pH对苏州河底泥铅污染的影响及生物标志物的探索
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
苏州河是上海的母亲河,不仅是主要的城市水道,也是上海主要历史人文景观。随着上海经济的发展,苏州河接纳了大量来自沿岸的工业和生活污水,水质恶化,大量污染物累积于底泥中。近年来苏州河重金属污染也受到越来越多的关注,苏州河底泥是重金属的蓄积库,随着环境因子的变化,底泥中的重金属可能再次释放进入水体,造成二次污染。本文采用苏州河底泥为实验材料,在实验室条件下模拟环境因子——pH值的变化,研究苏州河底泥重金属铅的释放情况,同时采用逐级分离方法提取底泥各形态铅,研究pH值变化对底泥铅迁移、转化的影响。结果表明:pH值的变化对苏州河底泥铅的释放速率有显著的影响。水体pH值发生变化,在短期内就能引起底泥中铅的快速释放,但随着时间的延长,底泥铅的释放速率减慢。底泥铅释放量随时间不断累积,并且从pH7.0—pH5.5随着酸度增强铅的释放量逐渐增加,在pH5.5左右可能存在一个铅释放的转折点,中性到碱性区域(pH7.0—pH8.0)在释放初期随着pH值的升高铅释放量有所降低,时间延长至第7d时该区的铅释放量也呈现逐渐上升的趋势。pH值变化对底泥各形态铅百分含量有显著影响,各处理组底泥形态铅以残渣态,铁、锰氧化物结合态为主。pH7.0—pH4.5碳酸盐结合态含量随酸性增强而下降。pH7.5—pH8.0组有机质、硫化物结合态百分含量逐渐降低,碱性的增强使腐殖酸等腐殖质分解,与之相结合的铅得到释放从而引起了底泥铅的大量释放。
     近年来对苏州河重金属污染的研究大多限于对河水、底泥的理化分析,对其污染的生物监测甚少报道,理化指标的分析虽可直接反映污染现状,但却不足以反映重金属对整个水体生态系统的潜在危害,因此本论文的第二部分内容通过实验室条件下红鲫鱼Pb~(2+)曝露实验来探讨红鲫鱼脾脏抗氧化系统的SOD、CAT、GP_x、GSTs等抗氧化酶以及GPT、AKP、Na~+K~+—ATPase等代谢酶作为水体重金属污染监测生物标志物的可行性。实验结果显示:在整个曝露过程中SOD、CAT活力均被诱导,短期曝露(3d)对SOD、CAT活力无显著影响,各处理SOD活力在曝露6d时普遍被诱导,其中2.0 mg/L组活力被显著诱导(P<0.05),达到2.53U/mgprot,1.0、2.0 mg/L组CAT活力在6d时均被显著诱导,并且高浓度组(1.0、2.0 mg/L)CAT的活力与低浓度组(0.1、0.2 mg/L)差异显著(P<0.05),9d时2.0 mg/L组SOD活力仍继续被诱导,0.5、1.0 mg/L组SOD活力也呈现显著诱导趋势(P<0.05),分别提高约77%、128%,0.5 mg/L组CAT活力达到5.00U/mgprot,显著高出对照组约55%(P<0.05)。前6d的低浓度曝露使GP_x活性被诱导,酶活力随Pb~(2+)浓度提高而增强,3d时0.5、1.0 mg/L组活性均极显著高于对照组(P<0.05),9d时1.0 mg/L组GP_x活性被显著抑制(P<0.05),2.0 mg/L组酶活性进一步被抑制,差异达到极显著水平(P<0.01)。轻度的胁迫诱导了GSTs活力的上升,曝露时间的延长和曝露浓度的提高导致胁迫程度的加剧,GSTs活力受抑制,高浓度组(1.0、2.0 mg/L)GSTs活力在3d时已被显著诱导(P<0.05),并显著高于0.1、0.2、0.5 mg/L等低浓度组,6d时细胞内Pb~(2+)和过氧化产物的累积使得0.1、0.2、0.5 mg/L等低浓度组的GSTs活力逐步被诱导,但1.0、2.0 mg/L组GSTs活力呈现被抑制趋势,9d时抑制趋势更为明显0.5、1.0、2.0 mg/L组的活力均极显著低于对照组(P<0.01)。
     Pb~(2+)曝露对GPT、AKP、Na~+K~+—ATPase活力的影响表现为:高浓度处理(1.0、2.0mg/L)GPT活力在曝露初期即呈现被诱导趋势,随着曝露时间的延长至9d,低浓度组(0.2、0.1mg/L)GPT活性也被诱导。AKP活性在3d时被诱导,6d时1.0、2.0mg/L等高浓度组活力被进一步诱导,但随着Pb~(2+)的过量累积,9d时各处理组的活性均被抑制。Na~+K~+—ATPase活性也呈现明显的时间、剂量效应关系,曝露前期Pb~(2+)的轻微胁迫诱导了脾脏Na~+K~+—ATPase活性,2.0 mg/L组Na~+K~+—ATPase活力被显著诱导(P<0.05),曝露时间延长至9d时,各处理Na~+K~+—AWPase活力出现不同程度的抑制,0.5、2.0mg/L组Na~+K~+—ATPase活力仅为对照的45%、64%,差异达到极显著水平(P<0.01)。7种酶对重金属铅曝露的敏感程度为:GSTs>AKP>Na~+K~+—ATPase>GP_x>SOD/CAT/GPT。经过30d的净水恢复后,鱼体GPT、Na~+K~+—ATPase活力均有所恢复,但高浓度处理组的Na~+K~+—ATPase活力仍被抑制。
     本论文的结果说明苏州河底泥重金属铅在环境PH值发生变化时存在再次释放,造成二次污染的危险。适当的清淤、控制生活生产污染的输入、保持水体PH值等环境因子的稳定,可降低重金属二次污染的可能。水体中的重金属对红鲫鱼产生氧化损伤效应,对消化、吸收、转运、生长等过程产生影响,因此抗氧化防御系统成分和代谢酶类活性的变化在一定程度上反映了重金属对生物体的损伤,因此红鲫鱼脾脏SOD、CAT、GP_x、GSTs等抗氧化酶以及GPT、Na~+K~+—ATPase等代谢酶活力变化可作为生物标志物来监测苏州河重金属铅污染状况。
Suzhou greek is the mother river of Shanghai, and it's sediment is the main storage of heavy metals .With the development of economy , a large number of contaminations input to the river which lead to the deterioration of water quality . Now the heavy metal pollution of Suzhou greek becomes the hot issue of many studies . Within these studies the results showed environmental condition changes could result a dramatic release of heavy metal from the sediment. We desired to find out the effect of variation of pH to the sediment of Suzhou greek throw our studies , including the release concentration of Pb~(2+) and the transformations of different chemical states . Our Results showed that variation of pH could cause significant release of Lead . The releasing speed of Lead was higher in the beginning , but it dropped after 3 days . Lead that released from the sediment was accumulated during the period of study .With the dropping of pH from 7.0 to 5.5 , the capacity of released Lead increased . There would be a turning point of release around pH 5.5 , below pH5.5 would cause a dramatic decrease of Lead release . From pH7.0 to 8.0 the concentration of Lead decreased with the increase of pH in the earlier period of study , after 5 days the total concentration of Lead increased in samples of pH7.5 and 8.0 . The sequential extraction results showed that the predominant chemical states of Lead in the sediment were FeMnOX and RES after 7 days of release . Lead which combined with carbonates would released from the sediment with the dropping of pH from 7.0 to 4.5 , because of the decomposition of carbonates . When PH increased from 7.0 to 8.0 the Lead which exist in SD/OM would easily released according to the decomposition of humus.
    Recently , researches which dealt with the heavy metal pollution of Suzhou greek were mainly carried out in the physical and chemical ways. Although it could reflect the recent condition of pollution , it could not preview the potential damage to the hole aquatic system . With our effort we wanted to determine some feasible biomarkers to monitor the Lead pollution in Suzhou greek. The results showed that the accumulation of Pb~(2+) in spleen of Carassius auratu would cause the oxidant damage to the tissue and stimulate the increase of SOD and CAT activities in the range of our study . Activity of GPx significantly increased (P<0.05) within conducts of 0.5 mg/L and 1.0 mg/L after 3 days of exposure . GPx of 0.1mg/L 0.5 mg/L and 1.0 mg/L significantly rised (P<0.05) after 6 days of exposure . But after 9 days the GPx of 1.0 mg/L dropped prominently (P<0.05) , only accounted for 75% of CK and the GPx activity of 2.0 mg/L reduced to 9.33U/mgprot (P<0.01) . During 9 days of exposure GSTs presented a similar tendency with GPx , in the earlier 3 days the GSTs of 1.0 mg/L and 2.0 mg/L were significantly induced by the accumulation of Pb~(2+) . After 6 days GSTs activities of lower concentrations were also highly induced . But it decreased dramatically (P<0.05) after 9 days . GPT tend to be induced within 9 days , lower concentrations of Pb~(2+) also caused the increase of activity after 9 days . AKP were induced within 6 days but it was restrained after 9 days . Na~+K~+—ATPase showed a obvious connection with concentrations of Pb~(2+) and time last of exposure . In the earlier 3 days Na~+K~+—ATPase of 2.0 mg/L reached 7.59U/mgprot (P<0.05) , but after 9 days Na~+K~+—ATPase of differet conducts in our research showed a tendency of decrease . All above showed these enzymes could be biomarkers of Lead pollution of. Suzhou greek . The sequence of the sensitivities of these enzymes could be: GSTs >AKP >Na~+K~+—ATPase> GPX > SOD/CAT/GPT.
    All above conclude that there would be a risk of Lead release from the sediment of Suzhou greek with the variation of pH and we can use enzymes such as SOD、 CAT、 GPx、 GSTs and GPT ,AKP ,Na~+K~+—ATPase as the biomarkers to monitor the pollution condition of heavy metal Lead in Suzhou greek .
引文
[1] K. Chandra Sekha, N. S. Chary. Fractionation studies and bioaccumulation of sediment-bound heavy metals in Kolleru lake by edible fish[J]. Environmental International, 2003, 29: 1001-1008.
    [2] 梁振山,张发贵,杨华平.环境铅污染及其所致的儿童铅中毒[J].河南预防医学杂志,2002,13(3):183-187.
    [3] 任旭红,任旭华.铅污染及其危害[J].中国公共卫生,1999,15(9):839-841.
    [4] 胡望钧.常见有毒化学品环境事故应急处置技术与监测方法[M].北京:中国环境出版社,1993:92.
    [5] 孙胜龙.环境污染与生物变异[M].北京:化学工业出版社、环境科学与工业出版社中心,2003:17.
    [6] 周怀东,彭文启,等.水环境与水环境修复[M].北京:化学工业出版社,2005.
    [7] 胡必彬.我国十大流域片水污染现状及主要特征[J].重庆环境科学,2003,25(6):15-17.
    [8] 赵璇,吴天宝,叶裕才.我国饮用水源的重金属污染及治理技术深化问题[J].给水排水,1998,24(10):22-25.
    [9] 顾征帆,吴蔚.太湖底泥中重金属污染现状调查与评价[J].甘肃科技,2005,12.
    [10] 成新.太湖流域重金属污染亟待重视[J].水资源保护,2002(4):39-41.
    [11] 中国近岸海域环境质量公报(2001年).国家环境保护总局.
    [12] 2003年辽宁省海洋环境质量公报.辽宁省海洋与渔业厅.2004.4.
    [13] 刁维萍,倪吾钟,倪天华,等.水环境重金属污染的现状及其评价[J].广东微量元素科学,2004,11(3):1-5.
    [14] Tessier A, Campbell P G C, Bisson M. Sequential extraction procedure for speciation of particular trace metals[J]. Anal.chem., 1979, 51: 844-851.
    [15] 陈亚雄,李柳琼,乔庆霞.沘江水体中铅镉锌的化学形态及其迁移转化[J].有色金属,1998,2,50(1):90-96.
    [16] 董德明,李海龙,李鱼,等.伊通河(长春市区段)沉积物重金属元素化学 形态分布特征[J].水土保持研究,2004,3,11(1):95-97。
    [17] 魏俊峰,吴大清,彭金莲,等.广州城市水体沉积物中重金属形态分布研究[J].土壤与环境,1999,8(1):10-14.
    [18] 董德明,路永正,李鱼,等.吉林省部分河流与湖泊表层沉积物中重金属的分布规律[J].吉林大学学报,2005,1,35(1):91-96.
    [19] 何孟常,王子健,汤鸿霄.乐安江沉积物重金属污染及生态风险评价[J].环境科学,1999,1,20:7-10.
    [20] 王亚平,黄毅,王苏明,等.土壤和沉积物中元素的化学形态及其顺序提取法[J].地质通报,2005,8,24(8):728-734.
    [21] Rauret G, et al. Improvement of the BCR three-step sequential extraction procedure prior to the certification of new sediment and soil reference materials[J]. J.Environ.monit., 1999, (1) : 57-61.
    [22] 陈瑞生,黄玉凯.河流重金属污染研究[M].北京:中国环境科学出版社,1998:88-90.
    [23] 李鱼,刘亮,董德明,等.城市河流淤泥中重金属的生物可利用性[J].吉林大学学报,2003,1,41:106-110.
    [24] 陈晓东,郭明新.河流底泥重金属不同形态的生物有效性[J].农业环境保护,2001,20(1):19-22.
    [25] S.Tao, R.Danson. Uptake of particulate Lead via the Gill of fish[J]. Archives of environmental contamination and toxicology. 1999, 37: 352-357.
    [26] 李江平,李雯.指示生物及其在环境保护中的应用[J].云南环境科学,2001,20(1):51-54.
    [27] 常晋娜,瞿建国.水体重金属污染的生态效应及生物监测[J].四川环境,2005:24(4):29-33.
    [28] Rainbow P S, Blackmore G. Mar Environ Res, 2001, 51 (5) : 441-463.
    [29] Abdallah AT, Moustafa M A. Environ Pollut, 2002, 116(2) : 185-191.
    [30] Goksoyr A, Beyer J, Egaas E. Mar Pollut Bull, 1996, 33: 36-45.
    [31] Hylland K, Sandvik M, Skare J U. Mar Environ Res, 1996, 42: 223-227.
    [32] 孔繁翔,陈颖,章敏.镍、锌、铝对羊角月牙藻生长及酶活性影响研究[J]. 环境科学学报,1997,17(2):193-198.
    [33] 杨红玉,王焕校.某些绿藻对镉的富集作用及其毒性反映[J].环境科学学报,2001,21(3):328-332.
    [34] 陈愚,任长久,蔡晓明.镐对沉水植物硝酸还原酶和超氧化物歧化酶活性的影响[J].环境科学学报,1998,18(3):313-317.
    [35] Madoni P. The acute toxicity of fresh water ciliates[J]. Environmental, 2000, 109(1) : 53-59.
    [36] 梁君荣,王军,苏水全,等.四种重金属对中国鳖胚胎发育的影响[J].生态学报,2001,21(6):1009-1012.
    [37] 匡少平,徐清.铅对泥鳅的至毒效应[J].环境科学技术,2003,26(6):11-13.
    [38] Kowk Lim I.am, Po Wai Ko, Judy Ka-Yee Wong, King MinChan. Metal toxicity and mentallothionein gene expression studies in common Carp and Tilapia[J]. Marine Environmental Research, 1998, 46 (1-5) : 563-566.
    [39] 周新文,朱国念,孙锦荷,等.Cu、Zn、Pb、Cd对鲫鱼(Carassius auratus)组织DNA毒性的研究[J].核农学报,2001,15(3):167-173.
    [40] 包晓东,朱金勇,卓慧钦,等.监测流动水体污染程度的生物标志物研究进展[J].分析仪器,2005,9.
    [41] WHO: EHC155: biomarkers and risk assessment: concepts and principles.
    [42] 贾秀英.四种重金属对泥鳅幼鱼呼吸强度的影响[J].浙江大学学报,2001,27(5):556-558.
    [43] 柴敏娟,陈学雷.Cd~(2+)、Hg~(2+)、pb~(2+)抑制罗非鱼EOG反应的研究[J].中国水产科学,1999,36(1):89-92.
    [44] Depledge M H et al. Mar Pollut Bull, 1995, 31(1-3) : 19-27.
    [45] 叶菲菲,谢炜,吴孔土.铅对鲫鱼精子活力影响的观察[J].渔业致富指南,2005,12:57-58.
    [46] Al-Yousuf M H, El-Shahawi M S, A1-Ghais S M. Trace metals in liver, skin and muscle of lethrinus lentijan fish species in relation to boby length and sex[J]. The Science of Total Ewnvironment, 2000, 256(2-3) : 87-94.
    [47] 高晓莉,罗胡英,赵彦珍,等.铜、锌对鲤鱼抗氧化酶影响的研究[J].淡水渔 业,2004,34(4):22-23.
    [48] 贾秀英,陈志伟.镉对鲫鱼酶活性毒性的研究[J].浙江农业学报,2002,14(3):155-158.
    [49] 曹剑辉,马广智,方展强.镉对草鱼鳃和肝组织超氧化物歧化酶活性的影响[J].水利渔业,2004,24(1):9-11.
    [50] 赵元凤,吕景才,宋晓阳.镉污染对鲢鱼超氧化物歧化酶和过氧化氢酶活性的影响[J].农业生物技术学报,2002,10(3):267-271.
    [51] 陈亮,郭红岩,沈红,等.低浓度铅曝露对鲫鱼肝脏抗氧化系统的影响[J].环境化学,2002,9,21(5):485-489.
    [52] Kong B, Huang H Q, Lin Q M et al. Appl Biochem Bio tech, 2005, 126: 133-148.
    [53] Meiller J C, Bradley B P. Mar Environ Res, 2002, 54: 401-404.
    [54] Hogstrand C, Balesaria S, Glove C N. Comp Biochem PHysiol B, 2002, 133: 523-535.
    [55] 李然,李嘉,赵文谦.水环境中重金属污染研究概述[J].四川环境,1997,16(1):18-22.
    [56] 魏俊峰,吴大清,彭金莲.污染沉积物中重金属的释放及其动力学[J].生态环境,2003,12(2):127-130.
    [57] 余海燕.河湖沉积物对重金属吸附—解吸的研究概况[J].化学工程师,2005,(7):30-33.
    [58] 王霞,仇启善.水环境中重金属的存在形态和迁移转化规律综述[J].内蒙古环境保护,1998,6,10(2):22-24.
    [59] Omer Yaruz, et al. Removal of Cu Ni Co and Mn from aqueous solution by Kaolinite[J]. Water Research, 2003, 37: 948-952.
    [60] Ryssen R V, et al. The use of flux-corer experiments in the determination of heavy metal redistribution in and of potential leaching from the sediments[J]. Wat.Sci.Tech., 1998, 37(6-7) : 283-290.
    [61] F. Barbier, et al. Adsorption of lead and cadmium ions from aqueous solution to the montmorillonite/water interface[J]. Golloids and Suerfaces, A:pHysicochemical and Engneering Aspects, 2000, 16:153-159.
    [62] 金相灿.沉积物污染化学[M].北京:中国环境科学出版社,1992:147-2501.
    [63] 郝向英,宝迪,赵慧,等.黄河水中PH值对镉与沉积物相作用的影响[J].内蒙古师大学报,2001,6,30(2):136-138.
    [64] 文湘华.安乐江沉积物酸碱特性及其对重金属释放特征的影响[J].环境化学,1996,11,15(6):510-514.
    [65] 赵健,郑祥民,毕春娟.等苏州河市郊段底泥重金属污染特征及对河道疏浚的影响[J].农业环境保护,2001,20(1):27-30.
    [66] 陈一申,吴国豪,黄解田.苏州河水环境污染现状分析[J].上海环境科学,1997,1,16(1):11-15.
    [67] 赵健,郑祥民,毕春娟.等苏州河市郊段底泥重金属污染特征及对河道疏浚的影响[J].农业环境保护,2001,20(1):27-30.
    [68] 裘祖楠,姚振淮,漆德瑶.苏州河底泥中铬和镉污染的特征、评价和治理[J].上海环境科学,1996,12,15(12):21-36
    [69] 裘祖楠,张仲燕,漆德瑶.苏州河底泥中污染物分布特征及相关性[J].上海环境科学,1998,2,17(2):10-14.
    [70] 殷效玲,郑祥民.上海市苏州河支流——桃浦河底泥重金属的污染特征[J].安全与环境学报,2001,2,1(1):19-22.
    [71] 王金辉,沈庆红,雄伟民.关于黄浦江水系表层沉积物的现状研究[J].上海环境科学,2001,20(1):11-15.
    [72] 胡雪峰,许世远,陈振楼,等.上海市中小河流水污染现状及对策[J].农业环境保护,2002,21(3):204-207.
    [73] 李淑,顾泳洁,朱育.上海境内苏州河铅污染研究[J].科技资讯,2006,(9):192-193.
    [74] 熊亚.环境铅接触对健康的影响[J].微量元素与健康研究,2003,20(1):48-50.
    [75] 谭见安.地球环境与健康[M].北京:化学工业出版社、环境科学与工业出版社中心,2004:154-155.
    [76] 袁宝珊,吴宜群.环境铅污染与儿童健康[J].微量元素与健康研究,1998,25(4):193-198.
    [77] Rokho K, Hu H, Rotnitzky A, et al.A longitudinal study of chronic lead exposure and pHysical growth in Boston children[J]. EHP, 1995, 103: 95-97.
    [78] Landrigan P J, Bofeta P, Apostoli P. The reproductive toxicity and carcinogenicity of lead: a critical review[J]. Am J Ind Med. 2000, 38(3) : 231-243.
    [79] Larc. Lead and lead compound [R]. Larc MonograpHs, Lyon, 1987, 7: 230.
    [80] 汪玉松,邹思湘.现代动物生物化学[M].中国农业技术出版社,2001.
    [81] 刘德良,鲁国平.氧自由基与其抗氧化剂研究进展[J].哈尔滨医药,1994,14(3):55-56.
    [82] Chen Ji wu, Zhu Zhen qin, et al. A novel chemiluminescence system for detecting and analyzing oxidative damaged RNA by Hydroxyl radical and its molecular mechanism[J]. Chinese Journal of Luminescence, 2002, 23(1).
    [83] 盛良全,郑晓云,闫向阳.生命体中的超氧化物歧化酶[J].医学基础与药学研究,2002,1(2):48-53.
    [84] 夏世钧,吴中亮.分子毒理学基础[M].武汉:湖北科学技术出版社,2001,87.
    [85] 杨海灵,聂力嘉,朱圣庚,等.谷胱甘肽硫转移酶结构与功能研究进展[J].成都大学学报,2006,25(1):19-24.
    [86] 潘鲁青,吴众望,张红霞.重金属离子对凡纳滨对虾组织转氨酶活力的影响[J].中国海洋大学学报,2005,35(2):195-198.
    [87] Rainbow P S.海洋生物对重金属的积累及意义[J].海洋环境科学,1992,11(1):44-55.
    [88] 吴坚.微量金属对海洋生物的生物化学效应[J].海洋环境科学,1991,10(2):58-62.
    [89] 赵维信,魏华,贾江,等.镉对罗氏沼虾组织转氨酶活力及组织结构的影响[J].水产学报,1995,19(1):21-27.
    [90] 张辉,张海莲.碱性磷酸酶在水产动物中的作用[J].河北渔业,2003(5):12-32.
    [91] 李少菁,等.重金属对日本对虾子虾存活及代谢酶活力的影响[J].台湾海峡,1998,17(2):115-119.
    [92] 贾秀英,陈志伟.镉对鲤鱼磷酸酶性的影响[J].上海环境科学,1998,17(6):40-41
    [93] Towel D. Role of Na~+-K~+-ATPase in ionic regulation by marine and estuarine animals[J]. Mar Biol Lett, 1981, 2(1) : 107-122.
    [94] 贾秀英,陈志伟.铜、镉对鲫鱼组织Na~+-K~+-ATPase酶活力的影响[J].科技通报.2003,19(1):50-53.
    [95] Collins Kamunde, Wood M. The influence of ration size on copper homeostasis during sublethel dietary copper exposure in juvenile rainbow trout, Oncorhynchus mykiss[J]. Aquat Toxicol, 2003(62) : 235-254.
    [96] McGeer J C, Cheryl Szebedinszky, McDonald D, et al. Effects of chronic sublethal exposure to waterborne Cu, Cd or Zn in rainbow trout [J]. Aquat Toxicol. 2000(5) : 231-243.
    [97] 吕兴娜,刘春.柴河水库沉积物中重金属释放的静态实验[J].辽宁城乡环境科技,2001,12(2):40-41.
    [98] 李鱼,刘亮,董德明,等.城市河流淤泥中重金属释放规律的研究[J].水土保持学报,2003,17(1):125-127.
    [99] 魏俊峰,吴大清,彭金莲,等.铅在高岭石表面的解吸动力学[J].矿物岩石,2002,22(2):5-8.
    [100] 裘祖楠.城乡河流底泥中Cd的形态分布及其向水相释放的关系[J].中国环境科学,1989,9(6):401-406.
    [101] 方允中,郑荣梁.自由基生物学的理论与应用[M].北京:科学出版社,2002:122-212
    [102] 杨丽华,方展强,郑文彪,等.镉对鲫鱼SOD的活力的影响[J].安全与环境学报,2003,3(3):13-16.
    [103] 曹剑辉,马广智,方展强.镉对草鱼腮和肝脏组织超氧化物歧化酶活性的影响[J].水利渔业,2004,24(1):9-11.
    [104] 鲁双庆,刘少军.Cu~(2+)对黄鳝肝脏保护酶SOD、CAT、GSH-PX活性的影响[J].中国水产科学,2002,9(2):138-141.
    [105] 赵元凤,吕景才,宋晓阳,等。镉污染对鲢鱼超氧化物歧化酶和过氧化物酶活性的影响[J].农业生物技术学报,2002,10(3):267-271.
    [106] 陈媛,周玫.自由基医学基础与病理生理[M].北京:人民卫生出版社,2002,369.
    [107] 孙翰昌,丁诗华,陈大庆,等.Cu~(2+)对中华倒刺鲤抗氧化功能的毒理效应[J].农业环境科学学报,2006,25(1):69-72.
    [108] 张春丹,黄福勇,李明云,等.镉胁迫条件下大弹涂鱼外周血微核标记及肝脏过氧化物酶标记的变化[J].海洋与湖沼,2006,37(1):7-11.
    [109] 张勇国,亢晋勇.谷胱甘肽硫转移酶的生理功能述评[J].忻州师范学院学报,2006,22(3):125-128.
    [110] 张晓妹,王晓蓉.不同镉曝露时间对鲫鱼幼体肝脏生理生化指标的影响[J].海湖盐与化工,2003,32(2):4-7.
    [111] 潘鲁青,吴众望,张红霞.重金属离子对凡纳滨对虾组织转氨酶活力的影响[J].中国海洋大学学报,2005,35(2):195-198.
    [112] 王丙莲,张迎梅,侯亚妮,等.镉、铅、对泥鳅组织转氨酶活性的影响[J].兰州大学学报,2006,42(3):67-70.
    [113] 汤鸿,李少菁,王桂忠,等.铜、锌、镉对锔缘青蟹仔代谢酶活力影响的实验研究[J].厦门大学学报,2000,39(4):521-525.
    [114] 贾秀英,陈志伟.镉对鲤鱼磷酸酶活性的影响[J].上海环境科学,1998,17(6):40-41.
    [115] 贾秀英,陈志伟.铜镉对鲫鱼组织Na~+K~+—ATPase酶活性的影响[J].科技通报,2003,19(1):50-53.
    [116] 袁锦芳,陈叙龙,张毓琪.环境因子对海洋动物Na~+K~+—ATPase的影响概述[J].海洋环境科学,1999,18(3):77-79.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700