor of stroke outcome in the ECASS-Ⅱ trial. Stroke,2008.39(10):p.2749-55.
    19. Starr, J.M., et al., Increased blood-brain barrier permeability in type Ⅱ diabetes demonstrated by gadolinium magnetic resonance imaging. J Neurol Neurosurg Psychiatry,2003.74(1):p.70-6.
    20. Hori, S., et al., A pericyte-derived angiopoietin-1 multimeric complex induces occludin gene expression in brain capillary endothelial cells through Tie-2 activation in vitro. J Neurochem,2004.89(2):p.503-13.
    21. Nishigaya, K., et al., Impairment and restoration of the endothelial blood-brain barrier in the rat cerebral infarction model assessed by expression of endothelial barrier antigen immunoreactivity. Acta Neuropathol,2000.99(3):p.231-7.
    22. Riesen, F.K., B. Rothen-Rutishauser, and H. Wunderli-Allenspach, A ZO1-GFP fusion protein to study the dynamics of tight junctions in living cells. Histochem Cell Biol,2002.117(4):p.307-15.
    23. Armulik, A., et al., Pericytes regulate the blood-brain barrier. Nature,2010. 468(7323):p.557-61.
    24. Ergul, A., et al., Increased hemorrhagic transformation and altered infarct size and localization after experimental stroke in a rat model type 2 diabetes. BMC Neurol, 2007.7:p.33.
    25. Hoffman, W.H., et al., Cerebral vasoreactivity in children and adolescents with type 1 diabetes mellitus. Endocr Res,2004.30(3):p.315-25.
    26. Arora, S., et al., Cutaneous microcirculation in the neuropathic diabetic foot improves significantly but not completely after successful lower extremity revascularization. J Vase Surg,2002.35(3):p.501-5.
    27. Ben-nun, J., V.A. Alder, and I.J. Constable, Retinal microvascular patency in the diabetic rat. Int Ophthalmol,2004.25(4):p.187-92.
    28. Armulik, A., A. Abramsson, and C. Betsholtz, Endothelial/pericyte interactions. Circ Res,2005.97(6):p.512-23.
    29. Heil, M., et al., Arteriogenesis versus angiogenesis:similarities and differences. J Cell Mol Med,2006.10(1):p.45-55.
    30. Pfister, F., et al., Pericyte migration:a novel mechanism of pericyte loss in experimental diabetic retinopathy. Diabetes,2008.57(9):p.2495-502.
    31. Iurlaro, M., et al., Rat aorta-derived mural precursor cells express the Tie2 receptor and respond directly to stimulation by angiopoietins. J Cell Sci,2003.116(Pt 17):p.3635-43.
    32. Suri, C., et al., Increased vascularization in mice overexpressing angiopoietin-1. Science,1998.282(5388):p.468-71.
    33. Metheny-Barlow, L.J., et al., Direct chemotactic action of angiopoietin-1 on mesenchymal cells in the presence of VEGF. Microvasc Res,2004.68(3):p.221-30.
    34. Chen, J.X. and A. Stinnett, Ang-1 gene therapy inhibits hypoxia-inducible factor-1 alpha (HIF-1alpha)-prolyl-4-hydroxylase-2, stabilizes HIF-1 alpha expression, and normalizes immature vasculature in db/db mice. Diabetes,2008.57(12):p. 3335-43.
    1. Bomont, L. and E.T. MacKenzie, Neuroprotection after focal cerebral ischaemia in hyperglycaemic and diabetic rats. Neurosci Lett,1995.197(1):p. 53-6.
    2. Liang, W., et al., Reductions in mRNA of the neuroprotective agent, neuroserpin, after cerebral ischemia/reperfusion in diabetic rats. Brain Res, 2004.1015(1-2):p.175-80.
    3. Rizk, N.N., et al., Insulin like growth factor-1 (IGF-1) decreases ischemia-reperfusion induced apoptosis and necrosis in diabetic rats. Endocrine,2007.31(1):p.66-71.
    4. Li, W., et al., Adaptive cerebral neovascularization in a model of type 2 diabetes:relevance to focal cerebral ischemia. Diabetes.59(1):p.228-35.
    5. Adams, H.P., Jr., et al., Guidelines for thrombolytic therapy for acute stroke:a supplement to the guidelines for the management of patients with acute ischemic stroke. A statement for healthcare professionals from a Special Writing Group of the Stroke Council, American Heart Association. Circulation, 1996.94(5):p.1167-74.
    6. Poppe, A.Y., et al., Admission hyperglycemia predicts a worse outcome in stroke patients treated with intravenous thrombolysis. Diabetes Care,2009. 32(4):p.617-22.
    7. Alvarez-Sabin, J., et al., Effects of admission hyperglycemia on stroke outcome in reperfused tissue plasminogen activator--treated patients. Stroke, 2003.34(5):p.1235-41.
    8. Elam, M.B., et al., Effect of niacin on lipid and lipoprotein levels and glycemic control in patients with diabetes and peripheral arterial disease:the ADMIT study:A randomized trial. Arterial Disease Multiple Intervention Trial. JAMA,2000.284(10):p.1263-70.
    9. Rosenson, R.S., Antiatherothrombotic effects of nicotinic acid. Atherosclerosis, 2003.171(1):p.87-96.
    10. Ganji, S.H., V.S. Kamanna, and M.L. Kashyap, Niacin and cholesterol:role in cardiovascular disease (review). J Nutr Biochem,2003.14(6):p.298-305.
    11. Chen, J., et al., Niaspan increases angiogenesis and improves functional recovery after stroke. Ann Neurol,2007.62:p.49-58.
    12. Like, A. A. and A. A. Rossini, Streptozotocin-induced pancreatic insulitis:new model of diabetes mellitus. Science,1976.193(4251):p.415-7.
    13. Wu, K.K. and Y. Huan, Streptozotocin-induced diabetic models in mice and rats. Curr. Protoc. Pharmacol.,2008.40:p.5.47.1-5.47.14.
    14. Chen, J., et al., Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemia in rats. Stroke,2001.32(4):p. 1005-11.
    15. Zhang, Z.G., et al., Angiopoietin-1 reduces cerebral blood vessel leakage and ischemic lesion volume after focal cerebral embolic ischemia in mice. Neuroscience,2002.113(3):p.683-7.
    16. Swanson, R.A., et al., A semiautomated method for measuring brain infarct volume. J Cereb Blood Flow Metab,1990.10(2):p.290-3.
    17. Chen, J., et al., Intravenous administration of human bone marrow stromal cells induces angiogenesis in the ischemic boundary zone after stroke in rats. Circ Res,2003.92(6):p.692-9.
    18. Calza, L., et al., Nerve growth factor control of neuronal expression of angiogenetic and vasoactive factors.Proc Natl Acad Sci U S A,2001.98(7):p. 4160-5.
    19. Ho, T.K., et al., Increased angiogenic response but deficient arteriolization and abnormal microvessel ultrastructure in critical leg ischaemia. Br J Surg,2006. 93(11):p.1368-76.
    20. Zhang, L., et al., Adjuvant treatment with a glycoprotein Ⅱb/Ⅲa receptor inhibitor increases the therapeutic window for low-dose tissue plasminogen activator administration in a rat model of embolic stroke. Circulation,2003. 107(22):p.2837-43.
    21. Hori, S., et al., Apericyte-derived angiopoietin-1 multimeric complex induces occludin gene expression in brain capillary endothelial cells through Tie-2 activation in vitro. J Neurochem,2004.89(2):p.503-13.
    22. Nishigaya, K., et al., Impairment and restoration of the endothelial blood-brain barrier in the rat cerebral infarction model assessed by expression of endothelial barrier antigen immunoreactivity. Acta Neuropathol,2000.99(3):p. 231-7.
    23. Riesen, F.K., B. Rothen-Rutishauser, and H. Wunderli-Allenspach, A ZO1-GFP fusion protein to study the dynamics of tight junctions in living cells. Histochem Cell Biol,2002.117(4):p.307-15.
    24. Armulik, A., et al., Pericytes regulate the blood-brain barrier. Nature,2010. 468(7323):p.557-61.
    25. Hoffman, W.H., et al., Cerebral vasoreactivity in children and adolescents with type 1 diabetes mellitus. Endocr Res,2004.30(3):p.315-25.
    26. Arora, S., et al., Cutaneous microcirculation in the neuropathic diabetic foot improves significantly but not completely after successful lower extremity revascularization. J Vasc Surg,2002.35(3):p.501-5.
    27. Ben-nun, J., V.A. Alder, and I.J. Constable, Retinal microvascular patency in the diabetic rat. Int Ophthalmol,2004.25(4):p.187-92.
    28. Armulik, A., A. Abramsson, and C. Betsholtz, Endothelial/pericyte interactions. Circ Res,2005.97(6):p.512-23.
    29. Heil, M., et al., Arteriogenesis versus angiogenesis:similarities and differences. J Cell Mol Med,2006.10(1):p.45-55.
    30. Hershey, J.C., et al., Revascularization in the rabbit hindlimb:dissociation between capillary sprouting and arteriogenesis. Cardiovasc Res,2001.49(3):p. 618-25.
    31. Pfister, F., et al., Pericyte migration:a novel mechanism of pericyte loss in experimental diabetic retinopathy. Diabetes,2008.57(9):p.2495-502.
    32. Iurlaro, M., et al., Rat aorta-derived mural precursor cells express the Tie2 receptor and respond directly to stimulation by angiopoietins. J Cell Sci,2003. 116(Pt 17):p.3635-43.
    33. Suri, C., et al., Increased vascularization in mice overexpressing angiopoietin-1. Science,1998.282(5388):p.468-71.
    34. Metheny-Barlow, L.J., et al., Direct chemotactic action of angiopoietin-1 on mesenchymal cells in the presence of VEGF. Microvasc Res,2004.68(3):p. 221-30.
    35. Chen, J.X. and A. Stinnett, Ang-1 gene therapy inhibits hypoxia-inducible factor-1alpha (HIF-lalpha)-prolyl-4-hydroxylase-2, stabilizes HIF-1alpha expression, and normalizes immature vasculature in db/db mice. Diabetes, 2008.57(12):p.3335-43.
    1. Bomont, L. and E.T. MacKenzie, Neuroprotection after focal cerebral ischaemia in hyperglycaemic and diabetic rats. Neurosci Lett,1995.197(1):p.53-6.
    2. Liang, W., et al., Reductions in mRNA of the neuroprotective agent, neuroserpin, after cerebral ischemia/reperfusion in diabetic rats. Brain Res,2004.1015(1-2):p. 175-80.
    3. Rizk, N.N., et al., Insulin like growth factor-1 (IGF-1) decreases ischemia-reperfusion induced apoptosis and necrosis in diabetic rats. Endocrine,2007. 31(1):p.66-71.
    4. Li, W., et al., Adaptive cerebral neovascularization in a model of type 2 diabetes: relevance to focal cerebral ischemia. Diabetes.59(1):p.228-35.
    5. Elam, M.B., et al., Effect of niacin on lipid and lipoprotein levels and glycemic control in patients with diabetes and peripheral arterial disease:the ADMIT study:A randomized trial. Arterial Disease Multiple Intervention Trial. JAMA,2000.284(10): p.1263-70.
    6. Like, A.A. and A.A. Rossini, Streptozotocin-induced pancreatic insulitis:new model of diabetes mellitus. Science,1976.193(4251):p.415-7.
    7. Wu, K.K. and Y. Huan, Streptozotocin-induced diabetic models in mice and rats. Curr. Protoc. Pharmacol.,2008.40:p.5.47.1-5.47.14.
    8. Chen, J., et al., Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemia in rats. Stroke,2001.32(4):p.1005-11.
    9. Zacharek, A., et al., Simvastatin increases notch signaling activity and promotes arteriogenesis after stroke. Stroke,2009.40(1):p.254-60.
    10. Chen, J., et al., Increasing Angl/Tie2 expression by simvastatin treatment induces vascular stabilization and neuroblast migration after stroke. J Cell Mol Med,2009. 13(7):p.1348-57.
    11. Rikitake, Y., et al., Involvement of endothelial nitric oxide in sphingosine-1-phosphate-induced angiogenesis. Arterioscler Thromb Vasc Biol,2002. 22(1):p.108-14.
    12. Pfister, F., et al., Pericyte migration:a novel mechanism of pericyte loss in experimental diabetic retinopathy. Diabetes,2008.57(9):p.2495-502.
    13. Iurlaro, M., et al., Rat aorta-derived mural precursor cells express the Tie2 receptor and respond directly to stimulation by angiopoietins. J Cell Sci,2003.116(Pt 17):p.3635-43.
    14. Suri, C., et al., Increased vascularization in mice overexpressing angiopoietin-1. Science,1998.282(5388):p.468-71.
    15. Metheny-Barlow, L.J., et al., Direct chemotactic action of angiopoietin-1 on mesenchymal cells in the presence of VEGF. Microvasc Res,2004.68(3):p.221-30.
    16. Zhang, Z.G, et al., Angiopoietin-1 reduces cerebral blood vessel leakage and ischemic lesion volume after focal cerebral embolic ischemia in mice. Neuroscience, 2002.113(3):p.683-7.
    17. Chen, J.X. and A. Stinnett, Ang-1 gene therapy inhibits hypoxia-inducible factor-1alpha (HIF-1alpha)-prolyl-4-hydroxylase-2, stabilizes HIF-1alpha expression, and normalizes immature vasculature in db/db mice. Diabetes,2008.57(12):p. 3335-43.
    1. NINDS, Tissue plasminogen activator for acute ischemic stroke. The National Institute of Neurological Disorders and Stroke rt-PA Stroke Study Group. N Engl J Med,1995.333(24):p.1581-7.
    2. Hacke, W., et al., Thrombolysis with alteplase 3 to 4.5 hours after acute ischemic stroke. N Engl J Med,2008.359(13):p.1317-29.
    3. Kawamata, T., E.K. Speliotes, and S.P. Finklestein, The role of polypeptide growth factors in recovery from stroke. Adv Neurol,1997.73:p.377-82.
    4. Zhang, R., et al., Nitric oxide enhances angiogenesis via the synthesis of vascular endothelial growth factor and cGMP after stroke in the rat. Circ Res, 2003.92(3):p.308-13.
    5. Zhang, R., et al., Sildenafil (Viagra) induces neurogenesis and promotes functional recovery after stroke in rats. Stroke,2002.33(11):p.2675-80.
    6. Chen, J., et al., Statins induce angiogenesis, neurogenesis, and synaptogenesis after stroke. Ann Neurol,2003.53(6):p.743-51.
    7. Lu, D., et al., Atorvastatin reduces neurological deficit and increases synaptogenesis, angiogenesis, and neuronal survival in rats subjected to traumatic brain injury. J Neurotrauma,2004.21(1):p.21-32.
    8. Shyu, W.C., et al., Functional recovery of stroke rats induced by granulocyte colony-stimulating factor-stimulated stem cells. Circulation,2004.110(13):p. 1847-54.
    9. Wang, L., et al., Treatment of stroke with erythropoietin enhances neurogenesis and angiogenesis and improves neurological function in rats. Stroke,2004.35(7):p.1732-7.
    10. Jin, K., et al., Post-ischemic administration of heparin-binding epidermal growth factor-like growth factor (HB-EGF) reduces infarct size and modifies neurogenesis after focal cerebral ischemia in the rat. J Cereb Blood Flow Metab,2004.24(4):p.399-408.
    11. Taguchi, A., et al., Administration of CD34+cells after stroke enhances neurogenesis via angiogenesis in a mouse model. J Clin Invest,2004.114(3): p.330-8.
    12. Willing, A.E., et al., Mobilized peripheral blood cells administered intravenously produce functional recovery in stroke. Cell Transplant,2003. 12(4):p.449-54.
    13. Chopp, M. and Y. Li, Treatment of neural injury with marrow stromal cells. Lancet Neurol,2002.1(2):p.92-100.
    14. Chen, J., et al., Intravenous administration of human umbilical cord blood reduces behavioral deficits after stroke in rats. Stroke,2001.32(11):p.2682-8.
    15. Jiang, Q., et al., Investigation of neural progenitor cell induced angiogenesis after embolic stroke in rat using MRI. Neuroimage,2005.28(3):p.698-707.
    16. Lindvall, O., Z. Kokaia, and A. Martinez-Serrano, Stem cell therapy for human neurodegenerative disorders-how to make it work. Nat Med,2004.10 Suppl:p. S42-50.
    17. Zhang, R.L., Z.G. Zhang, and M. Chopp, Neurogenesis in the adult ischemic brain:generation, migration, survival, and restorative therapy. Neuroscientist, 2005.11(5):p.408-16.
    18. Borlongan, C.V., et al., Bone marrow grafts restore cerebral blood flow and blood brain barrier in stroke rats. Brain Res,2004.1010(1-2):p.108-16.
    19. Phinney, D.G. and D.J. Prockop, Concise review:mesenchymal stem/multipotent stromal cells:the state of transdifferentiation and modes of tissue repair-current views. Stem Cells,2007.25(11):p.2896-902.
    20. Alvarez-Buylla, A. and J.M. Garcia-Verdugo, Neurogenesis in adult subventricular zone. J Neurosci,2002.22(3):p.629-34.
    21. Doetsch, F., J.M. Garcia-Verdugo, and A. Alvarez-Buylla, Cellular composition and three-dimensional organization of the subventricular germinal zone in the adult mammalian brain. J Neurosci,1997.17(13):p. 5046-61.
    22. Luskin, M.B., et al., Neuronal progenitor cells derived from the anterior subventricular zone of the neonatal rat forebrain continue to proliferate in vitro and express a neuronal phenotype. Mol Cell Neurosci,1997.8(5):p.351-66.
    23. Curtis, M.A., et al., Human neuroblasts migrate to the olfactory bulb via a lateral ventricular extension. Science,2007.315(5816):p.1243-9.
    24. Quinones-Hinojosa, A., et al., Cellular composition and cytoarchitecture of the adult human subventricular zone:a niche of neural stem cells. J Comp Neurol, 2006.494(3):p.415-34.
    25. Sanai, N., et al., Unique astrocyte ribbon in adult human brain contains neural stem cells but lacks chain migration. Nature,2004.427(6976):p.740-4.
    26. Zhang, R.L., et al., Proliferation and differentiation of progenitor cells in the cortex and the subventricular zone in the adult rat after focal cerebral ischemia. Neuroscience,2001.105(1):p.33-41.
    27. Jin, K., et al., Neurogenesis in dentate subgranular zone and rostral subventricular zone after focal cerebral ischemia in the rat. Proc Natl Acad Sci USA,2001.98(8):p.4710-5.
    28. Parent, J.M., et al., Rat forebrain neurogenesis and striatal neuron replacement after focal stroke. Ann Neurol,2002.52(6):p.802-13.
    29. Arvidsson, A., et al., Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat Med,2002.8(9):p.963-70.
    30. Zhang, R., et al., Activated neural stem cells contribute to stroke-induced neurogenesis and neuroblast migration toward the infarct boundary in adult rats. J Cereb Blood Flow Metab,2004.24(4):p.441-8.
    31. Thored, P., et al., Persistent production of neurons from adult brain stem cells during recovery after stroke. Stem Cells,2006.24(3):p.739-47.
    32. Jin, K., et al., Evidence for stroke-induced neurogenesis in the human brain. Proc Natl Acad Sci U S A,2006.103(35):p.13198-202.
    33. Macas, J., et al., Increased generation of neuronal progenitors after ischemic injury in the aged adult human forebrain. J Neurosci,2006.26(50):p. 13114-9.
    34. Minger, S.L., et al., Endogenous neurogenesis in the human brain following cerebral infarction. Regen Med,2007.2(1):p.69-74.
    35. Abramova, N., et al., Stage-specific changes in gene expression in acutely isolated mouse CNS progenitor cells. Dev Biol,2005.283(2):p.269-81.
    36. Liu, X.S., et al., Stroke induces gene profile changes associated with neurogenesis and angiogenesis in adult subventricular zone progenitor cells. J Cereb Blood Flow Metab,2007.27(3):p.564-74.
    37. Katakowski, M., et al., Phosphoinositide 3-kinase promotes adult subventricular neuroblast migration after stroke. J Neurosci Res,2003.74(4): p.494-501.
    38. Vojtek, A.B., et al., Akt regulates basic helix-loop-helix transcription factor-coactivator complex formation and activity during neuronal differentiation. Mol Cell Biol,2003.23(13):p.4417-27.
    39. Sinor, A.D. and L. Lillien, Akt-1 expression level regulates CNS precursors. J Neurosci,2004.24(39):p.8531-41.
    40. Zhang, R., et al., Down-regulation of p27kip1 increases proliferation of progenitor cells in adult rats. Neuroreport,2004.15(11):p.1797-800.
    41. Chaudhary, L.R. and K.A. Hruska, The cell survival signal Akt is differentially activated by PDGF-BB, EGF, and FGF-2 in osteoblastic cells. J Cell Biochem, 2001.81(2):p.304-11.
    42. Alessi, D.R., et al., Mechanism of activation of protein kinase B by insulin and IGF-1. EMBO J,1996.15(23):p.6541-51.
    43. Wang, L., et al., Activation of the PI3-K/Akt pathway mediates cGMP enhanced-neurogenesis in the adult progenitor cells derived from the subventricular zone. J Cereb Blood Flow Metab,2005.25(9):p.1150-8.
    44. Chen, J., et al., Atorvastatin induction of VEGF and BDNF promotes brain plasticity after stroke in mice. J Cereb Blood Flow Metab,2005.25(2):p. 281-90.
    45. Kageyama, R., et al., Roles of bHLH genes in neural stem cell differentiation. Exp Cell Res,2005.306(2):p.343-8.
    46. Parras, C.M., et al., Mashl specifies neurons and oligodendrocytes in the postnatal brain. EMBO J,2004.23(22):p.4495-505.
    47. Wang, L., et al., Neurogenin 1 mediates erythropoietin enhanced differentiation of adult neural progenitor cells. J Cereb Blood Flow Metab, 2006.26(4):p.556-64.
    48. Wang, L., et al., The Sonic hedgehog pathway mediates carbamylated erythropoietin-enhanced proliferation and differentiation of adult neural progenitor cells. J Biol Chem,2007.282(44):p.32462-70.
    49. Wang, L., et al., Erythropoietin up-regulates SOCS2 in neuronal progenitor cells derived from SVZ of adult rat. Neuroreport,2004.15(8):p.1225-9.
    50. Iwai, M., et al., Erythropoietin promotes neuronal replacement through revascularization and neurogenesis after neonatal hypoxia/ischemia in rats. Stroke,2007.38(10):p.2795-803.
    51. Gonzalez, F.F., et al., Erythropoietin enhances long-term neuroprotection and neurogenesis in neonatal stroke. Dev Neurosci,2007.29(4-5):p.321-30.
    52. Gould, E., et al., Neurogenesis in adulthood:a possible role in learning. Trends Cogn Sci,1999.3(5):p.186-192.
    53. Raber, J., et al., Irradiation attenuates neurogenesis and exacerbates ischemia-induced deficits. Ann Neurol,2004.55(3):p.381-9.
    54. Shen, L.H., et al., One-year follow-up after bone marrow stromal cell treatment in middle-aged female rats with stroke. Stroke,2007.38(7):p. 2150-6.
    55. Hou, S.W., et al., Functional integration of newly generated neurons into striatum after cerebral ischemia in the adult rat brain. Stroke,2008.39(10):p. 2837-44.
    56. Risau, W., Development and differentiation of endothelium. Kidney Int Suppl, 1998.67:p. S3-6.
    57. Zhang, Z.G., et al., VEGF enhances angiogenesis and promotes blood-brain barrier leakage in the ischemic brain. J Clin Invest,2000.106(7):p.829-38.
    58. Krupinski, J., et al., Role of angiogenesis in patients with cerebral ischemic stroke. Stroke,1994.25(9):p.1794-8.
    59. Garcia, J.H., J.V. Cox, and W.R. Hudgins, Ultrastructure of the microvasculature in experimental cerebral infarction. Acta Neuropathol,1971. 18(4):p.273-85.
    60. Zhang, Z.G, et al., Correlation of VEGF and angiopoietin expression with disruption of blood-brain barrier and angiogenesis after focal cerebral ischemia. J Cereb Blood Flow Metab,2002.22(4):p.379-92.
    61. Plate, K.H., Mechanisms of angiogenesis in the brain. J Neuropathol Exp Neurol,1999.58(4):p.313-20.
    62. Li, L., et al., Ischemic cerebral tissue response to subventricular zone cell transplantation measured by iterative self-organizing data analysis technique algorithm. J Cereb Blood Flow Metab,2006.26(11):p.1366-77.
    63. Risau, W., Mechanisms of angiogenesis. Nature,1997.386(6626):p.671-4.
    64. Carmeliet, P., VEGF gene therapy:stimulating angiogenesis or angioma-genesis? Nat Med,2000.6(10):p.1102-3.
    65. Zacharek, A., et al., Angiopoietin1/Tie2 and VEGF/Flkl induced by MSC treatment amplifies angiogenesis and vascular stabilization after stroke. J Cereb Blood Flow Metab,2007.27(10):p.1684-91.
    66. Reichenbach, J.R., et al., Small vessels in the human brain:MR venography with deoxyhemoglobin as an intrinsic contrast agent. Radiology,1997.204(1): p.272-7.
    67. Fazekas, F., et al., Histopathologic analysis of foci of signal loss on gradient-echo T2*-weighted MR images in patients with spontaneous intracerebral hemorrhage:evidence of microangiopathy-related microbleeds. AJNR Am J Neuroradiol,1999.20(4):p.637-42.
    68. Arnould, M.C., et al., Comparison of CT and three MR sequences for detecting and categorizing early (48 hours) hemorrhagic transformation in hyperacute ischemic stroke. AJNR Am J Neuroradiol,2004.25(6):p.939-44.
    69. Li, L., et al., Angiogenesis and improved cerebral blood flow in the ischemic boundary area detected by MRI after administration of sildenafil to rats with embolic stroke. Brain Res,2007.1132(1):p.185-92.
    70. Ding, G, et al., Magnetic resonance imaging investigation of axonal remodeling and angiogenesis after embolic stroke in sildenafil-treated rats. J Cereb Blood Flow Metab,2008.28(8):p.1440-8.
    71. Ding, G, et al., Angiogenesis detected after embolic stroke in rat brain using magnetic resonance T2*WI. Stroke,2008.39(5):p.1563-8.
    72. Slevin, M., et al., Serial measurement of vascular endothelial growth factor and transforming growth factor-betal in serum of patients with acute ischemic stroke. Stroke,2000.31(8):p.1863-70.
    73. Krupinski, J., et al., Prognostic value of blood vessel density in ischaemic stroke. Lancet,1993.342(8873):p.742.
    74. Wang, L., et al., Neural progenitor cells treated with EPO induce angiogenesis through the production of VEGF. J Cereb Blood Flow Metab,2008.28(7):p. 1361-8.
    75. Cramer, S.C. and M. Chopp, Recovery recapitulates ontogeny. Trends Neurosci,2000.23(6):p.265-71.
    76. Zhang, R., et al., A nitric oxide donor induces neurogenesis and reduces functional deficits after stroke in rats. Ann Neurol,2001.50(5):p.602-11.
    77. Hossmann, K.A. and I.R. Buschmann, Granulocyte-macrophage colony-stimulating factor as an arteriogenic factor in the treatment of ischaemic stroke. Expert Opin Biol Ther,2005.5(12):p.1547-56.
    78. Zhang, L., et al., Tadalafil, a long-acting type 5 phosphodiesterase isoenzyme inhibitor, improves neurological functional recovery in a rat model of embolic stroke. Brain Res,2006.1118(1):p.192-8.
    79. Chen, J., et al., Niaspan increases angiogenesis and improves functional recovery after stroke. Ann Neurol,2007.62(1):p.49-58.
    80. Zhao, L.R., et al., Beneficial effects of hematopoietic growth factor therapy in chronic ischemic stroke in rats. Stroke,2007.38(10):p.2804-11.
    81. Zhang, R.L., Z.G. Zhang, and M. Chopp, Ischemic stroke and neurogenesis in the subventricular zone. Neuropharmacology,2008.55(3):p.345-52.
    82. Gotz, M. and W.B. Huttner, The cell biology of neurogenesis. Nat Rev Mol Cell Biol,2005.6(10):p.777-88.
    83. Calegari, F., et al., Selective lengthening of the cell cycle in the neurogenic subpopulation of neural progenitor cells during mouse brain development. J Neurosci,2005.25(28):p.6533-8.
    84. Huttner, W.B. and Y. Kosodo, Symmetric versus asymmetric cell division during neurogenesis in the developing vertebrate central nervous system. Curr Opin Cell Biol,2005.17(6):p.648-57.
    85. Takahashi, T., R.S. Nowakowski, and V.S. Caviness, Jr., The leaving or Q fraction of the murine cerebral proliferative epithelium:a general model of neocortical neuronogenesis. J Neurosci,1996.16(19):p.6183-96.
    86. Nowakowski, R.S., S.B. Lewin, and M.W. Miller, Bromodeoxyuridine immunohistochemical determination of the lengths of the cell cycle and the DNA-synthetic phase for an anatomically defined population. J Neurocytol, 1989.18(3):p.311-8.
    87. Zhang, R.L., et al., Lengthening the G(1) phase of neural progenitor cells is concurrent with an increase of symmetric neuron generating division after stroke. J Cereb Blood Flow Metab,2008.28(3):p.602-11.
    88. Yamashita, T., et al., Subventricular zone-derived neuroblasts migrate and differentiate into mature neurons in the post-stroke adult striatum. J Neurosci, 2006.26(24):p.6627-36.
    89. Yancopoulos, GD., M. Klagsbrun, and J. Folkman, Vasculogenesis, angiogenesis, and growth factors:ephrins enter the fray at the border. Cell, 1998.93(5):p.661-4.
    90. Hayashi, T., et al., Temporal profile of angiogenesis and expression of related genes in the brain after ischemia. J Cereb Blood Flow Metab,2003.23(2):p. 166-80.
    91. Zhang, Z. and M. Chopp, Vascular endothelial growth factor and angiopoietins in focal cerebral ischemia. Trends Cardiovasc Med,2002.12(2):p.62-6.
    92. Beck, H., et al., Expression of angiopoietin-1, angiopoietin-2, and tie receptors after middle cerebral artery occlusion in the rat. Am J Pathol,2000.157(5):p. 1473-83.
    93. Lin, T.N., et al., Induction of angiopoietin and Tie receptor mRNA expression after cerebral ischemia-reperfusion. J Cereb Blood Flow Metab,2000.20(2):p. 387-95.
    94. Jin, K., et al., Vascular endothelial growth factor (VEGF) stimulates neurogenesis in vitro and in vivo. Proc Natl Acad Sci U S A,2002.99(18):p. 11946-50.
    95. Chen, J., et al., Intravenous administration of human bone marrow stromal cells induces angiogenesis in the ischemic boundary zone after stroke in rats. Circ Res,2003.92(6):p.692-9.
    96. Chen, J., et al., Combination therapy of stroke in rats with a nitric oxide donor and human bone marrow stromal cells enhances angiogenesis and neurogenesis. Brain Res,2004.1005(1-2):p.21-8.
    97. Chen, J., et al., Endothelial nitric oxide synthase regulates brain-derived neurotrophic factor expression and neurogenesis after stroke in mice. J Neurosci,2005.25(9):p.2366-75.
    98. Morris, D.C., et al., Measurement of cerebral microvessel diameters after embolic stroke in rat using quantitative laser scanning confocal microscopy. Brain Res,2000.876(1-2):p.31-6.
    99. Zhang, Z.G., et al., Up-regulation of neuropilin-1 in neovasculature after focal cerebral ischemia in the adult rat. J Cereb Blood Flow Metab,2001.21(5):p. 541-9.
    100. Ohab, J.J., et al., A neurovascular niche for neurogenesis after stroke. J Neurosci,2006.26(50):p.13007-16.
    101. Teng, H., et al., Coupling of angiogenesis and neurogenesis in cultured endothelial cells and neural progenitor cells after stroke. J Cereb Blood Flow Metab,2008.28(4):p.764-71.
    102. Thored, P., et al., Long-term neuroblast migration along blood vessels in an area with transient angiogenesis and increased vascularization after stroke. Stroke,2007.38(11):p.3032-9.
    103. Palmer, T.D., A.R. Willhoite, and F.H. Gage, Vascular niche for adult hippocampal neurogenesis. J Comp Neurol,2000.425(4):p.479-94.
    104. Shen, Q., et al., Adult SVZ stem cells lie in a vascular niche:a quantitative analysis of niche cell-cell interactions. Cell Stem Cell,2008.3(3):p.289-300.
    105. Tavazoie, M., et al., A specialized vascular niche for adult neural stem cells. Cell Stem Cell,2008.3(3):p.279-88.
    106. Leventhal, C., et al., Endothelial trophic support of neuronal production and recruitment from the adult mammalian subependyma. Mol Cell Neurosci, 1999.13(6):p.450-64.
    107. Bajetto, A., et al., Chemokines and their receptors in the central nervous system. Front Neuroendocrinol,2001.22(3):p.147-84.
    108. Robin, A.M., et al., Stromal cell-derived factor 1 alpha mediates neural progenitor cell motility after focal cerebral ischemia. J Cereb Blood Flow Metab,2006.26(1):p.125-34.
    109. Imitola, J., et al., Directed migration of neural stem cells to sites of CNS injury by the stromal cell-derived factor 1alpha/CXC chemokine receptor 4 pathway. Proc Natl Acad Sci U S A,2004.101(52):p.18117-22.
    110. Hill, W.D., et al., SDF-1 (CXCL12) is upregulated in the ischemic penumbra following stroke:association with bone marrow cell homing to injury. J Neuropathol Exp Neurol,2004.63(1):p.84-96.
    111. Shen, L.H., et al., Therapeutic benefit of bone marrow stromal cells administered 1 month after stroke. J Cereb Blood Flow Metab,2007.27(1):p. 6-13.
    112. Chen, J., et al., Intravenous bone marrow stromal cell therapy reduces apoptosis and promotes endogenous cell proliferation after stroke in female rat. J Neurosci Res,2003.73(6):p.778-86.
    113. Wang, Y., Y. Deng, and G.Q. Zhou, SDF-1alpha/CXCR4-mediated migration of systemically transplanted bone marrow stromal cells towards ischemic brain lesion in a rat model. Brain Res,2008.1195:p.104-12.
    114. Wang, L., et al., Matrix metalloproteinase 2 (MMP2) and MMP9 secreted by erythropoietin-activated endothelial cells promote neural progenitor cell migration. J Neurosci,2006.26(22):p.5996-6003.
    115. Lee, S.R., et al., Involvement of matrix metalloproteinase in neuroblast cell migration from the subventricular zone after stroke. J Neurosci,2006.26(13): p.3491-5.
    116. Carmeliet, P., et al., Insights in vessel development and vascular disorders using targeted inactivation and transfer of vascular endothelial growth factor, the tissue factor receptor, and the plasminogen system. Ann N Y Acad Sci, 1997.811:p.191-206.
    117. Roitbak, T., L. Li, and L.A. Cunningham, Neural stem/progenitor cells promote endothelial cell morphogenesis and protect endothelial cells against ischemia via HIF-1 alpha-regulated VEGF signaling. J Cereb Blood Flow Metab,2008.28(9):p.1530-42.
    118. Carmichael, S.T., Cellular and molecular mechanisms of neural repair after stroke:making waves. Ann Neurol,2006.59(5):p.735-42.
    119. Yiu, G and Z. He, Glial inhibition of CNS axon regeneration. Nat Rev Neurosci,2006.7(8):p.617-27.
    120. Li, Y, et al., Gliosis and brain remodeling after treatment of stroke in rats with marrow stromal cells. Glia,2005.49(3):p.407-17.
    121. Shen, L.H., et al., Intracarotid transplantation of bone marrow stromal cells increases axon-myelin remodeling after stroke. Neuroscience,2006.137(2):p. 393-9.
    122. Shen, L.H., et al., Down-regulation of neurocan expression in reactive astrocytes promotes axonal regeneration and facilitates the neurorestorative effects of bone marrow stromal cells in the ischemic rat brain. Glia,2008. 56(16):p.1747-54.
    123. Liu, Z.W., et al., Axonal sprouting into the denervated spinal cord and synaptic and postsynaptic protein expression in the spinal cord after transplantation of bone marrow stromal cell in stroke rats. Brain Research,2007.1149:p. 172-180.
    124. Gregersen, R., et al., Focal cerebral ischemia induces increased myelin basic protein and growth-associated protein-43 gene transcription in peri-infarct areas in the rat brain. Exp Brain Res,2001.138(3):p.384-92.
    125. Menn, B., et al., Origin of oligodendrocytes in the subventricular zone of the adult brain. J Neurosci,2006.26(30):p.7907-18.
    126. Gensert, J.M. and J.E. Goldman, Endogenous progenitors remyelinate demyelinated axons in the adult CNS. Neuron,1997.19(1):p.197-203.
    127. Roy, N.S., et al., Identification, isolation, and promoter-defined separation of mitotic oligodendrocyte progenitor cells from the adult human subcortical white matter. J Neurosci,1999.19(22):p.9986-95.
    128. Jiang, Q., et al., MRI detects white matter reorganization after neural progenitor cell treatment of stroke. Neuroimage,2006.32(3):p.1080-9.
    129. Ueda, H., et al., Glycosylated Hemoglobin Is a Predictor of Major Adverse Cardiac Events after Drug-Eluting Stent Implantation in Patients with Diabetes Mellitus. Cardiology,2010.116(1):p.51-57.
    130. Beaulieu, C., The basis of anisotropic water diffusion in the nervous system-a technical review. NMR Biomed,2002.15(7-8):p.435-55.
    131. Mori, S. and P.C. van Zijl, Fiber tracking:principles and strategies-a technical review. NMR Biomed,2002.15(7-8):p.468-80.
    132. Watanabe, T., et al., Three-dimensional anisotropy contrast magnetic resonance axonography to predict the prognosis for motor function in patients suffering from stroke. J Neurosurg,2001.94(6):p.955-60.
    133. Li, L., et al., MRI identification of white matter reorganization enhanced by erythropoietin treatment in a rat model of focal ischemia. Stroke,2009.40(3): p.936-41.
    134. Cheng, Y.D., L. Al-Khoury, and J.A. Zivin, Neuroprotection for ischemic stroke:two decades of success and failure. NeuroRx,2004.1(1):p.36-45.
    135. Cramer, S.C., Repairing the human brain after stroke:I. Mechanisms of spontaneous recovery. Ann Neurol,2008.63(3):p.272-87.
    136. Cramer, S.C., Repairing the human brain after stroke. II. Restorative therapies. Ann Neurol,2008.63(5):p.549-60.
    137. Cramer, S.C., W.J. Koroshetz, and S.P. Finklestein, The case for modality-specific outcome measures in clinical trials of stroke recovery-promoting agents. Stroke,2007.38(4):p.1393-5.
    138. Stem Cell Therapies as an Emerging Paradigm in Stroke (STEPS):bridging basic and clinical science for cellular and neurogenic factor therapy in treating stroke. Stroke,2009.40(2):p.510-5.
    139. Wolf, S.L., et al., Effect of constraint-induced movement therapy on upper extremity function 3 to 9 months after stroke:the EXCITE randomized clinical trial. JAMA,2006.296(17):p.2095-104.
    140. Wolf, S.L., et al., Retention of upper limb function in stroke survivors who have received constraint-induced movement therapy:the EXCITE randomised trial. Lancet Neurol,2008.7(1):p.33-40.
    141. Kondziolka, D., et al., Transplantation of cultured human neuronal cells for patients with stroke. Neurology,2000.55(4):p.565-9.
    142. Kondziolka, D., et al., Neurotransplantation for patients with subcortical motor stroke:a phase 2 randomized trial. J Neurosurg,2005.103(1):p.38-45.
    143. Bang, O.Y., et al., Autologous mesenchymal stem cell transplantation in stroke patients. Ann Neurol,2005.57(6):p.874-82.
    144. Sprigg, N., et al., Granulocyte-colony-stimulating factor mobilizes bone marrow stem cells in patients with subacute ischemic stroke:the Stem cell Trial of recovery EnhanceMent after Stroke (STEMS) pilot randomized, controlled trial (ISRCTN 16784092). Stroke,2006.37(12):p.2979-83.
    145. Silver, B., et al., Recovery in a patient with locked-in syndrome. Can J Neurol Sci,2006.33(2):p.246-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700