超临界锅炉能量系统仿真与运行优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,随着蒸汽参数和装机容量的提高,超临界锅炉已逐渐成为我国火电机组中的主要热力设备。进一步加强对于超临界锅炉的运行监管与节能改造是我国火电厂节约能源、提高能源利用率的迫切要求。
     超临界锅炉自动化程度的不断提高,使得利用电站仿真技术对锅炉能量系统进行实时能效管理成为了可能。以往的系统仿真主要采用基于数据分析方法的黑箱或灰箱模型,得到的系统特性难以进行理论分析,仅为规律性的总结。本文试图运用机理化方法对锅炉的能量系统进行建模,进行更为可靠的仿真计算。其中,灰渣与飞灰含碳量C是电站锅炉能效在线计算所需的关键数据,无法实现实时数据采集,是目前实时在线能效计算的主要障碍。本文在反平衡效率计算模型的基础上,引入相关燃烧模型、相关煤颗粒模型、相关传热计算模型,建立锅炉系统入口参数与c的函数关系,使反平衡效率计算完全建立在实时数据的基础上,从而实现锅炉能效计算的实时性。
     接下来借助Matlab软件平台,采用模块化方法对超临界锅炉的能量系统进行计算机编程,并利用某电厂600MW超临界锅炉现场数据进行比对验证了仿真计算的合理性。通过对炉膛进口可控参数的仿真实验,研究了整个锅炉系统的能耗指标变化规律,探讨不同工况下以锅炉热效率最大为目标的可控参数调整方案,优化计算各应达值指标。结果表明:运用机理建模方法的可控指标优化方案,可以在一定程度上降低电站锅炉单位能耗,提高电厂整体效率,为电厂节能提供指导。
At present, with development of the steam pararneters and the installed capacity of the power plant, supercritical boilers are the main devices of thermal power units. In order to save the coal-fired plants'energy and improve energy efficiency, the management of the thermal power supercritical boilers'operation should be strengthened.
     Because of the supercritical boiler automation increased, which utilizes the power plant simulation technology to real-time energy efficiency boiler energy system has become possible. The previous system simulation using black box or gray box models based on data analysis methods cannot carry out characteristics of the system in theoretical analysis, but just regular summary. The article attempts to use the.mechanism approach to modeling the energy system of the boiler, more reliable simulation. The carbon in ash which is unable to realize real-time data acquisition is the key data of boiler efficiency for online calculation, and it is the main obstacle to the real-time online calculation of energy efficiency currently. In this paper, the relational combustion model, the relational coal particles model,the heating furnace internal heat transfer and the heating-surface convection heat transfer are introduced to the heat balance computing model of boiler. It establishes a complete functional relationship between entrance parameters of boiler system and C, and it makes the calculation of energy efficiency based on the measurable variable completely. Thus, the on-line energy efficiency computation becomes feasible. And on that basis, the theory on deviation analysis is introduced to calculate the change in overall energy efficiency of the boiler resulted from each single operating parameter deviate from the target value. Then the on-line real-time model for energy efficiency computation and quantitative analysis of the factors of the power plant pulverized coal boiler is established.
     With the help of Matlab software platform, a modular method is proposed to simulate the supercritical boiler energy system and to verify the rationality of the simulation according to the field data of600MW supercritical boiler in a power plant. Through the simulation of the furnace import's adjustable parameters, the variation of energy consumption index of the entire boiler system is researched and the controlled parameter adjustment programs for energy saving under different conditions are investigated. Then optimize the reference value. The results showed that the controllability index optimize program by using of mechanism modeling method can reduce the utility boiler energy consumption to a certain extent, and improve overall plant efficiency, and provide guidance for the power plant energy-saving.
引文
[1]王元正.能源问题的现状与展望[J].上海:同济报电子版,2008,9.
    [2]谢文捷.世界能源安全研究[D].北京:中共中央党校,2006,5.
    [3]2009年中国化石能源清洁利用技术论坛论文集.北京:中国能源学会论坛组委会,2009.
    [4]朱蔚彤.学科交叉研究的协调成本分析[J].中国软科学,2008,(8):146-152.
    [5]卓旭升.亚临界燃煤机组动态建模及非线性控制应用研究[D].武汉:华中科技大学,2008.
    [6]刘亚仑.微型燃气轮机冷热电联供系统仿真研究[D].上海:上海交通大学,2005.
    [7]R. D. Bell, K. J. Astrom, et al. A Low Order Nonlinear Dynamic Model for Drum Boiler-Turbine-Alternator Units:Report of TFRT-3192. Sweden:Lund Institute of Technology,1979.
    [8]F. P. De Mello, et al. Boiler Models for System Performance Studies [J], IEEE Trans. On Power System,1991, Vol.6, No.1.
    [9]Bruce. P. Gibbs, et al. Application of Nonlinear Model-Based Predictive Control to Fossil Power Plants, Proc. of The 30th Conference on Decision and Control, England, 1991.
    [10]Jochen Ohi, et al. Black Box Modelling of a Structure Unknown High Efficiency Boiler Applying Nerual Network with Locally Distributed Dynamics, IEEE Fuzzy Information Processing Society NAFIPS,1996.
    [11]Wataro Shinohara, et al. A Simplified Model Based Supercritical Power Plant Controller, IEEE Proc. of The 35th Conference on Decision and Control, Japan,1996.
    [12]Maffezzoni C. Boiler-Turbine Dynamics in Power-plant Control [J]. Control Engineering Practice,1997,5(3):301-312.
    [13]Maffezzoni C. Modelling and Simulation of Combined Lumped and Distributed Systems by an Object-Oriented Approach [J]. Mathematics and Computers in Simulation,2000, 53(4-6):345-351.
    [14]秦授轩,蔡小舒.在线测量煤粉粒度分布和浓度的实验研究[J].中国电机工程学报,2010,30(32): 30-34.
    [15]闫丽涛.300MW火力发电机组热力系统(火用)分析及优化研究[D].保定:华北电力大学,2010.
    [17]王琛.超超临界机组非线性动态模型的研究[D].北京:华北电力大学,2010.
    [18]杨光军.电站锅炉燃烧状态监测与优化策略研究[D].北京:华北电力大学,2008.
    [19]王宁玲,杨志平,武宇等.大型燃煤火电机组节能评价与系统优化[J].华北电力大学学报(自然科学版).2010,37(3):55-58.
    [20]曾德良,刘吉臻.汽包锅炉的动态模型结构与负荷/压力增量预测模型[J].中国电机工程学报.2000,20(12):75-79.
    [21]杨辰曜.600MW火电机组单耗分布及敏度分析研究[D].北京:华北电力大学,2011.
    [22]张江平.W型火焰锅炉炉内过程的数值模拟[D].北京:华北电力大学,2005.
    [23]王琼.超临界锅炉比热量控制模型研究[D].保定:华北电力大学,2008.
    [24]张超等.电站热力系统的热经济学故障诊断[J].华中科技大学学报(自然科学版).2006,34(6):99-102.
    [25]杨凤鸣.600MW火电机组锅炉的动态建模与仿真[D].太原:山西大学,2011.
    [26]岑可法,倪明江,骆仲泱,严建华等.循环流化床锅炉理论设计与运行[M].北京:中国电力出版社,1997.
    [27]冯俊凯,岳光溪,吕俊复.循环流化床燃烧锅炉[M].北京:中国电力出版社,2003.
    [28]丁力.600MW燃煤锅炉一维数值仿真[J].计算机仿真.2007,24(8):220-222.
    [29]林宗虎,魏敦崧,安恩科,李茂德.循环流化床锅炉[M].北京:化学工业出版社,2004.
    [30]冯骏凯、沈幼庭等.锅炉理论与计算:第三版[M].北京:科学出版社,2003:24-37.
    [31]刘娇.基于MATLAB勺1025t/h循环流化床锅炉建模与仿真研究[D].保定:华北电力大学,2009.
    [32]郑阿气等MATLAB实用教程(第2版)[M].北京:电子工业出版社,2007.
    [33]魏铁铮.锅炉烟气侧参数的在线监测[J].发电设备,2003,(7),4-6.
    [34]高大明.大型电站锅炉燃烧系统优化控制研究[D].河北:华北电力大学,2005.
    [35]Haijun Li, et al. Realization of On-line Monitoring for Thermal Efficiency of Coal-fired industrial boilers[C].2010 International Conference on Advances in Energy Engineering, Beijing, China,2010.
    [36]王志刚等.煤焦反应动力学参数对电站锅炉燃烧影响的数值研究[J].中国电机工程学报,2007,27(2):20-25.
    [37]李钧等.基于预数值计算的锅炉飞灰可燃物含量建模[J].中国电机工程学报,2009,29(17):32-37.
    [38]M.A.菲尔德,D.W.吉尔. 章明川等译.煤粉燃烧[M].北京:水利电力出版社,1989.145-164.
    [39]刘福国,魏恩宗,郝卫东. 煤粉锅炉燃烧效率-运行氧量变化特性分析模型[J].热力发电,2003(1):15-19.
    [40]The International Association for the Properties of Water and Steam. Revised Release on the IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam [M].2007.
    [41]胡荫平.电站锅炉手册[M].北京:中国电力出版社,2005.
    [42]祝芳.基于偏差分析和人工智能方法的电厂机炉运行优化研究[D].大连:大连理工大学,2006.
    [43]戴丽燕.关于Rosin-Rammler粒径分布函数的研究[J].有色矿冶.2000,16(3):15-17.
    [44]Pavel Nevriva, StepanOzana, MartinPies. Simulation of Power Superheater Using Advaneed Simulink Capabilities [J]. International Journal Circuits, System and Signal Proeessing.2010,1(5):86-87.
    [45]徐明华.超临界直流锅炉热力计算方法及运行特性研究[D].南京:东南大学,2010.
    [46]夏亮.分布式控制系统(DCS)在超临界直流机组的应用研究[D].南京:东南大学,2008.
    [47]蔡晓辉.600MW超临界锅炉炉内燃烧过程数值模拟[D].保定:华北电力大学,2009.
    [48]檀炜.超临界机组关键控制技术的研究和应用[D].南京:东南大学,2008.
    [49]李春燕.超临界锅炉水冷壁管温度数值计算与研究[D].保定:华北电力大学,2009.
    [50]能源统计知识手册[M].国家统计局工交司,2006.
    [51]汤学忠.热能转换与利用(第2版)[M].北京:冶金工业出版社,2004.
    [52]Tereza Ctvrtnickova, Mari-Paz Mateo, et al. Characterization of coal fly ash components by laser-induced breakdown spectroscopy [J]. Spectrochimica Acta-Part B Atomic Spectroscopy,2009,64(10):1093-1097.
    [53]Janusz Golas, Hek Jankowski, et al. Optoelectronic system of on-line measurements of unburned carbon in coal fly ash[C]. Proceedings of SPIE-The International Society for Optical Engineering, Gliwice, Poland,2000.
    [54]潘卫国,曹绛敏.电站锅炉风粉流动参数在线测量技术[J].中国电机工程学报,2004,24(10):193-195.
    [55]Yong Li, Han Gao, et al. On-line Calculation for Thermal Efficiency of Boiler[C].2010 Asia-Pacific Power and Energy Engineering Conference, APPEEC 2010-Proceedings, Chengdu, China,2010.
    [56]施光燕,董加礼.最优化方法[M].北京:高等教育出版社,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700