蛋白质组学及相关分析技术研究曲马多诱导斑马鱼脑氧化应激和依赖性潜力的关键蛋白质
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
盐酸曲马多(Tramadol hydrochloride,TH)作为一种非麻醉性中枢镇痛药,已经成为世界范围内最广泛使用的处方药。关于曲马多在脊椎动物中的积极作用的报导曾经一直占据主导地位,包括缓解中度至重度疼痛、抗抑郁、抗炎和免疫刺激作用、排尿控制、降低糖尿病症体内的血糖浓度等。然而,近年来曲马多滥用中毒、不良反应和依赖性的市场监测报告和临床案例却日益增多,而滥用相关的神经毒性、功能障碍和依赖性潜力的细胞和分子水平机理的研究报道却极少。因而,迫切需要从分子和细胞水平对曲马多滥用可能造成的依赖性潜力和神经毒性等进行微观分析。
     本论文选用斑马鱼(Danio rerio)为研究对象,从行为学角度观察和统计发现,曲马多急性处理增加鱼对氧的需求量和对富氧的水体表层的偏好性,从而显著增大表层的鱼平均分布密度。与毒麻类强镇痛药—杜冷丁阳性对照组相比同样存在显著差异,曲马多处理组的这些异常现象不仅出现的更迅速,且持续时间更长(整个过程长达6 h),并伴随着鱼运动活力的下降,属于斑马鱼对曲马多特有的异常行为和生理反应。含曲马多饲料的长期投喂,则会造成斑马鱼体重和脑重量平均值的下降。这些独特异常的生理反应,使斑马鱼成为研究曲马多药物毒性和药物依赖性分子机理理想的动物模型。
     与其他阿片类药物类似,曲马多引起SOD酶活力下降和脂质过氧化物含量的增加,表现出氧化强化剂特性;而慢性诱导过程中的抗氧化酶活性变化规律表明,斑马鱼对曲马多的氧化毒性产生一定的适应性和耐受性。气相色谱质谱联用分析技术(GC/MS)跟踪检测,单剂量肌注给药后的鱼脑、眼、鳃、心、肝、肠、肌等7种组织中曲马多分布和清除情况;而绘制的原药含量随时间变化趋势图则显示出,曲马多在鱼脑内经历了一个快速分布和缓慢清除的过程。进一步从鱼脑组织中检测出两种主要去甲基代谢物,即O-去甲基曲马多(M1)和N-去甲基曲马多(M2),其中M2的含量明显高于M1,为主要去甲基代谢物。因而肌注给药途径和GC/MS分析技术,适合于研究曲马多在鱼体内的分布、清除、代谢和药效,尤其是神经毒性机理;进一步结合SOD酶活性和MDA含量测定结果,即可以评估脑组织氧化应激程度,还可以为合适的给药剂量的选择和后续的蛋白质组学技术筛选和鉴定关键蛋白质的实验样品的准备提供科学的参考价值。
     蛋白质组学是目前从组织器官中筛选与鉴定差异蛋白质的最佳分析技术之一。作者建立了一套适用于筛选和鉴定斑马鱼脑组织中的差异蛋白质的蛋白质组学研究方案。尤其是半定量双向凝胶电泳技术的建立和质谱鉴定前的样品准备中人血清转铁蛋白、白蛋白、铁蛋白等蛋白添加剂或石蜡油、甘油、凡士林等黏合剂作为肽质量指纹质谱鉴定的辅助增强剂的发现,都有效地提高了差异蛋白鉴定的灵敏度和可信度。曲马多诱导差异表达的30个蛋白质斑点经鉴定后,归为13种蛋白,其中14-3-3蛋白、肌酸激酶(CK BB)、ATP合成酶(H+转运,线粒体F1复合体,beta亚基)和微管蛋白等在不同的凝胶位置,分别检出3、3、4和11种亚型;按蛋白功能分为六大类:细胞骨架、能量代谢、信号传导、突触功能、蛋白降解和修饰、钙信号调节。多数蛋白是参与氧化应激或氧化应激相关疾病发病机理的重要蛋白,例如:14-3-3蛋白,CK BB,泛素羧基端水解酶-L1(UCHL-1),ATP合成酶,突触体相关蛋白(SNAP),微管蛋白,肌动蛋白等;而蛋白:醛缩酶C,ATP合成酶,CK BB,丙酮酸脱氢酶激酶,UCHL-1,14-3-3蛋白,dynamin1,SNAP,微管蛋白,肌动蛋白等则属于多种药物依赖相关的共同蛋白。同时也发现了一些尚未报导的新蛋白,例如:钙信号调节相关蛋白novel protein similar tovertebrate EF hand calcium binding protein 2,结构相关蛋白novel intermediatefilament protein,similar to centrosomal protein 110 kDa。曲马多同已知的依赖性药物一样主要通过三种普遍认可的途径引发神经毒性,即能量代谢、氧化应激和蛋白降解、修饰。
     Western blotting和酶活性分析表明,曲马多慢性诱导上调14-3-3 epsilon蛋白表达量,和抑制酶缩酶和肌酸激酶(能量系统中的两种重要酶)活性,且此类影响一直维持到撤药后两周仍十分显著。相关结果进一步验证了蛋白质组学技术筛选和鉴定的曲马多诱导的差异蛋白的可信度。曲马多慢性诱导引起多种与氧化应激和能量代谢密切相关的重要蛋白质的表达量下调,而这些蛋白的差异表达都直接或间接的涉及线粒体结构和功能的改变。曲马多慢性处理后的线粒体超微结构观察显示,线粒体分布紊乱,数目显著下降,基质变稀,电子密度下降,出现肿胀、空泡样,线粒体嵴数目减少、断裂甚至是缺失等一系列与结构和功能障碍密切相关的形态学变化。
     基于行为学、药物代谢、免疫印迹、酶学测定和超微结构观察等多种手段辅助下的蛋白质组学及其相关技术筛选和鉴定曲马多诱导的斑马鱼脑组织氧化应激关键蛋白的结果,从细胞和分子水平揭示了曲马多长期滥用导致脑组织氧化应激、线粒体损伤和蛋白修饰或降解相关的神经毒性,以及引起能量系统失衡、细胞骨架破坏等,且很可能存在依赖性潜力;本论文的研究结果也为曲马多在世界范围内广泛使用可能存在的神经毒性和依赖性潜力等药物安全性方面的问题提供了新的富有意义的证据,而建立起来的结合了多种研究手段的蛋白质组学方法、以及鉴定出的多种关键蛋白质,在其他药物的神经毒性和依赖性潜力评估方面同样具有重要的运用价值。
Tramadol hydrochloride(TH),an atypical centrally acting opioid analgesic,hasbecome the most prescribed drug worldwide.Previous reports predominantly havefocused on the numerous positive response of TH in vertebrates,including analgesiafor moderate to severe pain;antidepressant,anti-inflammatory,andimmunostimulatory effects,micturition control;an ability to lower glucose indiabetics and so on.However,the data on the increase in TH related fatalities,adversereactions,and the drug addiction presented in recent years have been obtained frompostmarketing surveillance and case reports,unfortunately,cellular and molecularmechanisms involved in neurotoxicity,dysfunction and addiction potential afterchronic and abused TH administration are not well documented.These issueshighlight the need to assess the addiction potential and neurotoxicity of TH abuse atthe cellular and molecular levels.
     In this thesis,zebrafish(Danio rerio) was chosen as experimental object.Theresults,from the perspective of behavior observation and statistical,showed thatoxygen demand and preference of oxygen-rich surface water layer were heightened infish,thus significantly increased the mean distribution density of fish in surface layer,by a TH stimulus.Compared with those in pethidine hydrochloride(more effectiveanalgesic) positive control group,the abnormal behavior was even more significant,which was observed to emerge much faster,and last much longer(the whole processup to 6 h).Moreover,it was also accompanied by a significant reduction in activity.The phenomenon was belongs to TH specific abnormal behavior and physiologicalresponse in zebrafish.Body and brain mean weight loss in zebrafish,after long-termreceiving food containing TH.Specific physiological responses to TH exposure,makes zebrafish a favorable animal model for experimental studies of the mechanismsof TH toxicity and drug addiction.
     With the similar prooxidant properties with other opioids,TH was shown to inducea decrease in the activity of SOD,and an increase in lipoperoxide.Based on the regulation ofantioxidant enzyme activity,zebrafish had developed certain adaptabilityand tolerance to the oxidative toxicity during the chronic TH administration.Aftersingle IM injection,Gas Chromatography-Mass Spectrometry(GC/MS) trackinganalysis was used to examine the diffusion and elimination of the parent compound in7 kinds of tissue,including brain,eyes,gill,heart,liver,gut,and muscle.Regulationof TH content vs.time demonstrated a rapid drug diffusion and longer eliminationprocess in fish brain.Two principal metabolites O-desmethyl(M1) and N-desmethyl(M2) TH were detected in the brain tissue,and content of M2 was significantly higherthan that of M1,as the main desmethyl metabolite in zebrafish.Methods of IMinjection and GC/MS tracking analysis,could be well introduced to the study on THabsorption,distribution,clearance,metabolism and drug effect,especially themechanism of neurotoxicity in zebrafish,and their combination with the assays ofSOD enzyme activity and MDA content,could be used to assessment of degree ofoxidative stress in brain,but also to offer scientific reference values for theappropriate doses selection and experimental samples preparation for the follow-upscreening and identification of the key proteins by proteomics technologies.
     Proteomics has recently become one of the best analytical techniques to screen andidentify the differential proteins in tissues and organs.One practical research strategyhad been set up to screen and identify differential proteins in zebrafish brain byproteomics,especially in the establishment of semi-quantitative 2D-PAGE andintroduction of two strategies for sample preparation for peptide mass fingerprintinganalysis,namely usages of protein intensifiers(including human serum transferrin,albumin,ferritin),and mineral oil-,glycerol-,Vaseline-coated targets.All of thesestrategies led to effective improvement of identification of differential proteins insensitivity and reliability.A total of 30 TH induced differential protein spots wereidentified,and classifed into 13 categories of proteins,in which various subtypes of14-3-3 proteins,creatine kinase,ATP synthase(H+ transporting mitochondrial F1complex beta polypeptide),and tubulin were identified at the separated location onthe gel for 3,3,4,and l l times respectively.The TH responsive proteins identifiedwere involved in cytoskeletal system,energy metabolism,signal transduction, synaptic function,protein modification or degradation,and calcium signal regulator.Most of them have functions in oxidative stress or oxidative stress related diseasespathogenesis,including 14-3-3 proteins,creatine kinase BB(CK BB),ubiquitincarboxy-terminal hydrolase L-1(UCHL-1),ATP synthase,synaptosome-associatedprotein(SNAP),tubulin,actin.Furthermore,proteins including aldolase C,ATPsynthase,CK BB,pyruvate dehydrogenase kinase,UCHL-1,14-3-3 proteins,dynamin 1,SNAP,tubulin and actin,also differentially expressed in proteomics ofknown drug addiction.Meanwhile some other identified proteins have not yet beenreported,such as calcium signal regulation related protein—novel protein similar tovertebrate EF hand calcium binding protein 2,cytoskeletal related protein—novelintermediate filament protein similar to centrosomal protein 110 kDa.Similar toknown addiction drugs,TH induced neurotoxicity in zebrafish brain by three paths,namely energy metabolism,oxidative stress and protein modification or degradation.
     Western blotting and enzyme activity assay confirmed the results that chronic THinduced up-regulation of 14-3-3 epsilon peptide,and inhibition of aldolase andcreatine kinase enzyme activity,the two important enzymes in energy metabolism.All effects were still significant after two weeks of TH cessation.Furthermore,allabove results verified the reliability of screening and identification of the differentialproteins by proteomics technologies.Chronic TH treatment induced thedown-regulation of some important proteins involved in oxidative stress and energymetabolism,which directly or indirectly led to the changes of mitochondrial structureand function.Ultrastructureal observation on mitochondria showed series ofmorphological changes in the case of TH exposure,for example,distribution disorder,numeral density decreased significantly,the mitochondrial matrix was cleared,electron density decreased,swelling and vacuolation was observable,meanwhile themitochondria cristae show significant reduction,breakdown and in some cases wereabsent.
     Combining multiple methods,including behavior observation,drug metabolismdetection,western blotting,enzymes activity assay,and ultrastructural observation,with proteomics to screen and identify TH-associated key proteins,results suggested the involvement of neurotoxicity evaluated by oxidative stress,mitochondrialdysfunctions,and protein modification or degradation,moreover imbalances ofenergy metabolism,damages of cytoskeletal system in the effects of long-tern THabuse,at the cellular and molecular level.Furthermore,the addiction potential is mostlikely to accompany with chronic and long period exposure to TH.The results of thisthesis also provide meaningful evidence for the safety of TH,including neurotoxicityand addiction potential,as it is widely used throughout the world,and proteomicstechnologies based on a variety of other research methods and the identified keyproteins,also have application value in assessment the neurotoxicity and addictionpotential of other drugs.
引文
[1] Amira YM, Kim DJ. Immunopharmacotherapy: Vaccination strategies as a treatment for drug abuse and dependence[J]. Pharmacology, Biochemistry and Behavior, 2009, 92(3): 199-205.
    
    [2] Miczek KA, Yap JJ, Covington HE 3~(rd). Social stress, therpeutics and drug abuse:preclinical models of escalated and depressed intake[J]. Pharmacol Ther, 2008, 120(2):102-128.
    
    [3] Kreek MJ, LaForge KS, Butelman E. Pharmacotherapy of addictions[J]. Nat Rev Drug Discov, 2002, 1(9): 710-726.
    
    [4] Cartwright WS. Economic costs of drug abuse: financial, cost of illness, and services[J]. J Subst Abuse Treat, 2008, 34(2): 224-233.
    
    [5] Hyman SE, Malenka RC, Nestler EJ. Neural mechanisms of addiction: the role of reward- related learning and memory[J]. Annu Rev Neurosci, 2006, 29: 565-598.
    
    [6] United Nations for Drug Control and Crime Prevention[EB/01]. United Nations World Drug Report 2000. United Nations Office for Drug Control and Crime Prevention[online], 2002, http://www.undcp.org/world_drug_report.html.
    
    [7] Pouletty P. Drug addictions: towards socially accepted and medically treatable diseases[J]. Nat Rev Drug Discov, 2002, 1(9): 731-736.
    
    [8] European Monitoring Centre for Drugs and Drug Addiction. 2007 Annual Report on the State of thd Drugs Problem in Europe[M], 2007.
    
    [9] Gibson TP. Pharmacokinetics, efficacy, and safety of analgesia with a focus on tramadol HC1[J]. Am J Med, 1996, 101(1 A): 47S-53S.
    [10] Driessen B, ReimannW, Giertz H. Effects of the central analgesic tramadol on the uptake and release of noradrenaline and in vitro[J]. Br J Pharmacol, 1993, 108(3): 806-811.
    
    [11] Klotz U. Tramadol-the impact of its pharmacokinetic and pharmacodynamic properties on the clinical management of pain[J]. Arzneimittelforschung, 2003, 53(10): 681-687.
    
    [12]Houmes RJM, Voets MA, Verkaaik A, et al. Efficacy and safety of tramadol versus morphine for moderate and sever postoperative pain with special regard to respiratory depression[J]. Anesth Analg, 1992, 74(4): 510-514.
    
    [13]Richter W, Barth H, Flohe L, et al. Clinical investigation on the development of dependence during oral therapy with tramadol[J]. Arzneimittelforschung, 1985, 35(11):1742-1744.
    [14] Warren PM, Taylor JH, Nicholson KE, et al. Influence of tramadol on the ventilatory response to hypoxia in humans[J]. Br Anaesth, 2000, 85(2): 211-216.
    [15] Kehlet H, Werner M, Perkins F. Balanced analgsia: what is it and what are its advantages in postoperative pain?[J]. Drugs, 1999, 58(5): 793-797.
    [16] Kehlet H. Multimodal approach to control postoperative pathophysiology and rehabilitation [J]. Br J Anaesth, 1997, 78(5): 606-617.
    [17] Wilder-Smith CH, Hill L, Dyer RA, et al. Postoperative sensitization and pain after cesarean delivery and the effects of single im doses of tramadol and diclofenac alone and in combination[J]. Anesth Analg, 2003,97(2): 526-533.
    [18]Duhmke RM, Cornblath DD, Hollingshead JR. Tramadol for neuropathic pain[J]. Cochrane Database Syst Rev, 2004, (2): CD003726.
    [19]Mattia C, Coluzzi F. Tramadol Focus on musculoskeletal and neuropathic pain[J]. Minerva Anestesiol, 2005, 71(10): 565-584.
    
    [20] Kukanich B, Papich MG. Pharmacokinetics of tramadol and the metabolite O-desmethyl tramadol in dogs[J]. J Vet Pharmacol Therap, 2004,27(4): 239-246.
    
    [21] Alici HA, Ozmen I, Cesur M, et al. Effect of the spinal drug tramadol on the fatty acid composition of rabbit spinal cord and brain[J]. Biol Pharm, 2003,26(10): 1403-1406.
    
    [22] Paar WD, Franjus P, Dengler HJ. The metabolism of tramadol by human liver microsomes [J]. Clin Investig, 1992,70(8): 708-710.
    
    [23] Paar WD, Poche S, Gerloff J, et al. Polymorphic CYP 2D6 mediates O-demethylation of the opioid analgesic tramadol[J]. Eur J Clin Pharmacol, 1997,53(3-4): 235-239.
    [24] Leppert W, Luczak J. The role of tramadol in cancer pain treatment-a review[J]. Support Care Cancer, 2005, 13(1): 5-17.
    
    [25] Frankus E, Friderichs E, Kim SM, et al. On separatio of isomeres, structural elucidation and pharmacological characterization of l-(m-methoxyphenyl)-2-(dimethylaminomethyl)- cyclohexan-l-ol[J]. Arzneimittelforschung, 1978,28(1a): 114-21.
    
    [26] Kueuk A, Kadioglu Y, Celebi F. Investigation of the pharmacokinetics and determination of tramadol in rabbit plasma by a high performance liquid chromatography-diode array detector method using liquidliquid extraction[J]. J Chromatogr B, 2005, 816(1-2):203-208.
    [27] Elghazali M, Barezaik IM, Abdel Hadi AA, et al. The pharmacokinetics, metabolism and urinary detection time of tramadol in camels[J]. Vet J, 2008, 178(2): 272-277.
    [28] Debbie Myers DVM. Tramadol[J]. Seminars in Avian and Exotic Pet Medicine, 2005, 14(4): 284-287.
    
    [29]Grono S, Sablotzki A. Clinical pharmacology of tramadol [J]. Clin Pharmacokinet, 2004, 43(13): 879-923.
    [30]Raffa RB, Friderichs E, Reimann W, et al. Opioid and nonopioid components independently contribute to the mechanism of action of tramadol, an "atypical" opioid analgesic[J]. J Pharmacol Exp Ther, 1992,260(1): 275-285.
    [31]Grond S, Zech D, Lynch J, et al. Tramadol-a weak opioid for relief of cancer pain[J]. Pain Clinic, 1992,5:241-247.
    [32]Dayer P, Collart L, Desmeules J. The pharmacology of tramadol[J]. Drugs, 1994, 47 (Suppl 1): 3-7.
    
    [33] Werz MA, Grega DS, MacDonald RL. Actions of mu, delta and kappa opioid agonists and antagonists on mouse primary afferent neurons in culture[J]. J Pharmacol Exp Ther, 1987,243(1): 258-263.
    
    [34]Teppema LJ, Nieuwenhuijs D, Olievier CN, et al. Respiratory depression by tramadol in the cat: involvement of opioid receptors[J]. Anesthesiology, 2003, 98(2): 420-427.
    [35] Cheng JT, Liu IM, Chi TC, et al. Plasma glucose-lowering effect of tramadol in streptozotocin-induced diabetic rats[J]. Diabetes, 2001, 50(12): 2815-2821.
    [36] Giusti P, Buriani A, Cima L, et al. Effect of acute and chronic tramadol on [3HJ-5-HT uptake in rat cortical synaptosomes[J]. Br J Pharmacol, 1997, 122(2): 302-306.
    [37] Franceschini D, Lipartiti M, Giusti P. Effect of acute and chronic tramadol on [3H]- norephinephrine-uptake in rat cortical synaptosomes[J]. Prog Neuropsychopharmacol Biol Psychiatry, 1999,23(3): 485-496.
    [38] Gobbi M, Mennini T. Release studies with rat brain cortical synaptosomes indicate that tramadol is a 5-hydroxytryptamine uptake blocker and not a 5-hydroxytryptamine releaser[J]. Eur J Pharmacol, 1999, 370(1): 23-26.
    [39] Markenson JA. Mechanisms of chronic pain[J]. Am J Med, 1996, 101(1A): S6-S18.
    
    [40] Shiga Y, Minami K, Shiraishi M, et al. The inhibitory effects of tramadol on muscarinic receptor-induced responses in Xenopus oocytes expressing cloned M(3) receptors[J]. Anesth Analg, 2002, 95(5): 1269-1273.
    
    [41] Shiraishi M, Minami K, Uezono Y, et al. Inhibition by tramadol of muscarinic receptor- induced responses in cultured adrenal medullary cells and in Xenopus laevis oocytes expressing cloned Ml receptors[J]. J Pharmacol Exp Ther, 2001,299(1): 255-260.
    [42] Nakamura M, Minami K, Uezono Y, et al. The effects of the tramadol metabolite O- desmethyl tramadol on muscarinic receptor-induced responses in Xenopus oocytes expressing cloned M1 ro M3 receptors[J]. Anesth Analg, 2005, 101(1): 180-186.
    [43] Ogata J, Minami K, Uezono Y, et al. The inhibitory effects of tramadol on 5- hydroxytryptamine type 2C receptors expressed in Xenopus oocytes[J]. Anesth Analg, 2004,98(5): 1401-1406.
    
    [44] Tsai TY, Tsai YC, Wu SN, et al. Tramadol-induced blockade of delayed rectifier potassium current in NG108-15 neuronal cells[J]. Eur J Pain, 2006, 10(7): 597-601.
    
    [45] Gotrick B, Tobin G. The xerogenic potency and mechanism of action of tramadol inhibition of salivary secretion in rats[J]. Arch Oral Biol, 2004,49(12): 969-973.
    
    [46]Clarkson JE, Lacy JM, Fligner CL, et al. Tramadol (Ultraml) concentrations in death investigations and impaired driving cases and their significance[J]. J Forensic Sci, 2004, 49(5): 1101-1105.
    
    [47] Tj(a|¨)derborn M, J(o|¨)nsson AK, H(a|¨)gg S, et al. Fatal unintentional intoxications with tramadol during 1995-2005[J]. Forensic Sci Int, 2007,173(2-3): 107-111.
    
    [48] Yanagita T. Drug dependence potential of 1 -(m-methoxyphenyl)-2-dimethylaminomethyl)-cyclohexan-1-ol hydrochloride (tramadol) tested in monkeys[J]. Arzneimittelforschung,1978,28 (1a): 158-163.
    [49] Swedberg MD, Shannon HE, Nickel B, et al. Pharmacological mechanisms of action of flupirtine: a novel, centrally acting, nonopioid analgesic evaluated by its discriminative effects in the rat[J]. Journal of Pharmacology and Experimental Therapeutics, 1988,246(3): 1067-1074.
    [50] Swedberg MD, Shannon HE, Nickel B, et al. D-16949 (anpirtoline): a novel serotonergic (5-HT1B) psychotherapeutic agent assessed by its discriminative effects in the rat[J]. Journal of Pharmacology and Experimental Therapeutics, 1992, 263(3): 1015-1022.
    [51] Ren YH, Zheng JW. Influence of tramadol on morphine discriminative behavior in rats[J]. Acta Pharmacologica Sinica, 2000, 21(10): 924-926.
    [52] Tzschentke TM, Bruckmann W, Friderichs E. Lack of sensitization during place conditioning in rats is consistent with the low abuse potential of tramadol[J]. Neuroscience Letters, 2002, 329 (1): 25-28.
    [53] Sprague JE,Leifheit M,Selken J,et al. In vivo microdialysis and conditioned place preference studies in rats are consistent with abuse potential of tramadol[J]. Synapse, 2002,43(2): 118-121.
    [54] Filip M, Wydra K, Inan SY, et al. Opioid and monoamine systems mediate the discriminative stimulus of tramadol in rats[J]. Eur J Pharmacol, 2004,498(1-3): 143-151.
    [55] Preston KL, Bigelow GE. Subjective and discriminative effects of drugs[J]. Behavioural Pharmacology, 1991,2(4-5): 293-313.
    
    [56] Epstein DH, Preston KL, Jasinski DR. Abuse liability, behavioral pharmacology, and physical-dependence potential of opioids in humans and laboratory animals: lessons from tramadol[J]. Biol Psychol, 2006,73(1): 90-99.
    
    [57] Nickel B, Aledter A. Comparative physical dependence studies in rats with flupirtine and opiate receptor stimulating analgesics[J]. Postgraduate Medical Journal, 1987, 63(Suppl.3): 41-43.
    
    [58] Miranda HF, Pinardi G. Antinociception, tolerance, and physical dependence comparison between morphine and tramadol[J]. Pharmacology Biochemistry and Behavior, 1998,61(4): 357-360.
    [59] Przewlocki R. Opioid abuse and brain gene expression[J]. Eur J Pharmacol, 2004,500(1-3): 331-349.
    [60] Hyman SE, Malenka RC. Addiction and the brain: the neurobiology of compulsion and its persistence[J]. Nat Rev Neurosci, 2001, 2(10): 695-703.
    [61] Kalivas PW, Volkow ND. The neural basis of addiction: a pathology of motivation and choice[J]. Am J Psychiatry, 2005, 162(8): 1403-1413.
    [62] Kauer JA, Malenka RC. Synaptic plasticity and addiction[J]. Nat Rev Neurosici, 2007,8(11): 844-858.
    
    [63] Kiyatkin EA. Dopamine in the nucleus accumbens: cellular actions, drug- and behavior- associated fluctuations, and possible role in an organism's adaptive activiry[J]. Behav Brain Res, 2002, 137(1-2): 27-46.
    [64] Johnson SW, North RA. Opioids excite dopamine neurons by hyperpolarization of local in terneurons[J]. J Neurosci, 1992, 12(2): 483-488.
    [65] Sora I, Hall FS, Andrews AM, et al. Molecular mechanisms of cocaine reward: combined dopamine and serotonin transporter knockouts eliminate[J]. Proc Natl Acad Sci USA,2001, 98(9): 5300-5305.
    
    [66] Becker A, Grecksch G, Brodemann R, et al. Morphine self-administration in mu-opioid receptor-deficient mice[J]. Naunyn Schmiedebergs Arch Pharmacol, 2000, 361(6):584-589.
    
    [67]Nestler EJ. From neurobiology to treatment: progress against addiction[J]. Nat Neurosci, 2002, Suppl: 1079-1079.
    
    [68] Majewska MD. Cocaine addiction as a neurological disorder: implications for treatment[J]. NIDA Res Monogr, 1996, 163: 1-26.
    [69] Buttner A, Mall G, Penning R, et al. The neuropathology of heroin abuse[J]. Forensic Sci Int, 2000, 113(1-3): 435-442.
    [70] Lyoo IK, Streeter GC, Ahn KH et al. White matter hyperintensities in subjects with cocaine and opiate dependence and healthy comparison subjects[J]. Psychiatry Res, 2004,131(2): 135-145.
    [71] Cunha-Oliveira T, Rego AC, Oliveira CR. Cellular and molecular mechanisms involved in the neurotoxicity of opioid and psychostimulant drugs[J]. Brain Res Rev, 2008, 58(1):192-208.
    
    [72] Gage FH. Neurogenesis in the adult brain[J]. J Neurosci, 2002,22(3): 612-613.
    [73] Butterfield DA, Castegna A, Lauderback CM, et al. Evidence that amyloid beta-peptide- induced lipid peroxidation and its sequelae in Alzheimer's disease brain contribute to neuronal death[J]. Neurobiol Aging, 2002,23(5): 655-664.
    [74] Butterfield DA, Lauderback CM. Lipid peroxidation and protein oxidation in Alzheimer's disease brain: potential causes and consequences involving amyloid P-peptide-associated free radical oxidative stress[J]. Free Radic Biol Med, 2002,32(11): 1050-1060.
    [75] Butterfield DA. Amyloid beta-peptide (l-42)-induced oxidative stress and neurotoxicity: implications for neurodegeneration in Alzheimer's disease brain: a review[J]. Free Radic Res, 2002,36(12): 1307-1313.
    [76] Lovell MA, Xie C, Markesbery WR, et al. Acrolein is increased in Alzheimer's disease brain and is toxic to primary hippocampal cultures[J]. Neurobiol Aging, 2001, 22(2): 187-194.
    [77] Butterfield DA, Reed T, Newman SF, et al. Roles of amyloid beta-peptide-associated oxidative stress and brain protein modifications in the pathogenesis of Alzheimer's disease and mild cognitive impairement[J]. Free Radic Biol Med, 2007,43(5): 658-677.
    [78] Murphy MP, Packer MA, Scarlett JL, et al. Peroxynitrite: a biologically significant oxidant [J]. Gen Pharmacol, 1998,31(2): 179-186.
    [79] Butterfield DA, Kanshi J. Brain protein oxidation in age-related neurodegenerative disorders that are associated with aggregated proteins[J]. Ageing Dev, 2001, 122(9): 945-962.
    [80]Amara SG, Kuhar MJ. Neurotransmitter transporters: recent progress[J]. Annu Rev Neurosci, 1993, 16: 73-93.
    [81] Cadet JL, Brannock C. Free radicals and the pathobiology of brain dopamine systems[J]. Neurochem Int, 1998, 32(2): 117-131.
    [82] Jones DC, Gunasekar PG, Borowitz JL, et al. Dopamine-induced apoptosis is mediated by oxidative stress and Is enhanced by cyanide in differentiated PC 12 cells[J]. J Neurochem, 2000, 74(6): 2296-2304.
    [83] Benedi J, Arroyo R, Romero C, et al. Antioxidant properties and protective effects of a standardized extract of Hypericum perforatum on hydrogen peroxide-induced oxidative damage in PC12 cells[J]. Life Sci, 2004,75(10): 1263-1276.
    [84] Jang JH, Surh YJ. Possible role of NF-kappaB in Bcl-X(L) protection against hydrogen peroxide-induced PC12 cell death. Redox Rep, 2004,9(6): 343-348.
    [85] Sun AY, Sun GY. Ethanol and oxidative mechanisms in the brainfJ]. J Biomed Sci, 2001,8(1): 37-43.
    [86] Haorah J, Knipe B, Leibhart J, et al. Alcohol-induced oxidative stress in brain endothelial cells causes blood-brain barrier dysfunction[J]. J Leukoc Biol, 2005, 78(6): 1223-1232.
    [87]Yamamoto BK, Bankson MG. Amphetamine neurotoxicity: cause and consequence of oxidative stress[J]. Crit Rev Neurobiol, 2005, 17(2): 87-117.
    [88] Cadet JL, Krasnova IN, Jayanthi S, et al. Neurotoxicity of substituted amphetamines: molecular and cellular mechanisms[J]. Neurotox Res, 2007,11(3-4): 183-202.
    [89] Wu CW, Ping YH, Yen JC, et al. Enhanced oxidative stress and aberrant mitochondrial biogenesis in human neuroblastoma SH-SY5Y cells during methamaphetamine induced apoptosis[J]. Appl Pharmacol, 2007,220(3): 243-251.
    [90] Frey BN, Valvassori SS, Gomes KM, et al. Increased oxidative stress in submitochondrial particles after chronic amphetamine exposure[J]. Brain Res, 2006, 1097(1): 224-229.
    [91]Mirecki A, Fitzmaurice P, Ang L, et al. Brain antioxidant systems in human methamphetamine users[J]. J Neurochem, 2004, 89(6): 1396-1408.
    [92]Acikgoz O, Gonenc S, Kayatekin BM, et al. The effects of single dose of methamphetamine on lipid peroxidation levels in the rat striatum and prefrontal cortex[J]. Eur Neuropsychop-harmacol, 2000, 10(5): 415-418.
    [93] Carvalho F, Fernandes E, Remial F, et al. Adaptative response of antioxidant enzymes in different areas of rat brain after repeated D-amphetamine administration[J]. Addict Biol, 2001,6(3): 213-221.
    [94] Frenzilli G, Ferrucci M, Giorgi FS, et al. DNA fragmentation and oxidative stress in the hippocampal formation: a bridge between 3,4-methylenedioxymethamphetamine (ecstasy) intake and long-lasting behavioral alterations[J]. Behav Pharmacol, 2007, 18(5-6):471-481.
    [95] Alves E, Summavielle T, Alves CJ, et al. Monoamine oxidase-B mediates ecstasy-induced neurotoxic effects to adolescent rat brain mitochondria[J]. J Neurosci, 2007, 27(38):10203-10210.
    [96] Dietrich JB, Mangeol A, Revel MO, et al. Acute or repeated cocaine administration generates reactive oxygen species and induces antioxidant enzyme activity in dopaminergic rat brain structures[J]. Neuropharmacology, 2005,48(7): 965-974.
    [97] Macedo DS, Vasconcelos SM, dos Santos RS, et al. Cocaine alters catalase activity in prefrontal cortex and striatum of mice[J]. Neurosci Lett, 2005, 387(1): 53-56.
    [98]Qiusheng Z, Yuntao Z, Rongliang Z, et al. Effects of verbascoside and luteolin on oxidative damage in brain of heroin treated mice[J]. Pharmazie, 2005, 60(7): 539-543.
    [99] Xu B, Wang Z, Li G, et al. Heroin-administered mice involved in oxidative stress and exogenous antioxidant-alleviated withdrawal syndrome[J]. Basic Clin Pharmacol Toxicol, 2006, 99(2): 153-161.
    [100] Guzman DC, Vazquez IE, Brizuela NO, et al. Assessment of oxidative damage induced by acute doses of morphine sulfate in postnatal and adult rat brain[J]. Neurochem Res,2006, 31(4): 549-554.
    [101] Ozmen I, Naziroglu M, Alici HA, et al. Spinal morphine administration reduces the fatty acid contents in spinal cord and brain by increasing oxidative stress[J]. Neurochem Res,2007,32(1): 19-25.
    [102] Patel J, Manjappa N, Bhat R, et al. Role of oxidative stress and heme oxygenase activity in morphine-induced glomerular epithelial cell growth[J]. Am J Physiol Renal Physiol,2003, 285(5): F861-869.
    [103] Bthat RS, Bhasharan M, Mongia A, et al. Morphine-induced macrophage apoptosis: oxidative stress and strategies for modulation[J]. J Leukoc Biol, 2004, 75(6): 1131-1138.
    [104] Castegna A, Aksenov M, Aksenova M, et al. Proteomic identification of oxidatively modified proteins in Alzheimer's disease brain. Part I. Creatine kinase BB, glutamine synthase, and ubiquitin carboxy-terminal hydrolase L-1[J]. Free Radic Biol Med, 2002,33(4): 562-571.
    [105] Castegna A, Aksenov M, Thongboonkerd V, et al. Proteomic identification of oxidatively modified proteins in Alzheimer's disease brain. Part II. Dihydropyrimidinase-related protein 2, alpha-enolase and heat shock cognate 71 [J]. J Neurochem, 2002, 82(6):1524-1532.
    [106] Berlett BS, Friguet B, Yim MB, et al. Peroxynitrite-mediated nitration of tyrosine residues in Escherichia coli glutamine synthetase mimics adenylylation: relevance to signal transduction[J]. Proc Natl Acad Sci USA, 1996,93(5): 1776-1780.
    [107] Yi D, Perkins PD. Identification of ubiquitin nitration and oxidation using a liquid chromatography/mass selective detector system[J]. J Biomol Tech, 2005, 16(4): 364-370.
    [108] Blanchard-Fillion B, Souza JM, Friel T, et al. Nitration and inactivation of tyrosine hydroxylase by peroxynitrite[J]. J Biol Chem, 2001, 276(49): 46017-46023.
    [109] Souza JM, Chen Q, Blanchard-Fillion B, et al. Reactive nitrogen species and proteins: biological significance and clinical relevance[J]. Adv Exp Med Biol, 2001, 500: 169-174.
    [110] Anantharaman M, Tangpong J, Keller JN, et al. Beta-amyloid mediated nitration of manganese superoxide dismutase: implication for oxidative stress in a APPNLH/NLH x PS-1 P264L/P264L double knock-in mouse model of Alzheimer's disease[J]. Am J Pathol,2006, 168(5): 1608-1618.
    [111] Boyd-Kimball D, Sultana R, Poon HF, et al. Proteomic identification of proteins specifically oxidized by intracerebral injection of amyloid beta-peptide (1-42) into rat brain: implications for Alzheimer's disease[j]. Neuroscience, 2005, 132(2): 313-324.
    
    [112] Kroemer G, Martin SJ. Caspase-independent cell death[J]. Nat Med, 2005, 11(7):725-730.
    [113] Warren MW, Larner SF, Kobeissy FH, et al. Calpain and caspase proteolytic markers co- localize with rat cortical neurons after exposure to methamphetamine and MDMA[J]. Arch Biochem Biophys, 2007, 114(3): 277-286.
    [114] Krasnova IN, Ladenheim B, Cadet JL. Amphetamine induces apoptosis of medium spiny striatal projection neurons via the mitochondria-dependent pathway[J]. FASEB J,2005, 19(7): 851-853.
    [115] Cunha-Oliveira T, Rego AC, Cardoso SM, et al. Mitochondrial dysfunction and caspase activation in rat cortical neurons treated with cocaine or amphetamine[J]. Brain Res, 2006, 1089(1): 44-54.
    [116] Jimenez A, Jorda EG, Verdaguer E, et al. Neurotoxicity of amphetamine derivatives is mediated by caspase pathway activation in rat cerebellar granule cells[J]. Toxicol Appl Pharmacol, 2004,196(2): 223-234.
    [117] Oliveira MT, Rego AC, Morgadinho MT, et al. Toxic effects of opioid and stimulant drugs on undifferentiated PC12 cells[J]. Ann N Y Acad Sci, 2002, 965: 487-496.
    [118] Imam SZ, Itzhak Y, Cadet JL, et al. Methamphetamine-induced alteration in striatal p53 and bcl-2 expressions in mice[J]. Brain Res Mol Brain Res, 2001, 91(1-2): 174-178.
    [119] Oliveira MT, Rego AC, Macedo TR, et al. Drugs of abuse induce apoptotic features in PC 12 cells[J]. Ann N Y Acad Sci, 2003, 1010: 667-670.
    [120] Imam SZ, Duhart HM, Skinner JT, et al. Cocaine induces a differential dose-dependent alteration in the expression profile of immediate early genes, transcription factors, and caspases in PC 12 cells: a possible mechanism of neurotoxic damage in cocaine addiction[J]. Ann N Y Acad Sci, 2005, 1053: 482-490.
    [121] Tramullas M, Martinez-Cue C, Hurle MA. Chronic administration of heroin to mice produces up-redulation of brain apoptosis-related proteins and impairs spatial learning and memory[J]. Neuropharmacology, 2008, 54(4): 640-652.
    [122] Mao J, Sung B, Ji RR, et al. Neuronal apoptosis associated with morphine tolerance: evidence for an opioid-induced neurotoxic mechanism[J]. J Neurosci, 2002, 22(17):7650-7661.
    [123] Lim G, Wang S, Lim JA, et al. Activity of adenylyl cyclase and protein kinase A contributes to morphine-induced spinal apoptosis[J]. Neurosci Lett, 2005, 389(2):104-108.
    [124] Hu S, Sheng WS, Lokensgard JR, et al. Morphine induces apoptosis of human microglia and neurons[J]. Neuropharmacology, 2002,42(6): 829-836.
    [125] Cunha-Oliveira T, Rego AC, Garrido J, et al. Street heroin induces mitochondrial dysfunction and apoptosis in rat cortical neurons[J]. J Neurochem, 2007, 101(2): 543-554.
    [126] Eisch AJ, Barrot M, Schad CA, et al. Opiates inhibit neurogenesis in the adult rat hippocampus[J]. Proc Natl Acad Sci USA, 2000, 97(13): 7579-7584.
    [127] Yamaguchi M, Suzuki T, Seki T, et al. Repetitive cocaine administration decreases neurogenesis in adult rat hippocampus[J]. Ann N Y Acad Sci, 2004, 1025: 351-362.
    [128] Teuchert-Noodt G, Dawirs RR, Hildebrandt K. Adult treatment with methamphetamine transiently decreases dentate granule cell proliferation in the gerbil hippocampus[J]. J Neural Transm, 2000, 107(2): 133-143.
    [129] Vestal ML, Campbell JM. Tandem time-of-flight mass spectrometry[J]. Methods Enzymol, 2005,402: 79-108.
    [130] Ens W, Standing KG Hybrid quadrupole/time-of-flight mass spectrometers for analysis of biomolecules[J]. Methods Enzymol, 2005,402:49-78.
    
    [131] Duncan MW, Matanovic G, Cerpa-Poljak A. Quantitative analysis of low molecular weight compounds of biological interest by matrix-assisted laser desorption/ionization[J]. Rapid Commun Mass Spectrom, 1993, 7(12): 1090-1094.
    [132] Schuerenberg M, Luebbert C, Eickhoff H, et al. Prestructured MALDI-MS sample supports[J]. Anal Chem, 2000, 72(15): 3436-3442.
    [133] Monroe EB, Koszczuk BA, Losh JL, et al. Measuring salty samples without adducts with MALDI MS[J]. Intl J Mass Spectrom, 2007, 260(2-3): 237-242.
    [134] Rohner TC, Staab D, Stoeckli M. MALDI mass spectrometric imaging of biological tissue sections[J]. Mech Ageing Dev, 2005( 1), 126: 177-185.
    [135] Neupert S, Predel R, Russell WK, et al. Identification of tick periviscerokinin, the first neurohormone of Ixodidae: Single cell analysis by means of MALDI-TOF/TOF mass spectrometry[J]. Biochem Biophys Res Commun, 2005, 338(4): 1860-1864.
    [136] Monroe EB, Jruchen JC, Koszczuk BA, et al. Massively parallel sample preparation for the MALDI MS analyses of tissues[J]. Anal Chem, 2006, 78(19): 6826-6832.
    [137] Reyzer ML, Caprioli RM. MALDI-MS-based imaging of small molecules and proteins in tissues[J]. Curr Opin Chem Biol, 2007, 11(1): 29-35.
    
    [138] Hu Y, Zhang S, Yu J, et al. SELDI-TOF-MS: the proteomics and bioinformatics approaches in the diagnosis of breast cancer[J]. Breast, 2005, 14(4): 250-255.
    
    [139] Qin S, Ferdinand AS, Richie JP, et al. Chromatofocusing fractionation and two-dimensional difference gel electrophoresis for low abundance serum proteins[J]. Proteomics, 2005, 5(12): 3183-3192.
    
    [140] Tsarbopoulos A, Karas M, Strupat K, et al. Comparative mapping of recombinant proteins and glycoproteins by plasma desorption and matrix-assisted laser desorption/ionization mass spectrometry[J]. Anal Chem, 1994, 66(13): 2062-2070.
    
    [141] Botting CH. Improved detection of higher molecular weight proteins by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry on polytetrafluoroethylene surfaces[J]. Rapid Commun Mass Spectrom, 2003,17(6): 598-602.
    [142] Keller BO, Li L. Discerning matrix-cluster peaks in matrix-assisted laser desorption/ ionization time-of-flight mass spectra of dilute peptide mixtures[J]. J Am Soc Mass Spectrom, 2000,11(1): 88-93.
    [143] Chen WY, Wang LS, Chiu HT, et al. Carbon nanotubes as affinity probes for peptides and proteins in MALDI MS analysis[J]. J Am Soc Mass Spectrom, 2004, 15(11):1629-1635.
    [144] Zhang LK, Gross ML. Matrix-assisted laser desorption/ionization mass spectrometry methods for oligodeoxynucleotides: Improvements in matrix, detection limits,quantification, and sequencing[J]. J Am Soc Mass Spectrom, 2000,11(10): 854-865.
    [145] Ren SF, Zhang L, Cheng ZH, et al. Immobilized carbon nanotubes as matrix for MALDI-TOF-MS analysis: Applications to neutral small carbohydrates[J]. J Am Soc Mass Spectrom, 2005, 16(3): 333-339.
    [146] Ayorinde FO, Garvin K, Saeed K. Determination of the fatty acid composition of saponified vegetable oils using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry[J]. Rapid Commun Mass Spectrom, 2000, 14(7): 608-615.
    [147] Kinumi T, Saisu T, Takayama M, et al. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry using an inorganic particle matrix for small molecule analysis[J]. J Mass Spectrom, 2000, 35(3): 417-422.
    [148] Kraj A, Dylag T, Gorecka-Drzazga A, et al. Desorption/ionization on silicon for small molecules: A promising alternative to MALDI TOF[J]. Acta Biochim Pol, 2003, 50(3):783-787.
    [149] Pan CS, Xu SY, Zou HF, et al. Carbon nanotubes as adsorbent of solid-phase extraction and matrix for laser desorption/ionization mass spectrometry[J]. J Am Soc Mass Spectrom,2005, 16(2): 263-270.
    [150] Ren SF, Guo YL. Oxidized carbon nanotubes as matrix for matrix-assisted laser desorption/ionization time-of-flight mass spectrometric analysis of biomolecules[J]. Rapid Commun Mass Spectrom, 2005, 19(2): 255-260.
    [151] Ren SF, Guo YL. Carbon nanotubes (2,5-dihydroxybenzoyl hydrazine) derivative as pH adjustable enriching reagent and matrix for MALDI analysis of trace peptides[J]. J Am Soc Mass Spectrom, 2006, 17(7): 1023-1027.
    [152] Li YL, Gross ML, Hsu FF. Ionic-liquid matrices for improved analysis of phospholipids by MALDI-TOF mass spectrometry[J]. J Am Soc Mass Spectrom, 2005, 16(5): 679-682.
    [153] Bogan MJ, Bakhoum SF, Agnes GR. Promotion of (a-cyano-4-hydroxycinnamic acid and peptide cocrystallization within levitated droplets with net charge[J]. J Am Soc Mass Spectrom, 2005, 16(5): 254-262.
    
    [154] Landry F, Lombardo CR, Smith JW. A method for application of samples to matrix- assisted laser desorption ionization time-of-flight targets that enhances peptide detection [J]. Anal Biochem, 2000,279(1): 1-8.
    [155] Lopez MF, Berggren K, Chemokalskaya E, et al. A comparison of silver stain and SYPRO ruby protein gel stain with respect to protein detection in two-dimensional gels and identification by peptide mass profiling[J]. Electrophoresis, 2000,21(17): 3673-3683.
    [156] Kim SY, Chudapongse N, Lee SM, et al. Proteomic analysis of phosphotyrosyl proteins in morphine-dependent rat brains[J]. Brain Res Mol Brain Res, 2005,133(1): 58-70.
    [157] Bierczynska-Krzysik A, Bonar E, Drabik A, et al. Rat brain proteome in morphine dependence[J]. Neurochem Int, 2006,49(4): 401-406.
    [158] Bierczynska-Krzysik A, Pradeep John JP, Silberring J, et al. Proteomic analysis of rat cerebral cortex, hippocampus and striatum after exposure to morphine[J]. Int J Mol Med, 2006, 18(4): 775-784.
    [159] Reynolds JL, Mahajan SD, Bindukumar B, et al. Proteomic analysis of the effects of cocaine on the enhancement of HIV-1 replication in normal human astrocytes (NHA)[J]. Brain Res, 2006, 1123(1): 226-236.
    [160] Reynolds JL, Mahajan SD, Sykes D, et al. Heroin-induces differential protein expression by normal human astrocytes (NHA)[J]. Am J Infect Dis, 2006,2(2): 49-57.
    [161] Yang L, Sun ZS, Zhu YP. Proteomic analysis of rat prefrontal cortex in three phases of morphine-induced conditioned place preference[J]. J Proteomc Res, 2007, 6(6):2239-2247.
    [162] Kim SY, Chudapongse N, Lee SM, et al. Proteomic analysis of phophotyrosyl proteins in the rat brain: effect of butorphanol dependence[J]. J Neurosci Res, 2004, 77(6):867-877.
    [163] Yeom M, Shim I, Lee HJ, et al. Proteomic analysis of nicotine-associated protein expression in the striatum of repeated nicotine-treated rats[J]. Biochem Biophys Res Commun, 2005, 326(2): 321-328.
    [164] Piubelli C, Cecconi D, Astner H, et al. Proteomic changes in rat serum, polymorpho- nuclear and mononuclear leukocytes after chronic nicotine administration[J]. Proteomics, 2005, 5(5): 1382-1394.
    [165] Kashem MA, James G, Harper C, et al. Differential protein expression in the corpus callosum (splenium) of human alcoholics: a proteomics study[J]. Neurochem Int, 2007,50(2): 450-459.
    [166] Kashem MA, Harper C, Matsumoto I. Differential protein expression in the corpus callosum (genu) of human alcoholica[J]. Neurochem Int, 2008,53(1-2): 1-11.
    [167] Jeon JP, Buono RJ, Han BG, et al. Proteomic and behavioral analysis of response to isoliquiritigenin in brains of acute cocaine treated rats[J]. J Proteome Res, 2008, 7(12):5094-5201.
    
    [168] Chorvova LS, Lapshin DN. Opioid modulation of pain threshold in fish[J]. Dokl Biol Sci, 2000, 375: 590-1.
    [169] Li X, Keith DE Jr, Evans CJ. Mu opioid receptor-like sequences are present throughout vertebrate evolution[J]. J Mol Evol, 1996,43(3): 179-184.
    
    [170] Reilly SC, Quinn JP, Cossins AR et al. Behavioural analysis of a nociceptive event in fish: Comparisons between three species demonstrate specific responses[J]. Applied Animal Behaviour Science, 2008, 114(1-2): 248-259.
    
    [171] Sanchez-Simon FM, Rodriguez RE. Developmental expression and distribution of opioid receptors in zebrafish[J]. Neuroscience, 2008, 151(1): 129-137.
    
    [172] Gonzalez-Nunez V, Marron Fernandez de Velasco E, Arsequell G, et al. Identification of dynorphin a from zebrafish: a comparative study with mammalian dynorphin A[J]. Neuroscience, 2007, 144(2): 675-684.
    
    [173] Bretaud S, Li Q, Lockwood BL, et al. A choice behavior for morphine reveals experience-dependent drug preference underlying neural subtrates in developing larval zebrafish[J]. NAeuroscience, 2007, 146(3): 1109-1116.
    
    [174] Gerlai R, Lahav M, Guo S, et al. Drinks like a fish: zebrafish (Danio rerio) as a behavior genetic model to study alcohol effects[J]. Pharm Biochem Behav, 2000, 67(4): 773-782.
    
    [175] Lockwood B, Bjerke S, Kobayashi K, et al. Acute effects of alcohol on larval zebrafish: a genetic system for large-scale screening[J]. Pharm Biochem Behav, 2004, 77(3):647-654.
    [176] Westerfield M. THE ZEBRAFISH BOOK[EB/01], Institute of Neuroscience, University of Oregon, 2000, http://zfin.org/zfinfo/zfbook/zfbk.html
    [177] Leis HJ, Fauler G, Windischhofer W. Synthesis of d1-N-ethyltramadol as an internal standard for the quantitative determination of tramadol in human plasma by gas chromatography- mass spectrometry[J]. J Chromatogr B Analyt Tehcnol Biomed Life Sci, 2004, 804(2): 369-374.
    [178] Zhuo HQ, Huang HQ, Jin HW, et al. Transferrin and its isoforms from normal human serum revealed by several analytical techniques[J]. Chem Res Chinese University, 2008, 24(1): 84-91.
    [179] Zhu JY, Huang HQ, Bao XD, et al. Acute toxicity profile of cadmium revealed by proteomics in brain tissue of Paralichthys olivaceus: potential role of transferrin in cadmium toxicity[J]. Aquat Toxicol, 2006, 78(2): 127-135.
    
    [180] Zimmerman LJ, Wernke GR, Caprioli RM, et al. Identification of protein fragments as pattern features in MALDI-MS analysis of serum[J]. J Proteome Res, 2005, 4(5),1672-1680.
    [181] Zhuo HQ, Huang HQ, Weng LN, et al. Ionization rate and absolute intensity of peptides enhanced with matrix assisted laser desorption/ionization in the presence of proteins[J]. Chemical Journal Of Chinese University, 2007,28(5): 889-893.
    [182] Huang HQ, Xiao ZQ, Chen X, et al. Characteristics of structure, composition, mass spectra, and iron release from the ferritin of shark liver (Sphyrna zygaena)[J]. Biophys Chem, 2004, 111(3): 213-222.
    [183] Zhuo HQ, Huang L, Feng LJ, et al. Mineral oil-, glyceral-, and Vaseline-coated plates as matrix-assisted desorption/ionization sample supports for high-throughput peptide analysis[J]. Anal Biochem, 2008,378(2): 151-157.
    [184] Zeng XH, Huang HQ, Chen DS, et al. Proteomic study of serum using gel chromatography and MALDI-TOF MS reveals diagnostic biomarkers in male patients with liver-cancer[J]. International Journal of Mass Spectrometry, 2007, 261: 108-114.
    [185] Tabunohk H, Shimada T, Banno Y, et al. Identification of Bombyx mori 14-3-3 orthologs and the interactor Hsp60[J]. Neurosci Res, 2008, 61(3): 271-280.
    [186] Kong B, Huang HQ, Lin QM, et al. Purification, electrophoretic behavior, and kinetics of iron release of liver ferritin of Dasyatis akajei[J]. J Protein Chem, 2003, 22(1): 61-70.
    [187] Qian HF, Huang W. Molecular and crystal structures of two matrices for MALDI-TOF-MS: 2-(4-hydroxyphenylazo) benzoic acid and 3,5-dimethoxy-4-hydroxycinnamic acid[J]. Journal of Molecular Structure, 2005, 743(1-3): 191-195.
    
    [188] Garden RW, Moroz LL, Moroz TP, et al. Excess salt removal with matrix rinsing: Direct peptide profiling of neurons from marine invertebrates using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry [J]. J Mass Spectrom, 1996, 31(10):1126-1130.
    
    [189] Oehlers LP, Perez AN, Walter RB. Matrix-assisted laser desorption/ionization time-of- flight mass spectrometry of 4-sulfophenyl isothiocyanatederivatized peptides on AnchorChip sample supports using the sodiumtolerant matrix 2,4,6-trihydroxyacet- ophenone and diammonium citrate[J]. Rapid Commun Mass Spectrom, 2005, 19(6):752-758.
    [190] Jia WT, Wu HX, Lu HJ, et al. Rapid and automatic on-plate desalting protocol for MALDI-MS: Using imprinted hydrophobic polymer template[J]. Proteomics, 2007, 7(15):2497-2506.
    [191] Wei J, Buriak JM, Siuzdak G. Desorption-ionization mass spectrometry on porous silicon[J]. Nature, 1999, 399(6733): 243-246.
    [192] Sunner J, Han M. An activated carbon substrate surface for laser desorption mass spectrometry[J]. J Am Soc Mass Spectrom, 2000, 11(7): 644-649.
    [ 193] Wang CM, Huang XF, Yang JJ. Xibao chaowei jiegou yu chaowei jiegou bingli jichu[M].Di Si Jun Yi Da Xue Chu Ban She, 2004, 72-77.
    [194] Zhong CS. Xibao he zuzhi de chaowei jiegou[M]. Ren Min Chu Ban She, 1984, 1-9.
    
    [195] Sneddon LU. Anatomical and electrophysiological analysis of the trigeminal nerve in the rainbow trout Oncorhynchus mykiss[J]. Neurosci Lett, 2002, 319(3): 167-171.
    [196] Sneddon LU, Gentle MJ. Receptor types on the head of the rainbow trout: are nociceptors present?[J]. Comp Biochem Physiol, 2002, 32A (Suppl. 1): S42.
    [197] Sneddon LU. The evidence for pain in fish: the use of morphine as an analgesic[J]. Applied Animal Behaviour Science, 2003, 83(2): 153-162.
    
    [198] Sneddon LU. Trigeminal somatosensory innervation of the head of the teleost fish with particular reference to nociception[J]. Brain Res, 2003, 972(1-2): 44-52.
    [199] Ashley PJ, Sneddon LU, McCrohan CR. Nociception in fish: stimulus-response properties of receptors on the head of trout Oncorhynchus mykiss[J]. Brain Res, 2007,1166:47-54.
    [200] Di Ptti F, Fanelli D, Pedersen RS, et al. Modelling the pharmacokinetics of tramadol: On the difference between CYP2D6 extensive and poor metabolizers[J]. J Theor Biol, 2008,254(3): 568-574.
    [201] Kubota R, Komiyama T, Miwa Y, et al. Pharmacokinetics and postoperative analgesia of epidural tramadol: A prospective, pilot study[J]. Current Therapeutic Research, 2008,69(1): 49-55.
    
    [202] Lintz W,Erlacin S, Frankus E, et al. Biotransformation of tramadol in man and animal[J]. Arzneim Forsch Drug Res, 1981,31(11): 1932-1943.
    [203] Wu WN, McKown LA, Liao S. Metabolism of the analgesic drug ULTRAM (tramadol hydrochloride) in humans: API-MS and MS/MS characterization of metaboIites[J]. Xenobiotica 2002,32(5):411-425.
    
    [204] Giorgi M, Soldani G, Manera C, et al. Pharmacokinetics of tramadol and its metabolites M1, M2 and M5 in horses following intravenous, immediate release (fasted/fed) and sustained release single dose administration[J]. Journal of Equine Veterinary Science, 2007,27(11): 481-488.
    
    [205] Pubill D, Chipana C, Camins A, et al. Free radical production induced by methamphet-amine in rat striatal synaptosomes[J]. Toxicol Appl Pharmacol, 2005,204(1): 57-68.
    [206] Frey BN, Valvassori SS, Reus GZ, et al. Changes in antioxidant defense enzymes after D-amphetamine exposure: implications as an animal model of mania[J]. Neurochem Res,2006, 31(5): 699-703.
    [207] Capela JP, Meisel A, Abreu AR, et al. Neurotoxicity of ecstasy metabolites in rat cortical neurons, and influence of hyperthermia[J]. J Pharmacol Exp Ther, 2006, 316(1):53-61.
    [208] Jayanthi S, Ladenheim B, Andrews AM, et al. Overexpression of human copper/zinc superoxide dismutase in transgenic mice attenuates oxidative stress caused by methylenedioxymethamphetamine (ecstasy)[J]. Neuroscience, 1999, 91(4): 1379-1387.
    [209] Dietrich JB, Mangeol A, Revel MO, et al. Acute or repeated cocaine administration generates reactive oxygen species and induces antioxidant enzyme activity in dopaminergic rat brain structures[J]. Neuropharmacology, 2005,48(7): 965-974.
    [210] Oquri T, Takahata I, Katsuta K, et al. Proteome analysis of rat hippocampal neurons by multiple large gel two-dimensional electrophoresis[J]. Proteomics, 2002,2(6): 666-672.
    [211] Zhu X, Papayannopoulos IA. Improvement in the detection of low concentration protein digests on a MALDI TOF/TOF workstation by reducing alpha-cyano-4-hydroxycinnamic acid adduct ions[J]. J Biomol Tech, 2003, 14(4): 298-307.
    
    [212] Landry F, Lombardo CR, Smith JW. A method for application of samples to matrix- assisted laser desorption ionization time-of-fiight targets that enhances peptide detection[J]. Anal Biochem, 2000,279(1): 1-8.
    [213] Hashir MA, Stecher G, Bakry R, et al. Identification of carbohydrates by matrix-free material-enhanced laser desorption/ionisation mass spectrometry[J]. Rapid Commun Mass Spectrom, 2007, 21(16): 2759-2769.
    
    [214] Beckman JS, Koppenol WH. Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly[J]. Am J Physiol, 1996,271(5 Pt 1): C1424-C1437.
    [215] Hoyer S. Oxidative energy metabolism in Alzheimer brain: studies in early-onset and late-onset cases[J]. Mol Chem Neuropathol, 1992, 16(3): 207-224.
    [216] Messier C, Gagnon M. Glucose regulation and brain aging[J]. J Nutr Health Aging, 2000,4(4): 208-213.
    [217] Feng S, Xu Z, Yan YB. Blocking creatine kinase refolding by trace amounts of copper ions[J]. J Inorg Biochem, 2008, 102(4): 928-935.
    [218] Bessman SP, Carpenter CL. The creatine-creatine phosphate energy shuttle[J]. Annu Rev Biochem, 1985, 54: 831-862.
    [219] Streck EL, Amboni G, Scaini G, et al. Brain creatine kinase activity in an animal model of mania[J]. Life Sci, 2008, 82(7-8): 424-429.
    [220] Di-Pietro PB, Dias ML, Scaini G, et al. Inhibition of brain creatine kinase activity after renal ischemia is attenuated by N-acetylcysteine and deferoxamine administration[J]. Neurosci Lett, 2008,434(1): 139-143.
    [221] Bell RL, Kimpel MW, Rodd ZA, et al. Protein expression changes in the nucleus accumbens and amygdala of inbred alcohol-preferring rats given either continuous or scheduled access to ethanol[J]. Alcohol, 2006,40(1) 3-17.
    
    [222] Park B, Jeong SK, Lee WS, et al. A simple pattern classification method for alcohol- responsive proteins that are differentially expressed in mouse brain[J]. Proteomics, 2004, 4(11): 3369-3375.
    [223] Kim SI, Voshol H, van Oostrum J, et al. Neuroproteomics: Expression profiling of the brain's proteomes in health and disease[J]. Neurochem Res, 2004,29(6): 1317-1331.
    [224] Li KW, Jimenez CR, van der Schors RC, et al. Intermittent administration of morphine alters protein expression in rat nucleus accumbens[J]. Proteomics, 2006, 6(6): 2003-2008.
    [225] Freeman WM, Brebner K, Amara SG, et al. Distinct proteomic profiles of amphetamine selfadministration transitional states[J]. Pharmacogenomics J, 2005, 5(3): 203-214.
    [226] Tannu N, Mash DC, Hemby SE. Cytosolic proteomic alterations in the nucleus accumbens of cocaine overdose victims[J]. Mol Psychiatry, 2007, 12(1): 55-73.
    [227] Ye Y, Shealy S, Lee HW, et al. A grafting approach to obtain site-specific metal-binding properties of EF-hand proteins[J]. Protein Eng, 2003, 16(6): 429-434.
    
    [228] Setsuie R, Wada K. The functions of UCH-L1 and its relation to neurodegenerative diseases[J]. Neurochem Int, 2007, 51(2-4): 105-111.
    
    [229] Gong B, Cao Z, Zheng P, et al. Ubiquitin hydrolase Uch-L1 rescues beta-amyloid-induced decreases in synaptic function and contextual memory[J]. Cell, 2006, 126(4):775-788.
    [230] Hwang YY, Li MD. Proteins differentially expressed in response to nicotine in five rat brain regions: Identification using a 2-DE/MS-based proteomics approach[J]. Proteomics, 2006, 6(10): 3138-3153.
    [231] Lewohl JM, Van Dyk DD, Craft GE, et al. The application of proteomics to the human alcoholic brain[J]. Ann NY Acad Sci, 2004, 1025: 14-26.
    [232] Alexander-Kaufman K, James G, Sheedy D, et al. Differential protein expression in the prefrontal white matter of human alcoholics: A proteomics study[J]. Mol Psychiatry, 2006,11(1): 56-65.
    [233] Iacovelli L, Fulceri F, De Blasi A, et al. The neurotoxicity of amphetamines: Bridging drugs of abuse and neurodegenerative disorders[J]. Exp Neurol, 2006,201(1): 24-31.
    [234] Drakenberg K, Nikoshkov A, Horvath MC, et al. Mu opioid receptor A118G polymorphism in association with striatal opioid neuropeptide gene expression in heroin abusers[J]. Proc Natl Acad Sci USA, 2006, 103(20): 7883-7888.
    [235] Rambhia S, Mantione KJ, Stefano GB, et al. Morphine modulation of the ubiquitin- proteasome complex is neuroprotective[J]. Med Sci Monit, 2005, 11(11): BR386-BR396.
    [236] Gutala R, Wang J, Kadapakkam S, et al. Microarray analysis of ethanol-treated cortical neurons reveals disruption of genes related to the ubiquitin-proteasome pathway and protein synthesis[J]. Alcohol Clin Exp Res, 2004, 28(12): 1779-1788.
    [237] Dietrich JB, Mangeol A, Revel MO, et al. Acute or repeated cocaine administration generates reactive oxygen species and induces antioxidant enzyme activity in dopaminergic rat brain structures[J]. Neuropharmacology, 2005,48(7): 965-974.
    [238] Verderio C, Pozzi D, Pravettoni E, et al. SNAP-25 modulation of calcium dynamics underlies differences in GABAergic and glutamatergic responsiveness to depolarization[J]. Neuron, 2004,41(4): 599-610.
    
    [239] Dubois T, Rommel C, Howell S, et al. 14-3-3 is phosphorylated by casein kinase I on residue 233. Phosphorylation at this site in vivo regulates Raf/14-3-3 interaction[J]. J Biol Chem, 1997, 272(46): 28882-28888.
    [240] Bunney TD, van Walraven HS, de Boer AH. 14-3-3 protein is a regulator of the mitochondrial and chloroplast ATP synthase[J]. Proc Natl Acad Sci USA, 2001, 98(7):4249-4254.
    [241] Schoonheim PJ, Veiga H, Pereira Dda C, et al. A comprehensive analysis of the 14-3-3 interactome in barley leaves using a complementary proteomics and two-hybrid approach [J]. Plant Physiol, 2007, 143(2): 670-683.
    [242] Alexander RD, Morris PC. A proteomic analysis of 14-3-3 binding proteins from developing barley grains[J]. Proteomics, 2006,6(6): 1886-1896.
    [243] Pozuelo Rubio M, Geraghry KM, Wong BH, et al. 14-3-3-affinity purification of over 200 human phosphoproteins reveals new links to regulation of cellular metabolism, proliferation and trafficking[J]. Biochem J, 2004, 379(Pt 2): 395-408.
    [244] Luk SC, Ngai SM, Tsui SK, et al. In vivo and in vitro association of 14-3-3 epsilon isoform with calmodulin: implication for signal transduction and cell proliferation[J]. J Cell Biochem, 1999,73(1): 31-35.
    [245] Van Hemert MJ, Steensma HY, van Heusden GP. 14-3-3 proteins: key regulators of cell division, signalling and apoptosis[J]. Bioessays, 2001, 23(10): 936-946.
    [246] Huber SC, MacKintosh C, Kaiser WM. Metabolic enzymes as targets for 14-3-3 proteins[J]. Plant Mol Biol, 2002, 50(6): 1053-1063.
    [247] Newhouse PA, Potter A, Levin ED. Nicotinic system involvement in Alzheimer's and Parkinson's diseases[J]. Implications for therapeutics Drugs Aging, 1997, 11(3):206-228.
    [248] Castegna A, Thongboonkerd V, Klein JB, et al. Proteomic identification of nitrated proteins in Alzheimer's disease brain[J]. J Neurochem, 2003, 85(6): 1394-1401.
    [249] Aksenova M, Butterfield DA, Zhang SX, et al. Increased protein oxidation and decreased creatine kinase BB expression and activity after spinal cord contusion injury[J]. J Neurotrauma, 2002, 19(4): 491-502.
    [250] Poon HF, Castegna A, Farr SA, et al. Quantitative proteomics analysis of specific protein expression and oxidative modification in aged senescenceaccelerated-prone 8 mice brain[J]. Neuroscience, 2004, 126(4): 915-926.
    [251] Poon HF, Frasier M, Shreve N, et al. Mitochondrial associated metabolic proteins are selectively oxidized in A30P alpha-synuclein transgenic mice-a model of familial Parkinson's disease[J]. Neurobiol Dis, 2005, 18(3): 492-498.
    [252] Poon HF, Farr SA, Banks WA, et al. Proteomic identification of less oxidized brain proteins in aged senescence-accelerated mice following administration of antisense oligonucleotide directed at the Abeta region of amyloid precursor protein[J]. Brain Res, 2005,138(1): 8-16.
    [253] Sultana R, Boyd-Kimball D, Poon HF, et al. Redox proteomics identification of oxidized proteins in Alzheimer's disease hippocampus and cerebellum: an approach to understand pathological and biochemical alterations in AD[J]. Neurobiol Aging, 2006, 27(11): 1564-1576.
    [254] Boyd-Kimball D, Poon HF, Lynn BC, et al. Proteomic identification of proteins specifically oxidized in Caenorhabditis elegans expressing human Abeta(l-42): implications for Alzheimer's disease[J]. Neurobiol Aging, 2006,27(9): 1239-1249.
    [255] Layfield R, Fergusson J, Aitken A, et al. Neurofibrillary tangles of Alzheimer's disease brains contain 14-3-3 proteins[J]. Neurosci Lett, 1996,209(1): 57-60.
    [256] Burkhard PR, Sanchez JC, Landis T, et al. CSF detection of the 14-3-3 protein in unselected patients with dementia[J]. Neurology, 2001, 56(11): 1528-1533.
    [257] Newman MB, Arendash GW, Shytle RD, et al. Nicotine's oxidative and antioxidant properties in CNS[J]. Life Sci, 2002, 71(24): 2807-2820.
    [258] Husain K, Scott BR, Reddy SK, et al. Chronic ethanol and nicotine interaction on rat tissue antioxidant defense system[J]. Alcohol, 2001,25(2): 89-97.
    [259] Goodlett CR, Horn KH. Mechanisms of alcoholinduced damage to the developing nervous system[J]. Alcohol Res Health, 2001,25(3): 175-184.
    [260] Goodlett CR, Horn KH, Zhou FC. Alcohol teratogenesis: Mechanisms of damage and strategies for intervention[J]. Exp Biol Med (Maywood), 2005,230(6): 394-406.
    [261] Bashkatova V, Meunier J, Maurice T, et al. Memory impairments and oxidative stress in the hippocampus of in-utero cocaine-exposed rats[J]. Neuroreport, 2005, 16(11):1217-1221.
    
    [262] Poon HF, Abdullah L, Mullan MA, et al.Cocaine-induced oxidative stress precedes cell death in human neuronal progenitor cells[J]. Neurochem Int, 2007, 50(1): 69-73.
    [263] Bashkatova V, Meunier J, Vanin A, et al. Nitric oxide and oxidative stress in the brain of rats exposed in utero to cocaine[J]. Ann. N. Y. Acad. Sci. 2006,1074:632-642.
    [264] Davidson C, Gow AJ, Lee TH, et al. Methamphetamine neurotoxicity: Necrotic and apoptotic mechanisms and relevance to human abuse and treatment[J]. Brain Res Brain Res Rev, 2001, 36(1): 1-22.
    [265] Brown JM, Yamamoto BK. Effects of amphetamines on mitochondrial function: Role of free radicals and oxidative stress[J]. Pharmacol Ther, 2003,99(1): 45-53.
    [266] Bader N, Grune T. Protein oxidation and proteolysis[J]. Biol Chem, 2006, 387(10-11):1351-1355.
    [267] Petropoulos I, Conconi M, Wang X, et al. Increase of oxidatively modified protein is associated with a decrease of proteasome activity and content in aging epidermal cells[J] J Gerontol A Biol Sci Med Sci, 2000,55(5): B220-227.
    
    [268] Sultana R, Butterfield DA. Redox proteomics studies of in vivo amyloid beta-peptide anaimal models of Alzheimer's disease: Insight into the role of oxidative stress[J]. Proteomics Clin Appl, 2008, 2: 685-696.
    
    [269] Iwazaki T, McGregor IS, Matsumoto I. Protein expression profile in the striatum of acute methamphetaminetreated rats[J]. Brain Res, 2006, 1097(1): 19-25.
    [270] Li MD, Wang J. Neuroproteomics and its applications in research on nicotine and other drugs of abuse[J]. Proteomics Clin Appl, 2007, 1(11): 1406-1427.
    
    [271] O'Brien E, Dedova I, Duffy L, et al. Effects of chronic risperidone treatment on the striatal protein profiles in rats[J]. Brain Res, 2006, 1113(1): 24-32.
    
    [272] Khawaja X, Xu J, Liang, JJ, et al. Proteomic analysis of protein changes developing in rat hippocampus after chronic antidepressant treatment: Implications for depressive disorders and future therapies[J]. J Neurosci Res, 2004, 75(4): 451-460.
    
    [273] Cecconi D, Mion S, Astner, H, et al. Proteomic analysis of rat cortical neurons after fluoxetine treatment[J]. Brain Res, 2007, 1135(1): 41-51.
    
    [274] La Y,Wan C, Zhu H, et al. Hippocampus protein profiling reveals aberration of malate dehydrogenase in chlorpromazine/clozapine treated rats[J]. Neurosci Lett, 2006, 408(1):29-34.
    
    [275] Carboni L, Vighini M, Piubelli, C, et al. Proteomic analysis of rat hippocampus and frontal cortex after chronic treatment with fluoxetine or putative novel antidepressants: CRF1 and NK1 receptor antagonists[J]. Eur Neuropsychopharmacol, 2006, 16(7):521-537.
    
    [276] Bernardi P. Mitochondrial transport of cations: channels, exchangers, and permeability transition[J]. Physiol Rev, 1999, 79(4): 1127-1155.
    
    [277] Prokai L, Zharikova AD, Stevens SM. Effect of chronic morphine exposure on the synaptic plasma-membrane subproteome of rats: A quantitative protein profiling study based on isotope-coded affinity tags and liquid chromatography/mass spectrometry[J]. J. Mass Spectrom, 2005,40(2): 169-175.
    
    [278] Moron JA, Abul-Husn NS, Rozenfeld R, et al. Morphine administration alters the profile of hippocampal postsynaptic density-associated proteins: A proteomics study focusing on endocytic proteins[J]. Mol Cell Proteomics, 2007, 6(1): 29-42.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700