北秦岭松树沟铬铁矿矿床和铜峪铜矿床地质地球化学与成矿动力学背景
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中新元古代—早古生代Rodinia超级大陆的聚散和古秦岭洋的开合形成了北秦岭脊—沟—弧—盆成岩体系。该体系发育了松树沟铬铁矿床、铜峪、上庄坪、水岭洞、刘山岩VHMS矿床、龙庙铅锌矿床和范家寺磁铁矿床等一系列重要的金属矿床。这些矿床的成矿作用及其相应的动力学背景的研究,对于深入探讨秦岭造山带的早期演化过程与金属元素巨量聚集之间的时空耦合关系和成矿机理、发展大陆边缘造山—成矿理论和指导北秦岭地区多金属资源勘查工作具有重要理论和实践意义。本文在系统收集前人北秦岭中新元古代—早古生代成矿作用研究成果的基础上,以松树沟铬铁矿矿床和铜峪铜矿床为主要研究对象,对其赋矿围岩成因、成岩成矿物质来源,矿床的成因类型和成岩成矿动力学背景进行了重点剖析,确定了北秦岭造山带中新元古代—早古生代重大地质事件,初步建立了金属矿床成矿模式。
     研究发现松树沟橄榄岩形成于格林威尔期Rodinia超级大陆裂解过程中的洋中脊环境,与松树沟基性岩具有共同的地幔源区,二者同为松树沟蛇绿岩的重要组成部分。松树沟铬铁矿床形成机制与层状铬铁矿床相似,形成于松树沟洋盆扩张过程中,是中粗粒纯橄岩在热边界层(TBL)冷凝结晶的过程中岩浆分异作用的产物。松树沟细粒方辉橄榄岩为洋脊扩张过程中地幔岩减压—近分离熔融产生的残留体;细粒纯橄岩主要由地幔岩熔融残留橄榄石、减压熔融反应(aCpx+bOpx+cSpl=dOl+1Melt)生成的橄榄石和少量的地幔方辉橄榄岩残留体组成,但均受到了渗滤熔体的再富集作用;中粗粒纯橄岩和中粗粒方辉橄榄岩主要为上述反应产生的渗滤熔体在迁移通道或减压扩容带内在热边界层(TBL)通过反应(Melt A=O1+Melt B)冷凝结晶而成,属堆晶橄榄岩。
     铜峪铜矿矿床赋矿火山岩围岩为钙碱性岛弧火山岩,矿区火山岩锆石年龄为462.2±7.0Ma,成矿物质与火山岩围岩具有相同的物质来源。该矿床是是古秦岭洋板片在奥陶-志留纪之交(462.2-472 Ma)左右的俯冲事件中,由俯冲板片脱水产生的高氧逸度流体进入地幔,活化萃取地幔的Cu等金属元素并导致地幔部分熔融产生钙碱性岩浆在岛弧区喷发形成的VHMS型矿床。与火山岩同期的火山喷流—沉积作用形成了铜峪铜矿床的初始工业矿化;初始矿体形成后,伴随秦岭造山带印支期全面碰撞造山过程,矿体和含矿层受到强烈的构造改造和叠加。铜峪铜矿床与东秦岭VHMS矿床和经典的VHMS型如日本黑矿型块状硫化物矿床存在差异,其矿化地质特征显示出岛弧火山喷发沉积和构造叠加改造成矿的双重特点。侵入于矿区的煤沟花岗闪长岩的锆石年龄为439.3±3 Ma,它是形成与古秦岭洋玄武质板片在440Ma左右的俯冲事件中部分熔融产生的熔体与地幔发生交代作用形成的具埃达克岩性质的岛弧花岗岩。铜峪铜矿区岛弧火山岩—埃达克岩组合的发现,为秦岭—祁连造山带进一步开展与岛弧火山岩有关的VHMS矿床和与埃达克岩有关的Cu(Au)矿床的勘查提供了重要线索。
     北秦岭中新元古代—早古生代的金属矿床成矿作用与Rodinia超级大陆的聚散和古秦岭洋盆的扩张—俯冲—碰撞事件密切相关。洋中脊、弧前盆地、岛弧、弧后盆地等不同环境形成的不同类型矿床均是对该时期不同地质事件的响应。中新元古代—早古生代形成的金属矿床属于北秦岭脊—沟—弧—盆火山沉积成岩成矿体系的重要组成部分。
The build-up and break-up of the supercontinent Rodinia and evolution of the Paleo-Qinling Ocean during Meso-Neoproterozoic to Early Paleozoic form the middle ocean ridge-trench-arc-basin lithogenic system in the North Qinling. A series of important ore deposits such as the Songshugou chromite deposit, Tongyu, Shangzhuangping, Shuilingdong, and Liushanyan VHMS deposits, Longmiao Zn-Pb deposit, Fanjiashi magnetite deposit, etc. are preserved in this system. Researches of metallogenesises and the corresponding geodynamic backgrounds of these deposits have the following significant implication:finding the spatiotemporal coupled relationship and mechanism between the early evolutional process of the Qinling Orogen and large quantity of metal element precipitation, developing orogenic-metallogenic theories of continental margins, and providing clues for exploration of multimetal resources in the North Qing area. On the basis of exsiting documents of metallogenesis during Meso-Neoproterozoic to Early Paleozoic, we conducted detailed studies on genesis of host rocks, sources of ore-forming fluids and materials, types of depoits and geodynamic backgrounds for the representative Songshugou chromite deposit and Tongyu copper deposit. A preliminary genetic model of ore deposits has been set up based on important geological events occurred in the North Qinling Orogenic Belt (NQOB) during Meso-Neoproterozoic to Early Paleozoic.
     Our researches reveal that the Songshugou peridotite formed during the period of the supercontinent Rodinia break-up and spreading process of the Grenvillian Songshugou Ocean. It shares the common mantle source with the mafic rocks, which both are segments of the Songshugou ophiolite. The Songshugou chromite deposit is a stratiform chromite deposit hosting in the medium-coarse grained cumulate dunite, which is the product of magmatic crystallization and differentiation during the formation of medium-coarse grained dunite in the thermal boundary layer (TBL). In terms of the lithogenesis, we propose that the fine-grained harzburgites is the residue produced by decompression-near fractional melting of mantle peridotite during ridge spreading, the fine-grained dunite is mainly composed of olivine residue leaving by mantle peridotite melting, olivine produced by the reaction:aCpx+ bOpx+cSpl= dOl+1Melt, and minor harzburgite residue, furthermore, both of the fine-grained dunite and harzburgite have undergone post-melting refertilization; medium-coarse grained dunite and harzburgite are cumulate peridotite, producing by crystallization of porous melts trapped on the path of migration or in decompression-dilatant zone of the thermal boundary layer (TBL) after the following reaction:Melt A= O1+Melt B.
     The volcanic host rocks of the Tongyu copper deposit, with the weighted average zircon U-Pb age of 462.2±7.0 Ma, belong to calc-alkaline island arc volcanic rocks. Both of the host rocks and ore-forming materials share common sources. During subduction of the Paleo-Qinling oceanic slab in (462.2-472 Ma), high oxygen-fugacity aqueous fluid released by dehydration reaction of the subducting slab rose into the mantle wedge, leached Cu and other metal elements, and triggered partial melting of the mantle wedge. Associated with the ore-forming materials, the arc calc-alkaline magmas erupted and formed the Tongyu VHMS deposit. The volcanic exhalation-sedimentation, which was contemporaneous with the submarine volcanics, produced the primary mineralization of the Tongyu copper deposit. Afterward, the ore bodies and host rocks were reworked and overprinted intensively by structures corresponding with the overall collisional orogenic process of the Qinling Orogenic Belt during the Indosinian period. In contrast to classic VHMS deposits such as the Kuroko deposit in Japan, the Tongyu copper deposit possesses the dual characteristics of island arc volcanic exhalation and sedimentation as well as structural reworking and overprinting. The Meigou granodiorite intruded in the south of the Tongyu mining district. The weighted average zircon U-Pb age of this pluton is 439.3±3 Ma. According to geochemical characteristics, we classify Meigou granodiorite as island arc granite with adakitic geochemical features, which is generated by interaction between the mantle wedge and melt produced by partial melting of the subducted basaltic slab of the Paleo-Qinling Ocean around 440 Ma. The discovery of island arc volcanic rock-adakite association in the Tongyu mining district provides important clues for exploration of island arc volcanic rock-related VHMS deposits and adakite-related Cu(Au) deposits in the Qinling and Qilian orogenic belts.
     Metallogenesis in the North Qinling during Meso-Neoproterozoic to Early Paleozoic are closely associated with the build-up and break-up of the supercontinent Rodinia and expansion, subduction, and collision processes of the Paleo-Qinling Ocean. Different types of deposits produced in different setting such as the middle ocean ridge, fore-arc basin, arc, back arc basin, etc. are responses to diffenent geological events in this period. Ore deposits formed during Meso-Neoproterozoic to Early Paleozoic are important parts of the present ridge-trench-arc-basin submarine volcanic-sedimental lithogenic and metallogenic system in the NQOB.
引文
[1]Andreas S, Michael B, Vincent J M S. Recycling oceanic crust [J]. Quant Constr, G3,2003,4(3): 1525-2027
    [2]Atherton M P, Petford N. Generation of sodium-rich magmas from newly underplated basaltic crust [J]. Nature,1993,362:144-146
    [3]Barrett TJ and MacLean WH. Volcanic sequences, lithogeochemistry, and hydrothermal alteration in some bimodal volcanic-associated massive sulfide systems [J]. Reviews in Economic Geology,1999, 8:101-131
    [4]Bartley JK, Semikhatov MA and Kaufman AJ, et al.,2001. Global event across the Mesoproterozoic-Neoproterozoic boundary:Ca and Sr isotopic evidence from Siberia. Precambrian Research,111:165-202
    [5]Blichert-Toft, J, Albarede F. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system [J]. Earth Planet Sci Lett,1997,148:243-258
    [6]Brenan J M, Shaw H F, Phinney D L, et al. Rutile aqueous fluid partitioning of Nb, Ta, Hf, Zr, U and Th:implications for high field strength element depletions in island-arc basalts [J]. Earth-Planet Sci Lett,1994,128:327-339
    [7]Campbell I H, Lesher C M, Coad P, et al. Rare-earth element mobility in alteration pipes below massive Cu-Zn sulfide deposits[J]. Chem Geol,1984,45:181-202
    [8]Chaussidon M and Lorand JP.1990. Sulfur isotope composition of orogenic spinel lherzolite massifs from Ariege (North-eastern Pyrenees, France):An ion microprobe study [J]. Geochimica et Cosmochimica Acta,54:2835-2846
    [9]Chauvel C, Hofmann A W, Vidal P. HIMU-EM:the French Polynesian connection [J]. Earth Planet Sci Lett,1992,110:99-119
    [10]Chen LH and Zhou XH.2004. Ultramafic xenoliths in Mesozoic diorite in west Shandong Province [J]. Science in China(Series D),47(6):489-499
    [11]Collins, P.L.F.,1981. A sulphur isotope stud of the Chester massive pyrite deposit, Western Tasmania [J]. Unpub. Rep. Dept. Mines. Tasm.1981:27
    [12]Condie KC.1999. Supercontinents, superplumes and continental growth:the Neoproteroic record. In: Yoshida M, Windley BF and Dasgupta S (Eds.), Proterozoic East Gondwana:supercontinent assembly and breakup [M]. Oxford:Alden Press,9-11
    [13]Crafford A E J, Grauch V J S..Geologic and geophysical evidence for the influence of deep crustal structures on Paleozoic tectonics and the alignmentn of world-class gold deposits, north-central Nevada, USA [J]. Ore Geol Rev,2002,21:157-184
    [14]Defant M J, Drummond M S. Derivation of some modern arc magmas by melting of young subducted lithosphere [J]. Nature,1990,347:662-665
    [15]Defant M J, Drummond M S. Mount St. Helens:Potential example of the partial melting of the subducted lithosphere in a volcanic arc [J]. Geology,1993,21:547-550
    [16]Dickin AP.1995. Radiogenic Isotope Geology. Cambridge:Cambridge University Press,148-168
    [17]Dong YP, Zhou MF and Zhang GW, et al.2008. The Grenvillian Songshugou ophiolite in the Qinling Mountains, Central China:Implications for the tectonic evolution of the Qinling orogenic belt [J]. Journal of Asian Earth Sciences,32:325-335
    [18]Dostal J, Coisens B, Dupuy C. The incompatible element characteristics of an ancient subducted sedimentary component in ocean Island basalts from French Polynesia [J]. J Petrol,1998,39: 937-952
    [19]Elliot T, Plank T, Zindler A, et al. Element transport from slab to volcanic front at the Mariana arc [J]. J Geophys Res,1997,102:14991-15019
    [20]Elthon D.1992. Chemical trends in abyssal peridotites:refertilization of depleted oceanic mantle [J]. Journal of Geophysical Research,97:9015-9025.
    [21]Franklin J M, Gibson H L, Galley A G, et al. Volcanogenic Massive Sulfide Deposits. In: Hedenquist J W, Thompson J F H, Goldfarb R J, et al., eds. Economic Geology 100th Anniversary Volume. Littleton:Society of Economic Geologists,2005,523-560
    [22]Franklin J M, Lydon J W, Sangster D M. Volcanic associated massive sulphide deposits. In:Skinner B J, ed. Economic Geology 75th Anniversary Volume 1905-1980. Littleton:The Economic Geology Publishing Company,1981.485-627
    [23]Garrido GJ, Bodinier JL and Dhuime B et al.2007. Origin of the island arc Moho transition zone via melt-rock reaction and its implications for intracrustal differentiation of island arcs:Evidence from the Jijal complex (Kohistan complex, northern Pakistan) [J]. Geology,35(8):683-686
    [24]Gemmell J B. Hydrothermal alteration associated with the Gosowong Epithermal Au-Ag deposit, Halmahera, Indonesia:mineralogy, geochemistry, and exploration implications [J]. Econ Geol,2007, 102:893-922
    [25]Godard M, Jousselin D and Bodinier JL.2000. Relationships between geochemistry and structure beneath a palaeo-spreading centre:a study of the mantle section in the Oman ophiolite [J]. Earth and Planetary Science Letters,180:133-148
    [26]Goldfarb R J, Groves D I, Gardoll S. Orogenic gold and geologic time:a global synthesis [J]. Ore Geol Rev,2001,18:1-75
    [27]Griffin W L,Belousova E A,Shee S R. Crustal evolution in the northern Yilarn Craton:U-Pb and Hf-isotope evidence from detrital zircons [J]. Precambrian Research,2004,131(3-4):231-282
    [28]Gu L X, Zheng Y C, Tang X Q, et al. Copper, gold and silver enrichment in ore mylonites within massive sulphide orebodies at Hongtoushan VHMS deposit, N.E. China [J]. Ore Geo Rev,2007,30: 1-29.
    [29]Haggerty SE.1991. Oxide mineralogy of the upper mantle. In:Lindsly DH ed. Oxide Minerals: Petrologic and Magnetic Significance [J]. Mineralogical Society of America:Reviews in Mineralogy. 25:369
    [30]Hart SR.1984. A large-scale isotope anomaly in the Southern Hemisphere mantle [J]. Nature,309: 753-757
    [31]Hawkesworth C J, Gallegher K, Hergt J M et al.. Destructive plate margin magmatism:geochemistry and melt generation [J]. Lithos,1994,33:169-188
    [32]Hawkesworth C J, Gallegher K, Hergt J M et al. Trace element fractionation processes in the generation of island arc basalts [J]. Phil Trans Roy Soc:Phys Eng Sci,1993,342:179-191
    [33]Hoefs, J.,1997. Stable Isotope Geochemistry,4th edition,. Springer-Verlag, Berlin,65-165
    [34]Hoernle K. Geochemistry of Jurassic oceanic crust beneath Gran Canaria (Canary Islands): implications for crustal recycling and assimilation [J]. J Petrol,1991,39:859-880
    [35]Hofmann A W, White W M. Mantle plumes from ancient oceanic crust [J]. Earth Planet Sci Lett, 1982,57:421-436
    [36]Hofmann A W. Mantle geochemistry:the message from oceanic volcanism [J]. Nature,1997,385: 219-229
    [37]Hofmann A W. Sampling Mantle Heterogeneity through Oceanic Basalts:isotopes and trace elements [J]. Treaties Geochem,2003,2:61-101
    [38]Hoskin P W O and Black L P. Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon [J]. J Metamorphic Geol,2000,18:423~439.
    [39]Hou Z Q, Gao Y F, Qu X M, et al. Origin of adakitic intrusives generated during mid-Miocene east-west extension in southern Tibet [J]. Earth Planet Sci Lett,2004,220:139-155
    [40]Hou Z Q, Wang L Q, Kin Z, et al. Post-collisional crustal extension setting and VHMS mineralization in the Jinshajiang orogenic belt, southwestern China [J]. Ore Geol Rev,2003,22: 177-199
    [41]Hu R Z, Bi X W, Zhou M F et al.Uranium metallogenesis in South China and Its relationship to crustal extension during the Cretaceous to Tertiary [J]. Economic Geology,2008,103:583-598
    [42]Jacobsen SB and Kaufman AJ.1999. The Sr, C and O isotopic evolution of Neoproterozoic seawater [J]. Chemical Geology,161:37-57
    [43]Jahn BM and Cuvellier H.1994. Pb-Pb and U-Pb chronology of carbonate rocks:an assessment [J]. Chemical Geology,115:125-151
    [44]Kajiwara Y and Date J. Sulfur isotope study of Kuroko-type and Kieslager-type strata-bound massive sulfide deposits in Japan [J]. Geochem J,1971,5:133-150
    [45]Kajiwara Y. Sulfur isotope study of the Kuroko-ores of the Shakanai No.1 deposits, Akita Prefecture, Japan [J]. Geochemical Journal.1971.4:157-181
    [46]Kelemen PB, Hirth G and Shimizu N et al.1997. A review of melt migration processes in the adiabatically upwelling mantle beneath oceanic ridges [J]. Philosophical Transactions of the Royal Society of London, Series A,355:67-102
    [47]Kelemen PB, Shimizu, N. and Salters VJ.1995. Extraction of midocean-ridge basalt from the upwelling mantle by focused flow of melt in dunite channels [J]. Nature 375,747-753
    [48]Kelemen PB, Whitehead JA and Aharonov E-et al.1995a. Experiments on flow focusing in soluble porous media with applications to melt extraction from the mantle [J]. Journal of Geophysical Research 100:475-496
    [49]Kinny P D and Mass R. Lu-Hf and Sm-Nd isotope systems in zircon. In:Hanchar J M and Hoskin P W O(eds.), Zircon [J]. Rev. Mineral Geochem,2003,53:327-341
    [50]Kogiso T, Tatsumi Y and Nakano S. Trace element transport during dehydration processes in the subducted oceanic crust:1. Experiments and implications for the origin of ocean island basalts [J]. Earth and Planetary Science Letters,1997a,148:193-205
    [51]Kogiso T, Tatsumi Y, Shimoda G, et al. High μ (HIMU) ocean island basalts in southern Polynesisa: new evidence for whole mantle scale recycling of subducted oceanic crust. J Geophys Res,1997, 102:8085-8103
    [52]Large R R, Gemmell J B, Paulick H, et al. The alteration box plot:a simple approach to understanding the relationship between alteration mineralogy and lithogeochemistry associated with volcanic hosted massive sulfide deposits [J]. Econ Geol,2001,96:957-971
    [53]Leblanc M and Violette JF.1983. Distribution of aluminium-rich and chromium-rich chromite pods in ophiolite peridotites [J]. Economic Geology,78:293-301
    [54]Liu JE, Sun Y and Tong LX, et al.2009. Emplacement age of the Songshugou ultramafic massif in the Qinling orogenic belt, and geologic implications [J]. International Geology Review,51(1):58-76
    [55]Liu L, Chen DL and Zhang AD.2004. Geochemical Characteristics and LA-ICP-MS Zircon U-Pb Dating of Amphibolites in the Songshugou Ophiolite in the Eastern Qinling [J]. Acta Geologica Sinica,78(1):137-145
    [56]Lorand JP.1988. Fe-Ni-Cu sulfides in tectonite peridotites from the Maqsad district, Samail ophiolite, southern Oman:implications for the origin of the sulfide component in the oceanic upper mantle. In:Boudier FR and Nicolas A (eds) The Ophioliles of Oman. Tectonophysics 151:57-74.
    [57]Ludwig K R. Isoplot 3.0-A geochronological toolkit for Micro-soft Excel [N]. Berkeley Geochronology Center, Spec Pub,2003, (4):1-70
    [58]Lugmair G W, Marti K. Lunar initial 143Nd/144Nd:Differential evolution of the lunar crust and mantle [J]. Earth Planet Sci Lett,1978,39:3349-3357
    [59]MacLean W H. Mass change calculations in altered rock series[J]. Mineralium Deposita,1990,25: 44-49
    [60]Mahoney JJ, Frei R and Tejada MLG, et al.1998. Tracing the Indian Ocean mantle domain through time:isotopic results from old West Indian, East Tethyan, and South Pacific seafloor [J]. Journal of Petrology,39:1285-1306
    [61]Maria H B M H, Marcio M P, Diogenes C O, et al. Lithosphere-asthenosphere interaction and the origin of Cretaceous tholeiitic magmatism in Northeastern Brazil:Sr-Nd-Pb isotopic evidence [J]. Lithos,2006,86:34-49
    [62]Martin H, Smithies R H, Rapp R, et al. An overview of adakite, tonalite-trondhjemite-granodiorite (TTG), and sanukitoid:relationships and some implications for crustal evolution[J]. Lithos,2005,79: 1-24
    [63]Martin H. Adakitic magmas:modern analogues of Archaean granitoids[J]. Lithos,1999,46:411-429
    [64]McDonough WF and Sun S.1995. The composition of the Earth [J]. Chemical Geology,120:223-253.
    [65]Meng Q R, Zhang G W. Geologic framework and tectonic evolution of the Qinling orogen, central China [J]. Tectonophysics,2000,323:183-196
    [66]Michard A. Rare earth element systematics in hydrothermal fluids [J]. Geochim Cosmochim Acta, 1989,53:745-750
    [67]Milner S C, Le Roex A P. Isotope characteristics of the Okenyenya igneous complex, northwestern Namibia:constraints on the composition of the early Tristan plume and the origin of the EMI mantle component [J]. Earth Planet Sci Lett,1996,141:277-291
    [68]Mysen BO and Kushiro I.1997. Composition variations of coexisting phases with degree of melting of peridotite in the upper mantle [J]. American Mineralist,62:843-865
    [69]Niu YL and Batiza R.1991. An empirical method for calculating melt compositions produced beneath mid-ocean ridges:application for axis and off-axis (seamounts) melting [J]. Journal of Geophysical Research,96:21753-21777
    [70]Niu YL and Batiza R.1997. Trace element evidence from seamounts for recycled oceanic crust in the eastern Pacific mantle [J]. Earth and Planetary Science Letters 148:471-483
    [71]Niu YL and Hekinian R.1997. Spreading rate dependence of the extent of mantle melting beneath ocean ridges [J]. Nature 385:326-329.
    [72]Niu YL, Langmuir CH and Kinzler RJ.1997. The origin of abyssal peridotites:a new perspective [J]. Earth and Planetary Science Letters 152:251-265.
    [73]Niu YL.1997. Mantle melting and melt extraction processes beneath ocean ridges:evidence from abyssal peridotites [J]. Journal of Petrology,38:1047-1074
    [74]Niu YL.2004. Bulk-rock major and trace element compositions of abyssal peridotites:implications for mantle melting, melt extraction and post-melting processes beneath mid-ocean ridges [J]. Journal of Petrology.45:2323-2458
    [75]Norman D I, Kyle P R, Baron C. Analysis of trace elements including rare-earth elements in fluid inclusion liquid[J]. Econ Geol,1989,84:162-166
    [76]Ohmoto H and Rye RO.1979. Isotopes of sulfur and carbon. In:Barne HL (ed.). Geochemistry of Hydrothermal Ore Deposits,2nd edition. New York:John Wiley,509-567
    [77]Ohmoto H.1972. Systematics of sulfur and carbon isotopes in hydrothermal ore deposits [J]. Economic Geology,67:551-578
    [78]Ohmoto H. Stable isotope geochemistry of ore deposits [J]. Review of Minerology,1983,16: 491-560
    [79]Pearce J A. Sources and setting of granitic rocks [J]. Episodes,1996,19:120-125
    [80]Pearce J A. The role of sub-continental lithosphere in magma genesis at destructive margins. In: Continental basalts and mantle xenoliths (Hawkesworth et al eds) [J]. Nantwich Shiva,1983: 230-249
    [81]Pearce J W, Peate D W. Tectonic implications of the composition of volcanic arc magmas [J]. Annu Rev Earth Planet,1995,23:251-285
    [82]Peucat J J, Vidal P, Bernard-Griffiths J. Sr, Nd, Pb isotopic systematics in the Archean low-to high-grade transition zone of southern India:syn-accretion vs. postaccretion granulites [J]. J Geol, 1988,97:537-550
    [83]Pirajno F. Hydrothermal Processes and Mineral Systems[M]. Springer, the Geological Survey of Western Australia,2008,1250p
    [84]Plank T, Langmuir C. The chemical composition of subducting sediment and its consequences for the crust and mantle [J]. Chem Geol,1998(145):325-394
    [85]Prendergast MD and Wilson AH.1989. The Great Dyke of Zimbabwe-Ⅱ:mineralization and mineral deposits, in Prendergast MD and Jones MJ, eds, Magmatic sulphides-the Zimbabwe Volume: The Institution of Mining and Metallurgy, London, pp.21-42.
    [86]Prendergast MD.2008. Archean komatiitic sill-hosted chromite deposits in the Zimbabwe craton [J]. Economic Geology,103:981-1004
    [87]Rapp R P, Shimizu N, Norman M D, et al. Reaction between slab-derived melts and peridotite in the mantle wedge:experimental constrains at 3.8 GPa [J]. Chem Geol,1999,160:335-356
    [88]Rollinson HR. Using geochemical data:evaluation, presentation, interpretation, Prentice Hall,1993, pp:1-352
    [89]Rona P A, Scott S D. A special issue on sea-floor hydrothermal mineralization:New perspective [J]. Economic Geology,1993,88:1935-1976.
    [90]Rye R O, Roberts R J, SnyderW S. Textural and stale isotope studies of the Big Mike cuperiferous volcanogenic massive sulfide deposits, Pershing County, Nevada [J]. Economic Geology,1984,79: 124-140
    [91]Sajona F G, Maury R C, Bellon H, et al. Initiation of subduction and the generation of slab melts in western and eastern Mindanao, Philippines[J]. Geology,1993,21:1007-1010
    [92]Sajona F G, Maury R C, Pubellier M. Magmatic source enrichment by slab-derived melts in a young post-collision setting, central Mindanao (Philippines) [J]. Lithos,2000,54:173-206
    [93]Salters VJM and Dick HJB.2002. Mineralogy of the mid-ocean-ridge basalt source from neodymium isotopic composition of abyssal peridotites [J]. Nature,418:68-72
    [94]Sangster D F. Relative sulphur isotopic abundances of ancient seas and stratabound deposits [J]. Geological Association of Canada Proceedings,1968,17:79-91
    [95]Scoon RN and Mitchell AA.2004. Petrogenesis of discordant magnesian dunite pipes from the central sector of the eastern Bushveld complex with emphasis on the Winnaarshoek pipe and disruption of the Merensky reef [J]. Economic Geology,99:517-541
    [96]Shikazono N, Ogawa Y, and Utada M, et al. Geochemical behavior of rare earth elements in hydrothermally altered rocks of the Kuroko mining area, Japan [J]. J Geochem Expl,2008,98:65-79
    [97]Shikazono N. Rare earth element geochemistry of Kuroko ores and hydrothermal altered rocks: implications for evolution of submarine hydrothermal system at back arc basin [J]. Res Geol Spec Issue,1999, No.20:23-30
    [98]Snow JE, Hart SR and Dick HJB.1994. Nd and Sr isotope evidence linking mid-ocean ridge basalts and abyssal peridotites [J]. Nature,371:57-60
    [99]Soderlund U, Patchett P J, Vervoort JD and Isachsen CE.2004. The 176Ludecay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions[J]. Earth and Plantary Science Letters,219:311-324
    [100]Stille P and Shields G.1997. Radiogenic Isotope Geochemistry of Sedimentary and Aquatic Systems. Berlin:Springer,89-153
    [101]Su L, Song SG and Zhou DW.2005. Petrogenesis of Songshugou dunite body in the Qinling orogenic belt, Central China:Constraints from geochemistry and melt inclusions [J]. Science in China (Series D-Earth Scences),48(8):1146-1157
    [102]Sun S S and McDonough W F. Chemical and isotopic systematics of oceanic basalts:implication for the mantle composition and process. Saunder A D, Norry M J, eds. Magmatism in the Ocean Basins [J]. Geological Society of London Special Publication, London.1989,42:313~345
    [103]Tatsumi Y and Kogiso T. Trace element transport during dehydration processes in the subducted oceanic crust:Origin of chemical and physical characteristics in arc magmatism [J]. Earth Planet Sci Lett,1997,148:207-212
    [104]Taylor S R and McLennan S M. The continental crust:Its composition and evolution [M]. Oxford: Blackwell Scientific Publication, Oxford 1985,1-132
    [105]Taylor, P N, Jones N W and Moorbath S. Isotopic Assessment of Relative Contributions from Crust and Mantle Sources to the Magma Genesis of Precambrian Granitoid Rocks [J]. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.1984, 1514(310):605-625
    [106]Terakado Y and Fujitani T. Behavior of the rare earth elements and other trace elements during interactions between acidic hydrothermal solutions and silicic volcanic rocks, southwestern Japan [J]. Geochim Cosmochim Acta,1998,62(11):1903~1917
    [107]Terakado Y and Walker R J. Nd, Sr and Pb isotopic and REE geochemical study of some Miocene submarine hydrothermal deposits (Kuroko deposits) in Japan [J]. Contrib Mineral Petrol,2005,149: 388-399
    [108]Thielblemont D, Stein G, Lescuyer J L. Epithermal and porphyry deposits:the adakitic connection [J]. Earth Planet Sci Lett,1997,325:103-109
    [109]Veizer J, Compston W and Clauer N, et al.1983.87Sr/86Sr in late Proterozoic carbonates:evidence for a mantle event at 900 Ma [J]. Geochimica et Cosmochimica Acta,47:295-302
    [110]Vervoort J D, and Patchett P J. Behavior of hafnium and neodymium isotopes in the crust: Constraints from Precambriam crustal derived granites [J]. Geochim Cosmochim Acta,1996,60: 3717-3733
    [111]Vervoort J D, Blichert-Toft J. Evolution of the depleted mantle:Hf isotope evidence from juvenile rocks through time [J]. Geochim Cosmochim Acta,1999,63:533-556
    [112]Viljoen MJ and Scoon RN.1985. The distribution and main geologic features of discordant bodies of iron-rich ultramafic pegmatite in the Bushveld Complex [J]. Economic Geology,80:1109-1128
    [113]Wang C Y, Zhang Q, Qian Q, et al. Geochemistry of the Early Paleozoic Baiyin volcanic rocks (NW China):Implications for the tectonic evolution of the North Qilian Orogenic belt [J]. J Geol,113: 83-94
    [114]Wang Q, McDermott F, Xu J F, et al. Cenozoic K-rich adakitic volcanics in the Hohxil area, northern Tibet:lower crustal melting in an intracontinental setting [J]. Geology,2005,33:464-468
    [115]Wang XB, Yang JS and Shi RD et al.2005. The Songshugou Rock Body from Qinling-A example of ultramafic cumulate undergone amphibolite facies metamorphism [J]. Acta Geologica Sinica, 79(2):174-191
    [116]Weaver B L. Trace element evidence for the origin of ocean-island basalts [J]. Geology,1991,19: 123-126
    [117]Wendt JI, Regelous M and Niu Y, et al.1999. Geochemistry of lavas from the Garrett Transform Fault:insights into mantle heterogeneity beneath the eastern Pacific [J]. Earth and Planetary Science Letters,1999:271-284
    [118]White WM.1993.238U/204Pb in MORB and open system evolution of the depleted mantle [J]. Earth and Planetary Science Letters,115:1-4
    [119]Wood D A. The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary volcanic province [J]. Earth Planet Sci Lett,1980,50:11-30
    [120]Xu J F, Shinjo R, Defant M J, et al. Origin of Mesozoic adakitic intrusive rocks in the Ningzhen area of east China:partial meltingof delaminated lower continental crust? [J] Geology,2002,30: 1111-1114
    [121]Yamamoto M.1974. Distribution of sulfur isotopes in the Iwami Kuroko deposits, Shimane Prefecture, Japan [J]. Geochemical Journal.8:27-35
    [122]You CF, Castillo PR and Gieskes JM et al.1996. Trace element behavior in hydrothermal experiments:implications for fluid processes at shallow depths in subductionzones [J]. Earth and Planetary Science Letters,140:41-52
    [123]Yuan H L, Gao S, Dai M N, et al. Simultaneous determinations of U-Pb age, Hf isotopes and trace element compositions of zircon by excimer laser ablation quadrupole and multiple collector ICP-MS [J]. Chem Geol,2008,247:100-117
    [124]Yuan HL, Gao S and Rudnick RL et al. Re-Os evidence for the age and origin of peridotites from the Dabie-Sulu ultrahigh pressure metamorphic belt, China [J]. Chemical Geology,2007.236:323-338
    [125]Zartman RE and Doe BR.1981. Plumbotectonics the model [J]. Tectonophysics,75:135-142
    [126]Zhang H F, Zhang B R, Harris N, et al. U-Pb Zircon SHRIMP ages, geochemical and Sr-Nd-Pb isotopic composition of intrusive rocks from the Longshan-Tianshui area in the southeast corner of the Qinling orogenic belt, China:Constraints on petrogenesis and tectonic affinity [J]. J Asi Earth Sci,2006,27:751-764
    [127]Zhou MF, Robinson RT and Malpas J et al.1996. Podiform chromitites in the Luobusa ophiolite (Southern Tibet):implications for melt-rock interaction and chromite segregation in the upper mantle [J]. Journal of Petrology,37(1):3-21
    [128]Zhu BQ.2007. Pb-Sr-Nd isotopic systematics of mantle-derived rocks in the world [J]. Earth Science Frontiers,14(2):24-36
    [129]Zindler A and Hart S.1986. Chemical Geodynamics [J]. Earth and Planetary Science letters. 493-571
    [130]安三元,王珰荣,胡能高.1981.陕西商南松树沟超镁铁质岩体的地质特征及成因[J].西安地质学院学报,(2):9-21
    [131]包申旭,周怀阳,彭晓彤,等.Juan de Fuca洋脊Endeavour段热液硫化物稀土元素地球化学特征[J].地球化学,2007,36(3):303-310
    [132]鲍佩声,王希斌,彭根永等.1999.中国铬铁矿床.北京:科学出版社,23-161
    [133]别风雷,侯增谦,李胜荣,等.川西呷村超大黑矿型矿床成矿流体稀土元素组成[J].岩石学报,2000,16(4):575-580
    [134]陈丹玲,刘良,周鼎武等.2002.东秦岭松树沟超镁铁质岩中辉石巨晶的成因和40Ar-39Ar定年及其地质意义[J].岩石学报,18(3):355-362
    [135]陈建立.二郎坪群海相火山岩中块状硫化物矿床地质特征及其找矿方向[J].地质与勘探,2004,40(6):38-41
    [136]陈立辉,周新华.2003.鲁西中生代闪长岩中的深源超镁铁质岩捕虏体及其富硅交代特征.中国科学(D辑),33(8):734-744
    [137]陈能松,韩郁菁,游振东,等.豫西东秦岭造山带核部杂岩全岩Sm-Nd、Rb-Sr和晶锆石207Pb-206Pb计时及其地壳演化[J].地球化学,1991,3:219-228
    [138]陈衍景,富士谷.豫西金矿成矿规律[M].北京:地震出版社,1992.234.
    [139]陈衍景,倪培,范洪瑞,等.不同类型热液金矿床的流体包裹体特征[J].岩石学报,2007,23(9):2085-2108.
    [140]陈衍景,肖文交,张进江.成矿系统:地球动力学的有效探针[J].中国地质,2008,35(6):1059—1073.
    [141]陈衍景,张静,张复新,等.西秦岭地区卡林—类卡林型金矿床及其成矿时间、构造背景和模式[J].地质论评,2004.50(2):134—152
    [142]陈毓川,王平安,秦克令,等.秦岭地区主要金属矿床成矿系列的划及区域成矿规律探讨[J].矿床地质,1994,13(4):289—297
    [143]陈志宏,陆松年,李怀坤等.2004.北秦岭德河黑云二长花岗片麻岩体的成岩时代—TIMS和SHRIMP锆石U-Pb同位素年代学[J].地质通报,23(2):136-141
    [144]陈志宏.2004.秦岭造山带东部新元古代热—构造事件及其地质意义[J].中国地质科学院博士学位论文,35-47
    [145]从柏林,郭敬辉,刘文军.一个残留的地幔:来自华北早第三纪火山岩的证据[J].科学通报,2001,46(21):1825-1830
    [146]崔智林,孙勇,王学仁.秦岭丹凤蛇绿岩带放射虫有发现及其地质意义.科学通报,1995,40(18):1686-1688
    [147]戴文晗.陕西眉县铜峪铜矿床矿化蚀变分带及成矿作用[J].西北地质,1982,02:38-48.
    [148]邓清录,杨巍然.秦岭造山带早古生代“开”“合”构造格局及加里东运动[J].地质科技情报,1996,15(2):45-50
    [149]丁振举,姚书振,刘从强,等.东沟坝多金属矿床喷流沉积成矿特征的稀土元素地球化学示踪[J].岩石学报,2003,19(4):792-798
    [150]董云鹏,周鼎武,张国伟.1996.东秦岭松树沟蛇绿岩中超镁铁质岩及铬铁矿的成因探讨[J].地质找矿论丛,11(1):33-43
    [151]董云鹏,周鼎武,张国伟.1996a.松树沟蛇绿岩中橄榄石位错构造及其流变学意义.岩石矿物学杂志,15(1):46-53
    [152]侯增谦,韩发,夏林圻,等.现代与古代海底热水成矿作用[J].北京:地质出版社,2003.1-423
    [153]胡受奚,林潜龙,陈泽铭,等.华北与华南古板块拼合带地质和成矿[M].南京:南京大学出版社,1988.558
    [154]黄朋,李安春,胡宁静,等.冲绳海槽火山岩Sr-Nd同位素特征及U系年龄[J].中国科学(D辑:地球科学),2006,36(4):351-358
    [155]黄月华.松树沟阿尔卑斯型超镁铁质岩体的接触变质带[J].地球化学,1984.,(3):206-215
    [156]姜常义,赵太平,苏生瑞,等.北秦岭侵入岩带与晋宁运动.北京:地质出版社,1998,21-97
    [157]蒋振东,索书田,韩郁菁,等.造山带核部杂岩变质过程与构造解析—以东秦岭为例.武汉:中国地质大学出版社,1-322
    [158]匡少平,张本仁.东秦岭商丹断裂带中松树沟超镁铁岩系地球化学研究[J].矿物岩石,1993,13(2):14-20
    [159]李曙光,陈移之,张国伟等.1991.一个距今10亿年侵位的阿尔卑斯型橄榄岩体:北秦岭晚元古带板块构造体制的证据[J].地质论评,37(3):235-242
    [160]李曙光.蛇绿岩生成构造环境的Ba-Th-Nb-La判别图[J].岩石学报,1993,9(2):146-157
    [161]李锁成,陈永彬,赵彦庆,等.西秦岭北部蛇绿混杂岩带成矿作用与区域构造演化的关系[J].矿床地质,2005,24(6):656-662
    [162]李永峰,毛景文,胡华斌,等.东秦岭钼矿类型、特征、成矿时代及其地球动力学背景[J].矿床地质,2005,24(3):292—301
    [163]李永军.关于西汉水群的新认识[J].西北地质,1989,(3):59-63
    [164]刘国惠,张寿广,游振东等.秦岭造山代主要变质岩群及变质演化[M].北京:地质出版社,1993,1-190.
    [165]刘军锋,孙卫东,孙勇等.2008.东秦岭松树沟超镁铁质岩体地球化学和铂族元素特征:对成因的指示.地质论评,54(1):57-64
    [166]刘军锋.2008.秦岭商—丹构造带镁铁质、超镁铁质岩体研究及其地质意义[D].西北大学博士论文,25-58
    [167]卢欣祥,董有,尉向东等.1999.东秦岭吐雾山A型花岗岩的时代及其构造意义[J].科学通报,44(9):975-978
    [168]陆松年,陈志宏,李怀坤等.2004.秦岭造山带中—新元古代(早期)地质演化[J].地质通报,23(2):107-112
    [169]陆松年,李怀坤,陈志宏等.2003.秦岭中-新元古代地质演化及对Rodinia超级大陆事件的响应[M].北京:地质出版社,1-178
    [170]毛景文,谢桂青,李晓峰,等.大陆动力学演化与成矿研究:历史与现状.—兼论华南地区在地质历史演化期间大陆增生与成矿作用[J].矿床地质,2005,24(3):193-205
    [171]宁晰春.铜峪铜矿田构造体系分析[J].西北地质,1984,02:1-14.
    [172]裴先治,李厚民,李国光,等.东秦岭商丹断裂南侧变质基性火山岩的时代和岩石地球化学特征[J].西北地质科学,1995,16(2):49-57
    [173]裴先治,李厚民,李国光,等.东秦岭商丹构造带主要地质体的同位素年龄及其构造意义[J].地球学报,1997,18(增刊):40-42
    [174]裴先治,刘会彬,丁仨平,等.西秦岭天水地区李子园群变质火山岩的地球化学特征及其地质意义.大地构造与成矿学,2006,30(2):193-205
    [175]裴先治,孙仁奇,丁仨平,等.陇东地区闫家店闪长岩LA-ICP-MS锆石U-Pb测年及其地质意义[J].中国地质,2007,34(1):8-16
    [176]裴先治.东秦岭商丹构造带的组成与构造演化[M].西安:西安地图出版社,1997.1-184
    [177]彭翼,燕长海,万守全,等.东秦岭刘山岩块状硫化物矿床地质地球化学特征[J].矿床地质,2005,51(5):550-557
    [178]齐文.陕西商州龙庙铅锌矿床特征及成因探讨[J].陕西地质,2002,20(1):28-38
    [179]任纪舜,陈廷愚,牛宝贵,等.中国东部及邻区大陆岩石圈的构造演化与成矿[M].北京:科学出版社,1990.1-205
    [180]陕西省地质局第八地质队.陕西省眉县铜峪铜矿床地质勘查报告.1979
    [181]宋述光,苏犁,杨合群等.1998.陕西商南松树沟橄榄岩体的成因及侵位机制[J].岩石学报,14(2):212-221
    [182]宋子季,张维吉,安三元.北秦岭北部早古生代断陷带古海相火山岩特征及其形成环境[A].中国地质科学院西安地质矿产研究所所刊,1988,24:51-63
    [183]苏犁,宋述光,宋彪等.2004.松树沟地区石榴辉石岩和富水杂岩SHRIMP锆石U-Pb年龄及其对秦岭造山带构造演化的制约[J].科学通报49(12):1209-1211
    [184]孙卫东,李曙光,孙勇,等.北秦岭西峡二郎坪群枕状熔岩中一个岩枕的年代学和地球化学研究[J].地质论评,1996,42(2):144-153
    [185]孙卫东,郑永飞.1997.北秦岭松树沟接触变质岩的氧同位素研究[J].岩石学报,13(2):162-167
    [186]孙勇,卢欣祥,韩松等.北秦岭早古生代二郎坪蛇绿岩的组成和地球化学[J].中国科学(D辑),1996,26(增刊):49-55
    [187]汤耀庆,卢一伦.1986.东秦岭蛇绿岩的形成时代和构造环境[J].成都地质学院学报,13(2),52-65
    [188]涂光炽,李朝阳.浅谈比较矿床学[J].地球化学,2006,35(1):1-5
    [189]王金荣,郭原生,付善明,等.甘肃黑石山早古生代埃达克质岩的发现及其构造动力学意义[J].岩石学报,2005,21(3):977-985
    [190]王金荣,吴春俊,蔡郑红,等.北祁连山东段银硐梁早古生代高镁埃达克岩:地球动力学及成矿意义[J].岩石学报,2006,22(11):2655-2664
    [191]王强,赵振华,许继峰,等.天山北部石炭纪埃达克岩-高镁安山岩-富Nb岛弧玄武质岩:对中亚造山带显生宙地壳增生与铜金成矿的意义[J].岩石学报,2006,22(1):11-30
    [192]王润三,刘文荣,车自成,等.二郎坪群蛇绿岩的产出环境.见:刘国惠,张寿广编.秦岭-大巴山地质论文集.北京:北京科学技术出版社,1990.154-166
    [193]王希斌,杨经绥,史仁灯等.2005.秦岭松树沟岩体一个遭受角闪岩相变质作用的超镁铁堆晶岩的实例[J].地质学报,79(2):174-191
    [194]王学仁,华洪,孙勇.河南西峡湾谭地区二郎坪群微体化石研究[J].西北大学学报(自然科学版),25(3):353-358
    [195]王中刚,于元学,赵振华,等.稀土元素地球化学[J].北京:科学出版社,1989,292-336
    [196]王作勋,王宗起,姜春发等.秦岭造山带显生宙构造迁移与陶湾群沉积变形[M].北京:地震出版社,1995,1-102
    [197]韦昌山,杨振强,付建明,等.河南桐柏刘山岩铜锌矿床成因及古大地构造环境[J].地质科技情报,2004,23(2):25-30
    [198]肖思云,张维吉,宋子季.北秦岭变质地层[M].西安:西安交通大学出版社,1988.1-320
    [199]徐义刚.拉张环境中的大陆玄武岩浆作用:性质及动力学过程[M].见:郑永飞,主编.化学地动力学.北京:科学出版社,1999,119-167
    [200]徐勇航、赵太平、陈伟.,东秦岭二郎坪群长英质火山岩成因及其对VMS型矿床成矿环境的制约[J].岩石学报,2009,25(2):399-412
    [201]许继锋,韩吟文.1996.秦岭古MORB型岩石的高放射性成因铅同位素组成—特提斯型古洋幔存在的证据[J].中国科学(D辑),26(增刊):34-41
    [202]许志琴,卢一伦,汤耀庆.东秦岭复合山链的形成-变形、演化及板块动力学[M].北京:中国环境科学出版社,1988.1-193
    [203]薛锋,张国伟.秦岭造山带丹凤变质岛弧火山岩系的岩石组合与地球化学特征[J].地球化学,1993,22(1):80-92
    [204]闫全人,陈隽璐,王宗起,等.北秦岭小王涧枕状熔岩中淡色侵入岩的地球化学特征、SHRIMP年龄及地质意义[J].中国科学D辑:地球科学,2007,37(10):1301-1313
    [205]闫全人,王宗起,陈隽璐等.北秦岭斜峪关群和草滩沟群火山岩成因的地球化学和同位素约束、SHRIMP年代及其意义[J].2007a.地质学报,81(4):488-502
    [206]燕长海,徐勇航,彭翼,等.东秦岭二郎坪群火山岩中火山成因块状硫化物矿床地质地球化学特征及其成因讨论[J].矿床地质,2008,27(1):14-27
    [207]杨森楠.东秦岭古生代陆间裂谷系的演化.地球科学,1985,(4):53-62
    [208]杨巍然,邓清录.扬子克拉通与秦岭造山带的构造关系及金刚石矿的找寻.地质科技情报,1991,(10):135-140
    [209]姚书振,丁振举,周宗桂,等.秦岭造山带金属成矿系统[J].地球科学—中国地质大学学报.2002,27(5):599—604
    [210]张本仁,高山,张宏飞等.秦岭造山带地球化学.北京:科学出版社,2002,73-80
    [211]张本仁,张宏飞,高山,等.秦巴岩石圈、构造及成矿规律地球化学研究.武汉:中国地质大学出版社,1-285
    [212]张成立,周鼎武,韩松.陕西商州地区丹凤变质火山岩的地球化学特征.地质科学,1994,29(4):384-392
    [213]张德全,党兴彦,李大新,等.柴北缘地区的两类块状硫化物矿床—Ⅱ.青龙滩式VHMS型Cu-S矿床[J].矿床地质,2005,24(6):575-583
    [214]张二朋,牛道韫,霍有光,等.秦岭及邻区地质—构造特征概论[M].北京:地质出版社,1993.1-291
    [215]张复新,肖丽,齐亚林.卡林型—类卡林型金矿床勘查研究回顾及展望[J].中国地质,2004,31(4):406—412
    [216]张国伟,董云鹏,赖绍聪,等.秦岭-大别造山带南缘勉略构造带与勉略缝合带[J].中国科学D辑:地球科学,2003,33(12):1121-1135
    [217]张国伟,郭安林,刘福田,等.秦岭造山带三维结构及其动力学分析.中国科学D辑:地球科学,1996,26(增刊):1-6
    [218]张国伟,孟庆仁,于在平等.1996.秦岭造山带的造山过程及其动力学特征.中国科学,26(3):193-200
    [219]张国伟,孟庆任,赖绍聪.秦岭造山带的结构构造.中国科学(B辑),1995,25(9):994-1003
    [220]张国伟,孟庆任,刘少峰,等.华北地块南部巨型陆内俯冲带与秦岭造山带岩石圈现今三维结构[J].高校地质学报1997,3(2)
    [221]张国伟,孟庆任,于在平,等.秦岭造山带的造山过程及其动力学特征[J].中国科学D辑:地球科学,1996,26(3):193-200
    [222]张国伟,张本仁,袁学诚,等.秦岭造山带与大陆动力学[M].北京:科学出版社,2001.1-729
    [223]张静,陈衍景,尤世娜,杨艳.桐柏—东秦岭北坡典型成矿系统的对比研究及有关问题讨论[J].矿物岩石地球化学通报,2007,26(增刊),350—352.
    [224]张旗,秦克章,王元龙,等.加强埃达克岩研究,开创中国Cu、Au等找矿工作的新局面[J].岩石学报,2004b,20(02):195-204
    [225]张旗,王焰,钱青,等.中国东部燕山期埃达克岩的特征及其构造-成矿意义[J].岩石学报,2001,17:236-244
    [226]张旗,许继峰,王焰,等.埃达克岩的多样性[J].地质通报,2004,23(9~10):959-965
    [227]张旗,张宗清,孙勇,等.陕西商县-丹凤地区丹凤群变质玄武岩的微量元素和同位素地球化学.岩石学报,1995,11(增刊):43-54
    [228]张寿广,万渝生,刘国惠等.北秦岭宽坪群变质地质.北京:北京科学技术出版社,1991,1-119
    [229]张维吉,孟宪询,胡健民,等.祁连一北秦岭造山带接合部位构造特征与造山过程.西安:西北大学出版社,1994,1-283
    [230]张维吉,宋子季等.北秦岭变质地层(下卷).西安:西安交通大学出版社,1988,171-312
    [231]张维吉.北秦岭地质构造演化基本特征[A].见:西北大学地质系成立四十五周年学术报告会论文集(下册).西安:西北大学出版社,1987.312-320.
    [232]张泽军,安三元.1992.松树沟超镁铁岩成因的地球化学证据[J].地球化学,(2):175-181
    [233]张泽军.1993.北秦岭松树沟超镁铁质岩的成因类型[J].地质找矿论丛,8(1):48-61
    [234]张泽军.1995.北秦岭松树沟超镁铁质岩中两类不同成因的纯橄榄岩[J].岩石学报,11(增刊):178-189
    [235]张宗清,刘敦一,付国民.北秦岭变质地层同位素年代研究[M].北京:地质出版社,1994.1-191
    [236]张宗清,张国伟,付国民,等.秦岭变质地层年龄及其构造意义[J].中国科学D辑:地球科学,1996,26(3):216-222
    [237]张宗清,张国伟,刘敦一,等.秦岭造山带蛇绿岩、花岗岩和碎屑岩同位素年代学和地球化学[M].北京:地质出版社.2006,56-92
    [238]张宗清,张国伟,唐索寒等.2001.秦岭黑河镁铁质枕状熔岩年龄和地球化学特征[J].中国科学(D辑),31(1):36-42
    [239]郑永飞,陈江锋.稳定同位素地球化学[M].北京:科学出版社.2000,218-240
    [240]周鼎武,董云鹏,刘良等.1998.松树沟元古宙蛇绿岩Nd、Sr、Pb同位素地球化学特征[J].地质科学,33(1):31-38
    [241]周鼎武,李文厚,张云翔,等.区域地质综合研究的方法与实践—鄂尔多斯盆地-秦岭造山带地质野外实习指导书[M].北京:科学出版社,2002,1-325
    [242]周鼎武,张泽军,董云鹏等.1995.东秦岭商南松树沟元古宙蛇绿岩片的地质、地球化学特征[J].岩石学报,11(增刊):154-164
    [243]朱赖民,张国伟,李犇等.2008.秦岭造山带重大地质事件、矿床类型和成矿大陆动力学背景[J].矿物岩石地球化学通报,27(4):384-390
    [244]朱赖民,张国伟,李犇,等.马鞍桥金矿床中香沟岩体锆石U-Pb定年、元素地球化学及其与成矿关系研究[J].中国科学(D辑),2009a.39(6):700-720
    [245]朱赖民,张国伟,郭波,等.华北地块南缘钼矿床黄铁矿流体包裹体氦、氩同位素体系及其对成矿动力学背景的示踪[J].科学通报,2009,54(12):1725-1735
    [246]朱赖民,丁振举,姚书振,等.西秦岭甘肃温泉钼矿床成矿地质事件及其成矿构造背景[J].科学通报,2009.54(16):2337-2347

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700