Au及Au-Pt贵金属纳米材料催化性能的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
20世纪80年代,Hutchings在研究乙炔氢氯化反应的机理时预测负载的金将对这一反应有较高的催化活性。随后,Haruta发现尺寸缩小到纳米量级、并且高度分散在Fe2O3、Co3O4、NiO等载体氧化物上的金,在低至-70℃的温度下,对CO的氧化仍具有很高的催化活性。这两大重要发现,彻底改变了人们一直以来对Au化学惰性的认识,引起了人们的高度关注,在世界范围内掀起了研究金纳米粒子的热潮。随着研究的深入,人们发现Au纳米粒子对很多反应都具有较高的催化活性,如CO的氧化、氮氧化物的还原、不饱和烃的氢化及烃类的燃烧等。同时,人们还研究了制备方法、载体氧化物种类、Au纳米粒子的尺寸、形貌及氧化态等因素对其催化性能的影响。通过这些探索,人们对金纳米材料的催化活性有了一定的认识,但尚不完善。比如,Au纳米粒子高催化活性的起因一直是备受争议的问题,目前人们还没有统一认识。另外,Au纳米粒子催化的CO氧化、H2O2的直接合成等一系列重要反应的机理也没有完全弄清楚。
     Pt及Pt基催化剂是所有元素中催化性能最好、选择性最高、应用最为广泛的催化剂。特别值得一提的是,它们在质子交换膜燃料电池中有极高的潜在应用价值,如直接甲醇燃料电池等。然而,Pt电极易被反应生成的副产物CO毒化,导致其失活,加之Pt在全球的储量少、价格昂贵,人们一直在寻求提高Pt催化活性及利用率的方法,并不断开发高性能、低成本的催化剂。许多研究发现Pt-Au二元金属纳米粒子具有很好的抗CO中毒能力,而且对甲醇氧化、甲酸氧化等反应的催化活性较单一纯金属的高。另外,Au的加入使催化剂的成本大为降低,符合人们对“高性能、低成本”催化剂的要求。然而Pt-Au二元金属纳米粒子的微观结构还存在很多争议,有人认为该双金属可以形成均匀混合的合金结构,而有的研究小组则发现Au易析出到催化剂的表面。另外,Au的加入使Pt催化剂的催化活性提高的原因也一直困扰着科学工作者。
     基于以上两方面,本文利用密度泛函理论方法,从理论上研究了Au团簇催化CO氧化与H2O2直接合成的反应机理,探讨了量子尺寸效应、电荷态效应等对Au催化活性的影响;研究了Pt-Au二元金属团簇的几何结构及电子结构,并探讨了Pt-Au双金属团簇及表面催化CO氧化的微观反应机制,阐明了Au的加入对Pt催化性能的影响。本论文从原子、分子水平上提供了金及金铂贵金属纳米材料微观结构及其催化性能的认识,加深了人们对这些纳米材料微观结构及催化性能的理解,可以为相关的实验研究提供一定的理论指导。
     本文主要内容和创新性研究结果如下:
     一、概括论述了Au及Pt-Au双金属纳米粒子的研究进展和现状。与体相的Au不同,纳米尺寸的Au对很多反应都有良好的催化活性,其中低温催化CO氧化是人们研究最多最深入的反应。另外,以负载Au为催化剂,由H2和O2直接合成H2O2的反应也是当前研究较多的反应之一。因此,首先以这两个反应为主,从催化剂制备、载体的选择、尺寸和形貌对Au粒子催化活性的影响、Au纳米粒子的氧化态、理论研究概况等方面简要介绍了Au纳米粒子的研究现状。然后从实验和理论两个方面简述了Pt-Au二元金属纳米粒子催化剂的研究进展,并介绍了本文的研究思路和主要内容。
     二、简要介绍了论文的理论计算研究基础。简述了定态薛定谔方程和从头算方法所采用的五个近似。密度泛函理论是本论文最重要的理论基础,对其做了较为详细的介绍。简要介绍了基组、赝势的种类、ADMP从头算分子动力学模拟方法以及论文所采用的计算软件程序包。
     三、基于密度泛函理论,在BPW91/LANL2DZ/6-311G(d,p)水平上系统研究了Au负离子团簇Aun-(n=1-4)催化H2和O2直接制备H2O2的反应机理。研究发现,所有Au负离子团簇Aun-(N=1-4)催化的反应均经过两个基元步骤:首先H2解离,与O2作用形成含OOH的中间体,紧接着这一中间体异构化形成类似于产物的中间体。从能量上来讲,Au2-和Au4-催化的反应比Au-和Au3-催化的反应更容易进行,表明即使是在最小的尺寸,Au负离子团簇的催化活性依然呈现出明显的奇偶震荡效应,即含偶数个Au原子的负离子团簇表现出较高的催化活性。Au-对该反应的活性相对较低,因为其决速步的势垒高达40.60 kcal mol-1。计算结果还表明量子尺寸效应可能对Au负离子团簇的反应活性影响不大,而附加的电荷却是影响偶数Au团簇高活性的重要因素。
     四、基于密度泛函理论,在PW91/LANL2DZ/6-311+G(d)水平上详细地研究了不同电荷态的Au三聚体(Au3+、Au3及Au3-)催化CO氧化的反应机理,阐明了电荷态效应对Au团簇催化性能的影响。对每一种电荷态的Au三聚体催化的反应都探讨了三种可能的反应通道:第一种是O2首先吸附到Au三聚体上形成初始复合物,接着CO与该复合物反应;第二种正相反,CO首先与Au三聚体相互作用形成复合物,接着O2与该复合物反应;第三种为自催化机理,即预先吸附的CO分子释放出较多的热量,能够促进第二个CO分子的氧化。计算结果显示,Au3+、Au3及Au3-均可催化CO的氧化,只是反应的基元步骤不同,其中阳离子团簇催化的反应沿着自催化反应通道最为有利。这一结果说明Au团簇的电荷态效应对CO氧化的基元反应步骤有影响,但不是影响其催化活性的关键因素。所得理论结果很好地解释了实验上的发现,即不同电荷态的Au团簇均对CO氧化有活性。另外,稳定的碳酸盐中间体不是CO氧化最小能量路径上必须的中间体。ADMP分子动力学模拟的结果表明它是通过Au氧化物中间体与新生成的CO2有效碰撞的结果,即CO2中的C直接进攻金属氧化物中的O原子。
     五、基于密度泛函理论,在PW91/LANL2DZ水平上详细研究了AumPtn(m+n=4-6,13)二元金属团簇的几何和电子结构。计算结果表明Pt-Au二元金属团簇易形成Pt为核Au为壳的几何结构,Au、Pt均匀混合的结构在能量上不稳定。这归因于Pt-Pt,Pt-Au和Au-Au键不同的成键本质,研究发现这三种键的强度存在如下次序:Pt-Pt>Pt-Au>Au-Au。本章的研究对Pt-Au二元金属团簇的几何结构和电子结构提供了原子水平上的理解,有利于帮助人们了解此类二元金属团簇的微观结构。
     六、通过DFT计算,系统研究了PtmAun(m+n=4)团簇催化CO氧化反应的微观机制,讨论了Pt-Au双金属团簇催化剂比单一金属团簇催化活性高的原因。计算结果表明,除了以Au4为催化剂的反应,其他反应均依照单中心机理进行,且Pt是双金属团簇中的活性位,Au在形式上只是一个旁观者,它的存在避免了过多的CO吸附到活性中心Pt的周围。另外,研究还发现Pt的催化活性与它周围的原子是Au或Pt无关,因为比较双金属团簇与纯金属团簇催化的反应,发现决速步的势垒无明显变化。根据上述计算结果,我们提出了一种对CO氧化“低廉且高效”的理想Pt-Au催化剂结构模型。在这种催化剂中,Au原子将Pt原子(活性中心)有效的隔开,这样由于Au与CO相互作用较弱,使得Pt原子周围不会被过多的CO占据,能为O2的加入预留足够的空间,而O2是CO氧化所必需的氧化剂。
     七、运用密度泛函理论,对Pt(111)和PtAu3(111)面催化的H2O的分解及COads与OHads发生氧化反应的机理进行了系统研究。通过研究弄清了Pt-Au双金属纳米材料对CO氧化性能提高的可能原因。计算结果表明,反应的活性位仍然是Pt位。与Pt(111)相比,PtAu3(111)对H2O、CO和OH的吸附没有明显的改变。不过,PtAu3(111)对H2O的分解反应具有较高的催化活性,我们将其归因于PtAu3(111)中两种金属电子结构的改变,即两种原子的d带中心向费米能级方向移动使它们的反应活性升高。对COads和OHads的反应,Pt(111)和PtAu3(111)的催化活性相当。本章的研究加深了我们对Pt-Au双金属纳米材料催化活性的认识。
In the 1980's, supported Au has been prognosticated by Hutchings having higher catalytic activity toward the hydrochlorination of acetylene. Subsequently, it was found by Haruta et al that Au can exhibit surprisingly high catalytic activity for CO oxidation as low as-70℃when it is highly dispersed on Fe2O3、Co3O4、NiO. These vital findings make Au nanoparticles attract sustained experimental and theoretical interest and change the traditional impression about its inert activity. Using supported gold nanoparticles as catalysts, many important reactions have been achieved so far, including the oxidation of CO, the direct synthesis of H2O2 from H2 and O2, the reduction of nitrogen oxides, selective hydrogenation of unsaturated hydrocarbon, the combustion of hydrocarbons and so on. In the past decade, many experimental and theoretical studies have been devoted to unveiling the origin of the catalytic activity of Au nanoparticles. The effects of preparation method, support oxides, oxidation state, size and morphology of Au particles have been investigated. However, there is no consensus on the crucial factors that govern the catalytic activity of Au nanoparticles. And our understanding for the mechanisms of CO oxidation and H2O2 formation from H2 and O2 are still far from complete.
     Pt and Pt-based particles, which have extensive application, are regarded as the most active catalysts with the highest selectivity among the chemical elements. It is worthy to note that they have potential application in proton exchange membrane fuel cell, such as direct methanol fuel cell. However, the Pt electrode can be easily poisoned by the byproduct CO and loss the catalytic activity. Moreover, the scarce world reserves of Pt make it much more expensive than the other noble metals, such as Au. Thus, the enhanced activity and most effective utilization of Pt catalyst are desired. Up to date, much effort has been devoted to develop the "less expensive and more efficient" Pt-based catalysts. Several groups have consistently observed the higher catalytic activity of Pt-Au bimetallic nanoparticles toward low temperature CO oxidation compared to the corresponding monometallic catalysts. Moreover, the cost of Au modified Pt catalysts is much lower than pure Pt catalysts. Therefore, Pt-Au bimetallic catalysts have attracted special interest in recent years. However, for the microstructures of Pt-Au bimetallic catalysts, some groups reported that Pt-Au NPs exhibit alloy properties while the others found that Au tends to migrate to the surface and cover the active Pt sites. The existing contrary results indicate that the atomic ordering in nano-scaled Pt-Au bimetallic particles, which importantly influences the catalytic activity of nanoparticles, is a complex issue and still not understood well. Therefore, it is worthy to theoretically ascertain the stable atomic ordering of Pt-Au NPs. Moreover, the origin for the improved catalytic activity of Pt-Au bimetallic particles remains unclear.
     Considering the issues concerned above, employing density functional theory we explored the mechanism of CO oxidation and H2O2 formation from H2 and O2 which are promoted by Au clusters, and investigated the quantum size effect and charge state effect on gold catalytic activity in this thesis. At the same time, we also studied the geometrical and electronic structures of Pt-Au bimetallic clusters, researched the mechanism of CO oxidation mediated by Pt-Au bimetallic clusters or slabs and elucidated the influence of Au addition for Pt catalytic activity.
     The major innovative conclusions in this thesis are listed as follows:
     1. A theoretical investigation of the formation of H2O2 from H2 and O2 over anionic gold clusters Aun-(n=1-4) were performed at the BPW91/LANL2DZ/6-311G(d,p) level. In all cases, the reactions proceed via two elementary steps:the initial H2 dissociation to form an OOH-containing intermediate and the subsequent isomerization of this intermediate into the product-like intermediate. Energetically, the reactions over Au2- and Au4- are significantly less demanding than the ones over Au-and Au3-. In particular, Au-is relatively less active to hydrogenate O2 because the barrier of the rate-determining step is as high as 40.60 kcal mol-1. The barriers for both the odd-and even-membered sequences slightly decrease with the cluster size. The present results shows that quantum size effects appear to play a less important role for the reactivity of anionic Au clusters, in contrast, the additional charge on even-numbered gold clusters seems to be a dominant factor for the high reactivity.
     2. By carrying out density functional theory calculations, we studied the CO oxidation promoted by cationic, neutral, and anionic Au trimers, which represent the prototypes of Au-cluster-based catalysts with different charge states. The reaction is explored along three possible pathways:one involves the reaction of the initial complexes between Au trimers and O2 with CO; another is related to O2 interacting with the complexes between Au trimers and CO; the third refers to a self-promoting mechanism, i.e., the second CO oxidation is promoted by a pre-adsorbed CO molecule. The theoretical results show that all three species may promote the reaction, as indicated by calculated low energy barriers and high exothermicities, supporting the fact that cationic, neutral, and anionic Au species were all observed to present catalytic activity toward CO oxidation. Along the reaction coordinates for all the reactions, Au-carbonate species are not found to be the necessary intermediates although they are calculated to be energetically very stable. In contrast, by performing atom-centered density matrix propagation molecular dynamics simulations, the formation of such highly stable species is attributed to the effective collision between Au-oxides and CO2 with the carbon atom of CO2 directly attacking the O atom in the oxides.
     3. The geometrical and electronic structures of the smallest AumPtn (m+n=4-6, 13) bimetallic clusters have been investigated by performing DFT calculations. It is found that Au and Pt atoms prefer to form the core-shell-like structure with Pt atoms assembling together forming the core while the Au atoms like to surround the Pt atoms forming the shell, and the evenly mixed clusters are structurally unstable. This is attributed to the distinct bonding nature of Pt-Pt, Pt-Au, and Au-Au bonds. The present studies have provided atomic-level insight into the geometrical and electronic structure of Au/Pt bimetallic clusters, which can offer assistance to some extent for understanding the microstructure of Au/Pt bimetallic nanomaterials.
     4. A theoretical exploration for the reactivity of PtmAun (m+n=4) clusters toward CO oxidation have been presented, aiming at understanding the improved catalytic activity of Pt-Au bimetallic catalysts. In all situations, the reaction proceeds according to the single-center mechanism except the Au4-involved reaction. The Pt sites in the bimetallic clusters are the active centers, while Au sites are formally spectators and their role is to avoid the excess adsorption of CO around the active centers. The activity of Pt active centers in the bimetallic clusters seems not to be dependent on its surroundings. Based on the calculated results, we show a picture of the ideal "less expensive and more effective" Pt-Au catalyst for CO oxidation, where Pt atoms (active center) are suitably spaced (stabilized) by Au atoms, which more weakly adsorb CO than Pt atoms and thus leave room for the coming O2 necessary to CO oxidation.
     5. The detailed mechanisms for the dissociation of H2O and the oxidation of s by OHads on Pt(111) and PtAu3(111) have been investigated in order to explicit the origin for the improved catalytic activity of Pt-Au bimetallic catalysts. The calculated results indicate that the active sites are still on Pt atoms in PtAu3(111) surface. The adsorption of H2O, CO and OH on PtAu3(111) show unapparent difference in comparison with that on Pt(111). However, PtAu3(111) shows enhanced activity toward the dissociation of H2O. We attribute this to the change of electronic structures of Pt in PtAu3(111) surface. The analysis of density of states (DOS) indicate the upshift of d band center of Pt in PtAu3(111), which make the activity of Pt improve. In the case of the COadS oxidation by OHadS, PtAu3(111) shows comparable activity. The present studies deepen the understanding for the improved catalytic activity of Pt-Au bimetallic catalysts.
引文
[1]McIntosh, D.; Ozin, G. A. Direct synthesis using gold atoms. Monodioxygen gold, Au(O2). Inorg. Chem.1976,15,2869.
    [2]Huber, H.; McIntosh, D.; Ozin, G. A. A metal atom model for the oxidation of carbon monoxide to carbon dioxide. The gold atom-carbon monoxide-dioxygen reaction and the gold atom-carbon dioxide reaction. Inorg. Chem.1977,16,975.
    [3]Hutchings, G. J. Vapor phase hydrochlorination of acetylene:Correlation of catalytic activity of supported metal chloride catalysts. J. Catal.1985,96,292.
    [4]Haruta, M.; Kobayashi, T.; Sano, H.; Yamada, N. Novel gold catalysts for the oxidation of carbon monoxide at a temperature far below 0℃. Chem. Lett.1987, 16,405.
    [5]Haruta, M.; Yamada, N.; Kobayashi, T.; Iijima, S. Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide.J. Catal.1989,115,301.
    [6]Daniel, M. C.; Astruc, D. Gold nanoparticles:Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev.2004,104,293.
    [7]Min, B. K.; Friend, C. M. Heterogeneous gold-based catalysis for green chemistry:Low-temperature CO oxidation and propene oxidation. Chem. Rev. 2007,107,2709.
    [8]Hashmi, A. S. K. Gold-catalyzed organic reactions. Chem. Rev.2007,107,3180.
    [9]Pyykko, P. Theoretical chemistry of gold. Ⅲ. Chem. Soc. Rev.2008,37,1967.
    [10]Coquet, R.; Howard, K. L.; Willock, D. J. Theory and simulation in heterogeneous gold catalysis. Chem. Soc. Rev.2008,37,2046.
    [11]Yu, S. Y.; Sun, Q. F.; Lee, T. K. M.; Cheng, E. C.C.; Li, Y. Z.; Yam, V. W. W. Au36 Crown:A macrocyclization directed by metal-metal bonding interactions Angew. Chem. Int. Ed.2008,47,1.
    [12]Yang, H.; Xu, L.; Li, X.; Zhang, X. One simple route to fabricate gold nanowire network films by using P2VP-b-PEO diblock copolymers as templates. Mater. Chem. Phys.2009,114,525.
    [13]Seo, S.; Wang, X. H.;Murray, D. Direct monitoring of gold nanorod growth. Ionics 2009,15,67.
    [14]Lee, H. O.; Kim, E. M.; Yu, H.; Jung, J. S.; Chae, W. S. Advanced porous gold
    nanofibers for highly efficient and stable molecular sensing platforms. Nanotechnology 2009,20,325604.
    [15]Haruta, M. Gold as a novel catalyst in the 21st century:Preparation, working mechanism and application. Gold Bull.2004,37,27.
    [16]Chen, M. S.; Goodman, D.W. The structure of catalytically active gold on titania. Science 2004,306,252.
    [17]Idakiev, V.; Tabakova, T.; Naydenov, A.; Yuan, Z. Y.; Su, B. L. Gold catalysts supported on mesoporous zirconia for low-temperature water-gas shift reaction. Appl. Catal. B:Env ironmental 2006,63,178.
    [18]Li, G.; Edwards, J.; Carley, A. F.; Hutchings, G. J. Direct synthesis of hydrogen peroxide from H2 and O2 using zeolite-supported Au catalysts. Catal. Today 2006, 114,369.
    [19]Sinhaa, A.K.; Seelana, S.; Tsubotaa, S.; Harutab, M. Catalysis by gold nanoparticles:Epoxidation of propene. Topics in Catal.2004,29,95.
    [20]Prati, L.; Porta, F. Oxidation of alcohols and sugars using Au/C catalysts:Part 1. Alcohols. Appl. Catal. A 2005,291,199.
    [21]Porta, F.; Prati, L. J. Catal. Selective oxidation of glycerol to sodium glycerate with gold-on-carbon catalyst:an insight into reaction selectivity.2004,224,397.
    [22]Zhao, R.; Ji, D.; Lu, G.; Qian, G.; Yan, L.; Wang, X.; Suo, J. A highly efficient oxidation of cyclohexane over Au/ZSM-5 molecular sieve catalyst with oxygen as oxidant. Chem.Commun.2004,904.
    [23]Solsona, B. E.; Garcia, T.; Jones, C.; Taylor, S. H.; Carley, A. F.; Hutchings, G. J. Supported gold catalysts for the total oxidation of alkanes and carbon monoxide. Appl. Catal. A:Gen.2006,312,67.
    [24]Jia, J. F.; Haraki, K.; Kondo, J. N.; Domen, K.; Tamaru, K. Selective hydrogenation of acetylene over Au/Al2O3 catalyst. J. Phys. Chem. B 2000,104, 11153.
    [25]Torres, D.; Gonzalez, S.; Neyman, K. M.; Illas, F. Adsorption and oxidation of NO on Au(111) surface:Density functional studies. Chem. Phys. Lett.2006, 422,412.
    [26]Rodriguez, J. A. Evans, J.; Graciani, J.; Park, J.; Liu, P.; Hrbek, J.; Sanz, J. F. High water-gas shift activity in TiO2(110) supported Cu and Au nanoparticles: Role of the oxide and metal particle size. J. Phys. Chem. C 2009,113,7364.
    [27]Liu, Z. P.; Jenkins, S. J.; King, D. A. Origin and activity of oxidized gold in water-gas-shift catalysis. Phys. Rev. Lett.2005,94,196102.
    [28]Liu, P.; Rodriguez, J. A. Water-gas-shift reaction on metal nanoparticles and surfaces. J. Chem. Phys.2007,126,164705.
    [29]Jia, M. L.; Shen, Y. N.; Li, C. Y.; Bao, Z.; Sheng, S. S. Effect of supports on the gold catalyst activity for catalytic combustion of CO and HCHO. Catal. Lett. 2005,99,235.
    [30]Grisel, R. J. H.; Neiuwenhuvs, B. E. A comparative study of the oxidation of CO and CH4 over Au/MO,/Al2O3 catalysts. Catal. Today 2001,64,69.
    [31]Takao, Y.; Fukuda, K.; Shimizu, Y.; Egashira, M. Effects of catalytic activity of TiO2-based specimens on their trimethylamine-sensing properties. Sens. Actuator B-Chem.1993,10,235.
    [32]Sakurai, H.; Hamta, M. Carbon dioxide and carbon monoxide hydrogenation over gold supported on titanium, iron, and zinc oxides. Appl. Catal. A 1995,127, 93.
    [33]Patil, N. S.; Uphade, B. S.; McCulloh, D. G.; Bhargava, S. K.; Choudhary, V. R. Styrene epoxidation over gold supported on different transition metal oxides prepared by homogeneous deposition-precipitation. Catal. Commun.2004,5, 681.
    [34]Edwards, J.; Landon, P.; Carley, A. F.; Herzing, A. A.; Watanabe, M.; Kiely, C. J.; Hutchings, G. J. Nanocrystalline gold and gold-palladium as effective catalysts for selective oxidation. J. Mater. Res.2007,22,831.
    [35]Hughes, M. D.; Xu, Y. J.; Jenkins, P.; McMorn, P.; Landon, P.; Enache, D. I.; Carley, A. F.; Attard, G. A.; Hutchings, G. J.; King, F.; Stitt, E. H.; Johnston, P.; Griffin, K.; Kiely, C. J. Tunable gold catalysts for selective hydrocarbon oxidation under mild conditions. Nature 2005,437,1132.
    [36]Pina, C. D.; Falletta, E.; Prati, L.; Rossi,M. Selective oxidation using gold. Chem. Soc. Rev.2008,37,2077.
    [37]Zhu, K. K.; Hu, J. C; Richards, R. Aerobic oxidation of cyclohexane by gold nanoparticles immobilized upon mesoporous silica. Catal. Lett.,2005,100,195.
    [38]Herron, N.; Schwartz, S.; Druliner, J. D.; E.I. Du Pont de Nemours & CO., USA, PCT Int. Appl. WO2002016298 Al,2002.
    [39]Jones, C. J.; Taube, D.; Ziatdinov, V. R.; Periana, R. A.; Nielsen, R. J.; Oxgaard, J.; Goddard III, W. A. Selective oxidation of methane to methanol catalyzed, with C-H activation, by homogeneous, cationic gold. Angew. Chem., Int. Ed. 2004,43,4626.
    [40]Gorin, D. J.; Toste, F. D. Relativistic effects in homogeneous gold catalysis. Nature 2007,446,395.
    [41]Hashmi, A. S. K.; Hutchings, G. J. Gold catalysis. Angew. Chem., Int. Ed.2006, 45,7896.
    [42]Biella, S.; Prati, L.; Rossi, M. Gold catalyzed oxidation of aldehydes in liquid phase. J. Mol. Catal. A:Chem.2003,197,207.
    [43]COrma, A.; Domine, M. E. Gold supported on a mesoporous CeO2 matrix as an efficient catalyst in the selective aerobic oxidation of aldehydes in the liquid phase. Chem. Commun.2005,4042.
    [44]Biella, S.; Prati, L.; Rossi, M. Selective oxidation of D-Glucose on gold catalyst. J. Catal.2002,206,242.
    [45]Baatz, C.; Prusse, U. Preparation of gold catalysts for glucose oxidation by incipient wetness.J. Catal.2007,249,34.
    [46]Mirescu, A.; Bernt, H.; Martin, A.; Prusse, U. Long-term stability of a 0.45% Au/TiO2 catalyst in the selective oxidation of glucose at optimised reaction conditions.Appl. Catal. A 2007,317,204.
    [47]Biella, S.; Castiglioni, G. L.; Fumagalli, C.; Prati, L.; Rossi, M. Application of gold catalysts to selective liquid phase oxidation. Catal. Today 2002,72,43.
    [48]Zhu, B.; Angelici, R. J. Non-nanogold catalyzed aerobic oxidation of secondary amines to imines. Chem. Commun.2007,2157.
    [49]Bond, G. C.; Thompson, D. T. Catalysis by gold. Catal. Rev.-Sci. Eng.1999,41, 319.
    [50]Haruta, M. Novel catalysis of gold deposited on metal oxides. Catal. Surv. Jpn. 1997,1,61.
    [51]Claus, P.; Bruckner, A.; Mohr, C.; Hofmeister, H. Supported gold nanoparticles from quantum dot to mesoscopic size scale:Effect of electronic and structural properties on catalytic hydrogenation of conjugated functional groups. J. Am. Chem. Soc.2000,122,11430.
    [52]Mohr, C.; Hoefmeister, H.; Lucas, M.; Claus, P. Gold catalysts for the partial hydrogenation of acrolein. Chem. Eng. Technol.2000,3,324.
    [53]Milone, C.; Crisafulli, C.; Ingoglia, R.; Schipilliti, L.; Galvagno, S. A Comparative study on the selective hydrogenation of a,b unsaturated aldehyde and ketone to unsaturated alCOhols on Au supported catalysts. Catal. Today 2007,122,341.
    [54]Astruc, D.; Lu, F.; Aranzaes, J. R. Nanoparticles as recyclable catalysts:The Frontier between homogeneous and heterogeneous catalysis. Angew. Chem., Int. Ed.2005,44,7852.
    [55]Corma, A.; Serna, P. Preparation of substituted anilines from nitro Compounds by using supported gold catalysts. Nat. Protocol 2006,1,2590.
    [56]Corma, A.; Serna, P. Chemoselective hydrogenation of nitro compounds with supported gold catalysts. Science 2006,313,332.
    [57]Corma, A.; Serna, P.; Garcia, H. Gold catalysts open a new general chemoselective route to synthesize oximes by hydrogenation of α,β-unsaturated nitrocompounds with H2. J. Am. Chem. Soc.2007,129,6358.
    [58]Gluhoi, A.C.; Lin, S. D.; Nieuwenhuys, B. E. The beneficial effect of the addition of base metal oxides to gold catalysts on reactions relevant to air pollution abatement. Catal. Today 2004,90,175.
    [59]Ueda, A.; Haruta, M. Reduction of nitrogen monoxide with propene over Au/Al2O3 mixed mechanically with Mn2O3. Appl. Catal. B:Environ.1998,18, 115.
    [60]Ilieva-Gencheva, L.; Pantaleo, G.; Ivanov, I.; Venezia, A. M.; Andreeva, D. Gold catalysts supported on CeO2 and CeO2-Al2O3 for NOX reduction by CO. Appl. Catal. B:Environ.2006,65,101.
    [61]Ilieva-Gencheva, L.; Pantaleo, G.; Mintcheva, N.; Ivanov, I.; Venezia, A. M.; Andreeva, D. Nano-structured gold catalysts supported on CeO2 and CeO2-Al2O3 for NOX Reduction by CO:Effect of catalyst pretreatment and feed composition. J. Nanosci. Nanotechnol.2008,8,867.
    [62]Ilieva-Gencheva, L.; Pantaleo, G.; Sobczak, J. W.; Ivanov, I.; Venezia, A. M.; Andreeva, D. NO reduction by CO in the presence of water over gold supported catalysts on CeO2-Al2O3 mixed support, prepared by mechanochemical activation. Appl. Catal. B:Environ.2007,76,107.
    [63]Ilieva-Gencheva, L.; Pantaleo, G.; Nedyalkova, R.; Sobczak, J. W.; Lisowski, W.; Kantcheva, M.; Venezia, A. M.; Andreeva, D. NO reduction by CO over gold catalysts based on ceria supports, prepared by mechanochemical activation, modified by Me3+(Me= Al or lanthanides):Effect of water in the feed gas. Appl. Catal. B:Environ.2009,90,286.
    [64]Lahr, D. L.; Ceyer, S. T. Catalyzed CO oxidation at 70 K on an extended Au/Ni surface alloy. J. Am. Chem. Soc.2006,128,1800.
    [65]Xu, C.; Su, J.; Xu, X.; Liu, P.; Zhao, H.; Tian, F.; Ding, Y. Low temperature CO oxidation over unsupported nanoporous gold J. Am. Chem. Soc.2007,129,42.
    [66]Lopez, N; N(?)rskov, J. K. Catalytic CO oxidation by a gold nanoparticle:A density functional study. J. Am. Chem. Soc.2002,124,11262.
    [67]Liu, Z. P.; Gong, X. Q.; Kohanoff, J; Sanchez, C.; Hu, P. Catalytic role of metal oxides in gold-based catalysts:A first principles study of CO oxidation on TiO2 supported Au. Phys. Rev. Lett.2003,91,266102.
    [68]Xu, Y.; Mavrikakis, M. Adsorption and dissociation of O2 on gold Surfaces: Effect of steps and strain. J. Phys. Chem. B 2003,107,9298.
    [69]Kung, M. C.; Davis, R. J.; Kung, H. H. Understanding Au-catalyzed low-temperature CO oxidation J.Phys. Chem. C 2007,111,11767.
    [70]Tsubota, S.; Haruta, M.; Kobayashi, T.; Ueda, A.; Nakahara, Y. Preparation of highly dispersed gold on titanium and magnesium oxid. Stud. Surf. Sci. Catal. 1991,63,695.
    [71]Haurta, M.; Yamada, N.; Kobayahsi, T.; Iijima, S. Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide.J.Catal.1989,115,301.
    [72]Kobayashi, T.; Haruta, M.; Tsubota, S.; Sano, H.; Delmon, B. Thin films of supported gold catalysts for CO detection. Sens. Act. B,1990,1,222.
    [73]Yuan, Y.; Kozlova, A. P.; Asakura, K.; Wan, H.; Tsai, K.; Iwasawa, Y. Supported Au catalysts prepared from Au phosphine complexes and as-precipitated metal Hydroxides:Characterization and low-temperature CO oxidation.J.Catal.1997, 170,191.
    [74]Okumura, M.; Tsubota, S.; Iwamoto, M.; Haruta, M. Chemical-vapor-deposition of gold nanoparticles on Mcm-41 and their catalytic activities for the low-temperature oxidation of CO and of H2. Chem. Lett.1998,315.
    [75]Prati, L.; Rossi, M. Green chemistry:Challenging perspectives. Tundo P., Anastas P, Eds. Oxford,2000. p183
    [76]Moreau, F.; Bond, G. C.; Taylor, A. O. Gold on titania catalysts for the oxidation of carbon monoxide:control of pH during preparation with various gold contents. J. Catal.2005,231,105.
    [77]Moreau, F.; Bond, G. C. Gold on titania catalysts, influence of some physicochemical parameters on the activity and stability for the oxidation of carbon monoxide. Appl. Catal. A 2006,302,110.
    [78]Carlsson, A.; Puig-Molina, A.; Janssens, T. V. W. new method for analysis of nanoparticle geometry in supported fcc metal catalysts with scanning transmission electron microscopy. J. Phys. Chem.B 2006,110,5286.
    [79]Yan, W.; Mahurin, S. M.; Chen, B.; Overbury, S. H.; Dai, S. Effect of supporting surface layers on catalytic activities of gold nanoparticles in CO oxidation. J. Phys. Chem.B2005,109,15489.
    [80]Janssens, T. V. W.; Carlsson, A.; Puig-Molina, A.; Clausen, B. S. Relation between nanoscale Au particle structure and activity for CO oxidation on supported gold catalysts. J. Catal.2006,240,108.
    [81]Harding, C.; Habibpour, V.; Kunz, S.; Farnbacher, A. N. S.; Heiz, U.; Yoon, B.; Landman, U. Control and manipulation of gold nanocatalysis:Effects of metal oxide support thickness and composition. J. Am. Chem. Soc.2009,131,538.
    [82]Schubert, M. M.; Hackenberg, S. S.; van Veen, A. C.; Muhler, M.; Plzak, V.; Behm, R. J. CO oxidation over supported gold catalysts-"Inert" and "Active" support materials and their role for the oxygen supply during reaction. J. Catal. 2001,197,113.
    [83]Comotti, M.; Li, W. C.; Spliethoff, B.; Schuth, F. Support effect in high activity gold catalysts for CO oxidation. J. Am. Chem. Soc.2006,128,911.
    [84]Arrii, S.; Morfin, F.; Renouprez, A. J.; Rousset, J. L. Oxidation of CO on gold supported catalysts prepared by laser vaporization:Direct evidence of support contribution. J. Am. Chem. Soc.2004,126,1199.
    [85]Oh, H. S.; Yang, J. H.; Costello, C. K.; Wang, Y. M.; Bare, S. R.;Kung, H. H.; Kung, M. C. Selective catalytic oxidation of CO:Effect of chloride on supported Au catalysts. J. Catal.2002,210,375.
    [86]Overbury, S. H.; Schwartz, V.; Mullins, D. R.; Yan, W.; Dai, S. Evaluation of the Au size effect:CO oxidation catalyzed by Au/TiO2. J.Catal.2006,241,56.
    [87]Yoon, B.; Hakkinen, H.; Landman, U.; Worz, A. S.; Antoniette, J. M.; Abbet, S.; Juda, K.; Heiz, U. Charging effects on bonding and catalyzed oxidation of CO on Au8 clusters on MgO. Science 2005,307,403.
    [88]Hakkinen, H.; Abbet, S.; Sanchez, A.; Heiz, U.; Landman, U. Structural, electronic, and impurity-doping effects in nanoscale chemistry:Supported gold nanoclusters. Angew. Chem, Int. Ed.2003,42,1297.
    [89]Janssens, T. V. W.; Carlsson, A.; Puig-Molina, A.; Clausen, B. S. Relation between nanoscale Au particle structure and activity for CO oxidation on supported gold catalysts. J. Catal.2006,240,108.
    [90]Lemire, C.; Meyer, R.; Shaikhutdinov, S.; Freund, H. J. Do quantum size effects control CO adsorption on gold nanoparticles? Angew. Chem, Int. Ed.2004,43, 118.
    [91]Mavrikakis, M.; Stoltze, P.; Norskov, J. K. Making gold less noble. Catal. Lett. 2000,64,101.
    [92]Sanchez, A.; Abbet, S.; Heiz, U.; Schneider, W. D.; Hakkinen, H.; Barnett, R. N.; Landman, U. When gold is not noble:Nanoscale gold catalysts. J. Phys. Chem. A 1999,103,9573.
    [93]Sterrer, M.; Risse, T.; Pozzoni, U.; Giordano, L.; Heyde, M.; Rust, H.; Pacchioni, G.; Freund, H. Control of the charge state of metal atoms on thin MgO films. Phys. Rev. Lett.2007,98,096107.
    [94]Zhang, C.; Yoon, B.; Landman, U. Predicted oxidation of CO catalyzed by Au nanoclusters on a thin defect-free MgO film supported on a Mo(100) surface. J. Am. Chem. Soc.2007,129,2228.
    [95]Fierro-Gonzales, J. C.; Guzman, J.; Gates, B. C. Role of cationic gold in supported CO oxidation catalysts. Top. Catal.2007,44,103.
    [96]Hutchings, G. J.; Hall, M. S.; Carley, A. F.; Landon, P.; Solsona, B. E.; Kiely, C. J.; Herzing, A.; Makkee, M.; Moulijn, J. A.; Overweg, A.; Fierro-Gonzales, J. C.; Guzman, J.; Gates, B. C. Role of gold cations in the oxidation of carbon monoxide catalyzed by iron oxide-supported gold. J. Catal.2006,242,71.
    [97]Guzman, J.; Gates, B. C. Catalysis by supported gold:correlation between catalytic activity for CO oxidation and oxidation states of gold. J. Am. Chem. Soc. 2004,126,2672.
    [98]Wang, J. G.; Hammer, B. Oxidation state of oxide supported nanometric gold. Top. Catal 2007,44,49.
    [99]Concepcion, P.; Carrettin, S.; Corma, A. Stabilization of cationic gold species on Au/CeO2 catalysts under working conditions. Appl. Catal. A 2006,307,42.
    [100]Wu, Z. L.; Zhou, S. H.; Zhu, H. G.; Dai, S.; Overbury, S. H. DRIFTS-QMS study of room temperature CO oxidation on Au/SiO2 catalyst:Nature and role of different Au species. J. Phys. Chem. C 2009,113,3726.
    [101]Weiher, N.; Bus, E.; Delannoy, L.; Louis, C.; Ramaker, D. E.; Miller, J. T.; van Bokhoven, J. A. Stabilization of cationic gold species on Au/CeO2 catalysts under working conditions. J. Catal.2006,240,100.
    [102]Concepcion, P.; Carrettin, S.; Corma, A. Stabilization of cationic gold species on Au/CeO2 catalysts under working conditions. Appl. Catal. A 2006,307,42.
    [103]Haruta, M.; Takase, T.; Kobayashi, T.; Tsubota, S. In Catalytic Sceience and Technology; Yoshida, S., Takezawa, N., Ono, T., Eds.;Kodansha:Tokyo,1991; Vol.1,p 331
    [104]Cunningham, D. A. H.; Vogel, W.; Haruta, M. Negative activation energies in CO oxidation over an icosahedral Au/Mg(OH)2 catalyst. Catal. Lett.1999,63, 43.
    [105]Oh, H. S.; Costello, C. K.; Cheung, C; Kung, H. H.; Kung, M. C. Selective catalytic oxidation of CO:Effect of chloride on supported Au catalysts. Stud. Surf. Sci. Catal.2001,139,375.
    [106]Date, M.; Okumura, M.; Tsubota, S.; Haruta, M. Vital role of moisture in the catalytic activity of supported gold nanoparticles. Angew. Chem. Int. Ed.2004, 43,2129.
    [107]Daniells, S. T.; Makkee, M.; Moulijn, J. A. The effect of high-temperature pre-treatment and water on the low temperature CO oxidation with Au/Fe2O3. Catal. Lett.2005,100,39.
    [108]Su, H. Y.; Yang, M. M.; Bao, X. H.; Li, W. X. The Effect of water on the CO oxidation on Ag(111) and Au(111) surfaces:A first-principle study. J. Phys. Chem. C 2008,112,17303.
    [109]Gilb, S.; Weis, P.; Furche, F.; Ahlrichs, R.; Kappes, M. M. Structures of small gold cluster cations (Aun+, n<14):Ion mobility measurements versus density functional calculations. J. Chem. Phys.2002,116,4094.
    [110]Hakkinen, H.; Yoon, B.; Landman, U.; Li, X.; Zhai, H.; Wang, L. On the electronic and atomic structures of small Aun- (N=4-14) clusters:A photoelectron spectroscopy and density-functional study. J. Phys. Chem. A 2003, 107,6168.
    [111]Johansson, M. P.; Lechtken, A.; Schooss, D.; Kappes, M. M.; Furche, F.2D-3D transition of gold cluster anions resolved. Phys. Rev. A 2008,77,053202.
    [112]Molina, L. M.; Hammer, B. Oxygen adsorption at anionic free and supported gold clusters. J. Chem. Phys.2005,123,161104.
    [113]Remediakis, I. N.; Lopez, N. CO oxidation on gold nanoparticles:Theoretical studies. Appl. Catal. A 2005,291,13.
    [114]Remediakis, I. N.; Lopez, N., Norskov, J. K. CO oxidation on rutile-supported Au nanoparticles. Angew. Chem. Int. Ed.2005,44,1824.
    [115]Molina, L. M.; Rasmussen, M. D.; Hammer, B. Adsorption of O2 and oxidation of CO at Au nanoparticles supported by TiO2(110). J. Chem. Phys.2004,120, 7673.
    [116]Chen, Y.; Crawford, P.; Hu, P. Recent advances in understanding CO Oxidation on gold nanoparticles using density functional theory. Catal. Lett.2007,119, 21.
    [117]Hakkinen, H.; Landman, U. Gas-phase catalytic oxidation of CO by Au2-. J. Am. Chem. Soc.2001,123,9704.
    [118]Molina, L. M.; Hammer, B. Active role of oxide support during CO oxidation at Au/MgO. Phys. Rev. Lett.2003,90,206102.
    [119]Molina, L. M.; Hammer, B. Theoretical study of CO oxidation on Au nanoparticles supported by MgO(100). Phys. Rev. B 2004,69,155424.
    [120]Liu, Z. P.; Hu, P; Alavi, A. Catalytic role of gold in gold-based catalysts:A density functional theory study on the CO oxidation on gold. J. Am. Chem. Soc. 2002,124,14770.
    [121]Yoon, B.; Hakkinen, H.; Landman, U. Interaction of O2 with gold clusters:Molecular and dissociative adsorption. J. Phys. Chem. A 2003,107, 4066.
    [122]Liu, L. M.; McAllister, B.; Ye, H. Q.; Hu, P. Identifying an O2 supply pathway in CO oxidation on Au/TiO2(110):A density functional theory study on the intrinsic role of water. J. Am. Chem. Soc.2006,128,4017.
    [123]Ojifinni, R. A.; Froemming, N. S.; Gong, J.; Pan, M.; Kim, T. S.; White, J. M.; Henkelman, G.; Mullins, C. B. Water-enhanced low-temperature CO oxidation and isotope effects on atomic oxygen-covered Au(111). J. Am. Chem. Soc.2008, 130,6801.
    [124]Jones, C. A.; Grey, R. A. (Arco Chemical), US Patent 6,468,496 (2002).
    [125]Ishihara, T.; Ohura, Y.; Yoshida, S.; Hata, Y.; Nishiguchi, H.; Takita, Y. Synthesis of hydrogen peroxide by direct oxidation of H2 with O2 on Au/SiO2 catalyst. Appl. Catal. A:Gen.2005,291,215.
    [126]Landon, P.; Ferguson, J.; Solsona, B. E.; Garcia, T.; Al-Sayari, S.; Carley, A. F.; Herzing, A.; Hutchings, G. J. Direct synthesis of hydrogen peroxide from H2 and O2 using Al2O3 supported Au-Pd catalysts. Chem. Mater.2006,18,2689.
    [127]Edwards, J. K.; Solsona, B.; Landon, P.; Carley, A. F.; Herzing, A.; Watanabe, M.; Kiely, C. J.; Hutchings, G. J. Direct synthesis of hydrogen peroxide from H2 and O2 using Au-Pd/Fe2O3 catalysts. J. Mater. Chem.2005,15,4595.
    [128]Edwards, J. K.; Thomas, A.; Solsona, B. E.; Landon, P.; Carley, A. F.; Hutchings, G. J. Comparison of supports for the direct synthesis of hydrogen peroxide from H2 and O2 using Au-Pd catalysts. Catal. Today 2007,122,397.
    [129]Li, G.; Edwards, J.; Carley, A. F.; Hutchings, G. J. Direct synthesis of hydrogen peroxide from H2 and O2 and in situ oxidation using zeolite-supported catalysts. Catal. Commun.2007,8,247.
    [130]Okumura, M.; kitagawa, Y.; Yamagchuhi, K.; Akita, T.; Tsubota, S.; Haruta, M. Direct production of hydrogen peroxide from H2 and O2 over highly dispersed Au catalysts. Chem. Lett.2003,32,822.
    [131]Ruban, A. V.; Skriver, H. L.; Norskov, J. K. Surface segregation energies in transition-metal alloys. Phys. Rev. B 1999,59,15990.
    [132]Bozzolo, G.; Ferrante, J.; Noebe, R. D.; Good, B.; Honecy, F. S.; Abel, P. Surface segregation in multicomponent systems:Modeling of surface alloys and alloy surfaces. Comput. Mater. Sci.1999,15,169.
    [133]Molenbroek, A. M.; Haukka, S.; Clausen, B. S. Alloying in Cu/Pd nanoparticle catalysts. J. Phys. Chem. B 1998,102,10680.
    [134]Schmid, G. In Metal Clusters in Chemistry; Braunstein, P., Oro, L. A., Raithby, P. R., Eds.; Wiley-VCH:Weinheim,1999; Vol.3, p1325.
    [135]Andrews, M. P.; O'Brien, S. C. Gas-phase "molecular alloys" of bulk immiscible elements:iron-silver (FexAgy). J. Phys. Chem.1992,96,8233.
    [136]Borkowska, Z.; Tymosiak-Zielinska, A.; Nowakowski, R. High catalytic activity of chemically activated gold electrodes towards electro-oxidation of methanol. Electrochim. Acta.2004,49,2613.
    [137]Borkowska, Z.; Tymosiak-Zielinska, A.; Shul, G Electrooxidation of methanol on polycrystalline and single crystal gold electrodes. Electrochim. Acta.2004, 49,1209.
    [138]Chandler, B. D.; Schabel, A. B.; Blanford, C. F.; Pignolet, L. H. Preparation and characterization of supported bimetallic Pt-Au particle catalysts from molecular cluster and chloride salt precursors. J. Catal.1999,187,367.
    [139]Bus, E.; van Bokhoven, A. Electronic and geometric structures of supported platinum, gold and platinum-gold catalysts. J. Phys. Chem. C 2007,111,9761.
    [140]Ge, X. B.; Wang, R. Y.; Liu, P. P.; Ding, Y. Platinum-decorated nanoporous gold leaf for methanol electrooxidation. Chem. Mater.2007,19,5827.
    [141]Park, J. B.; Conner, S. F.; Chen, D. A. Bimetallic Pt-Au clusters on TiO2(110): growth, surface composition, and metal-support interactions. J. Phys. Chem. C 2008,112,5490.
    [142]Park, I. S.; Lee, K. S.; Choi, J. H.; Park, H. Y.; Sung, Y. E. Surface structure of Pt-modified Au nanoparticles and electrocatalytic activity in formic acid electro-oxidation. J. Phys. Chem. C 2007,111,19126.
    [143]Luo, J.; Njoki, P. N.; Lin, Y.; Mott, D.; Wang, L.; Zhong, C. J. Characterization of carbon-supported AuPt nanoparticles for electrocatalytic methanol oxidation reaction. Langmuir 2006,22,2892.
    [144]Garcia-Gutierrez, D. I.; Gutierrez-Wing, C. E.; Giovanetti, L.; Ramallo-Lopez, J. M.; Requejo, F. G.; Yacaman, M. J. Temperature effect on the synthesis of Au-Pt bimetallic nanoparticles J. Phys. Chem. B 2005,109,3813.
    [145]Zeng, J.; Yang, J.; Lee, J. Y.; Zhou, W. Preparation of carbon-supported core-shell Au-Pt nanoparticles for methanol oxidation reaction:The promotional effect of the Au core J. Phys. Chem. B 2006,110,24606.
    [146]Strbac, S.; Petrovic, S.; Vasilic, R.; Kovacc, J.; Zalar, A.; Rakocevic, Z. Carbon monoxide oxidation on Au(111) surface decorated by spontaneously deposited Pt. Electrochim. Acta 2007,53,998.
    [147]Zhang, J.; Sasaki, K.; Sutter, E.; Adzic, R. R. Stabilization of platinum oxygen-reduction electrocatalysts using gold Clusters. Science 2007,315,220.
    [148]Lee, J. K.; Lee, J.; Hanc, J.; Limc, T. H.; Sungd,Y. E.; Tak, Y. Influence of Au contents of AuPt anode catalyst on the performance of direct formic acid fuel cell. Electrochim. Acta 2008,53,3474.
    [149]Luo, J.; Njoki, P. N.; Lin, Y.; Wang, L.; Zhong, C. J. Activity-composition correlation of AuPt alloy nanoparticle catalysts in electrocatalytic reduction of oxygen. Electrochem. Comm.2006,8,581.
    [150]Pedersen, M.0.; Helveg, S.; Ruban, A.; Stensgaard, I.; Laegsgaard, E.; Norskov, J. K.; Besenbacher, F. How a gold substrate can increase the reactivity of a Pt overlayer. Surf. Sci.1999,426,395.
    [151]Zhang, J. T.; Ma, H. Y.; Zhang, D. J.; Liu, P. P.; Tian, F.; Ding, Y. Electrocatalytic activity of bimetallic platinum-gold catalysts fabricated based on nanoporous gold. Phys. Chem. Chem. Phys.2008,10,3250.
    [1]Schrodinger, E. Ann. der. Phys.1926,79,36.
    [2]冯大成编《量子化学讲义》
    [3]Born, M.; Oppenheimer, R. Ann. Phys.1927,84,457.
    [4]Fock, V. Z. Physik 1930,61,126.
    [5]Slater, J. C. Phys. Rev.1930,35,210.
    [6]Thomas, L. S. Proc. Cambridge Philos. Soc.1927,23,542.
    [7]Fermi, E. Z. Phys.1928,48,73.
    [8]Hohenberg, P.; Kohn, W. Phys. Rev. B 1964,136,864.
    [9]Kohn, W.; Sham, L. J. Phys. Rev. A 1965,140,1133.
    [10]Burke, K.; Perdew, J. P.; Wang, Y. Electronic Density Functional Theory: Recent Progress and New Directions, Ed. J. F. Dobson, G. Vignale, and M. P. Das, Plenum, (1998).
    [11]Becke, A. D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 1988,38,3098.
    [12]Lee, C.; Yang, W.; Parr, R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988,37,785.
    [13]Koch, W.; Holthausen, M. C. A Chemist's Guide to Density Func-tional Theory, Second Edition, Wiley-VCH (2001).
    [14]Cornell, W. D.; Cieplak, P.; Bayly, C. I.; Gould, I. R.; Merz, K. M., Jr.; Ferguson, D. M.; Spellmeyer, D. C.; Fox, T.; Caldwell, J. W.; Kollman, P. A. A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J. Am. Chem. Soc.1995,117,5179.
    [15]Rappe, A. K.; Casewit, C. J.; Colwell, K. S.; Goddard, W. A. Ⅲ; Skiff, W. M. Application of a universal force field to main group compounds. J. Am. Chem. Soc.1992,114,10046.
    [16]Car, R.; Parrinello, M. Unified approach for molecular dynamics and density-functional theory. Phys. Rev. Lett.1985,55,2471.
    [17]Modern methods for multidimensional dynamics computation in chemistry; Thompson, D. L., Ed.; World Scientific:Singapore,1998.
    [18]Schlegel, H. B.; Millam, J. M.; Iyengar, S. S.; Voth, G. A.; Daniels, A. D.; Scuseria, G. E.; Frisch, M. J. Ab initio molecular dynamics:Propagating the density matrix with Gaussian orbitals. J. Chem. Phys.2001,114,9758.
    [19]Iyengar, S. S.; Schlegel, H. B.; Millam, J. M.; Voth, G. A.; Scuseria, G. E.; Frisch, M. J. Ab initio molecular dynamics:Propagating the density matrix with Gaussian orbitals. Ⅱ. Generalizations based on mass-weighting, idempotency, energy conservation and choice of initial conditions. J. Chem. Phys.2001,115, 10291.
    [20]Schlegel, H. B.; Iyengar, S. S.; Li, X.; Millam, J. M.; Voth, G. A.; Scuseria, G. E.; Frisch, M. J. Ab initio molecular dynamics:Propagating the density matrix with Gaussian orbitals. III. Comparison with Born-Oppenheimer dynamics. J. Chem. Phys.2002,117,8694.
    [21]Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B.B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y. Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian03, revision D.01; Gaussian, Inc.:Wallingford, CT,2004.
    [22]Delley, B. An all-electron numerical method for solving the local density functional for polyatomic molecules. J. Chem. Phys.1990,92,508.
    [23]Delley, B. From molecules to solids with the DMol3 approach. J. Chem. Phys. 2000,113,7756.
    [24]Clark, S. J.; Segall, M. D.; Pickard, C. J.; Hasnip, P. J.; Probert, M. J.; Refson, K. M. C. P. First principles methods using CASTEP. Z. Krist.2005,220,567. density matrix with Gaussian orbitals. J. Chem. Phys.2001,114,9758.
    [19]Iyengar, S. S.; Schlegel, H. B.; Millam, J. M.; Voth, G. A.; Scuseria, G. E.; Frisch, M. J. Ab initio molecular dynamics:Propagating the density matrix with Gaussian orbitals. Ⅱ. Generalizations based on mass-weighting, idempotency, energy conservation and choice of initial conditions. J. Chem. Phys.2001,115, 10291.
    [20]Schlegel, H. B.; Iyengar, S. S.; Li, X.; Millam, J. M.; Voth, G. A.; Scuseria, G. E.; Frisch, M. J. Ab initio molecular dynamics:Propagating the density matrix with Gaussian orbitals. III. Comparison with Born-Oppenheimer dynamics./. Chem. Phys.2002,117,8694.
    [21]Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, Ⅰ.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian03, revision D.01; Gaussian, Inc.:Wallingford, CT,2004.
    [22]Delley, B. An all-electron numerical method for solving the local density functional for polyatomic molecules. J. Chem. Phys.1990,92,508.
    [23]Delley, B. From molecules to solids with the DMol approach. J. Chem. Phys. 2000,113,7756.
    [24]Clark, S. J.; Segall, M. D.; Pickard, C. J.; Hasnip, P. J.; Probert, M. J.; Refson, K. M. C. P. First principles methods using CASTER Z. Krist.2005,220,567.
    [1]Haruta, M.; Kobayashi, T.; Sano, H.; Yamada, N. Novel gold catalysts for the oxidation of carbon monoxide at a temperature far below 0℃. Chem. Lett.1987, 16,405.
    [2]Haruta, M.; Yamada, N.; Kobayashi, T.; Iijima, S. Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide. J. Catal.1989,115,301.
    [3]Chen, M. S.; Goodman, D. W. The structure of catalytically active gold on titania. Science 2004,306,252.
    [4]Campbell, C. T. The active site in nanoparticle gold catalysis. Science 2004,306, 234.
    [5]Hughes, M. D.; Xu, Y. J.; Jenkins, P.; McMorn, P.; London, P.; Enache, D. I.; Carley, A. F.; Attard, G. A.; Hutchings, G. J.; King, F.; Stitt, E. H.; Johnston, P.; Griffin, K.; Kiely, J. C. Tunable gold catalysts for selective hydrocarbon oxidation under mild conditions. Nature 2005,437,1132.
    [6]Sivadinarayana, C.; Choudhary, T. V.; Daemen, L. L.; Eckert, J.; Goodman, D. W. The nature of the surface species formed on Au/TiO2 during the reaction of H2 and O2:An inelastic neutron scattering study. J. Am. Chem. Soc.2004,126,38.
    [7]Cho, A. Connecting the dots to custom catalysts. Science 2003,299,1684.
    [8]Andreeva, D. Low temperaturewater gas shift over gold catalysts. Gold Bull.2002, 35,82.
    [9]Okumura, M.; Kitagawa, Y.; Yamagcuhi, K.; Akita, T.; Tsubota, S.; Haruta, M. Chem. Lett. Direct production of hydrogen peroxide from H2 and O2 over highly dispersed Au catalysts.2003,32,822.
    [10]Stangland, E. E.; Taylor, B.; Andres, R. P.; Delgass, W. N. Direct vapor phase propylene epoxidation over deposition-precipitation gold-titania catalysts in the presence of H2/O2:Effects of support, neutralizing agent, and pretreatment. J. Phys.Chem. B 2005,109,2321.
    [11]Koszinowski, K.; Schroder, D.; Schwarz, H. C-N coupling of methane and
    ammonia by bimetallic platinum-gold cluster cations. Organometallics 2004,23, 1132.
    [12]Mcclure, S. M.; Kim, T. S.; Stiehl, J. D.; Tanaka, P. L.; Mullins, C. B. Adsorption and reaction of nitric oxide with atomic oxygen covered Au(111). J. Phys. Chem. B 2004,108,17952.
    [13]Wallace, W. T.; Whetten, R. L. Coadsorption of CO and O2 on selected gold clusters:Evidence for efficient room-temperature CO2 generation. J. Am. Chem. Soc.2002,124,7499.
    [14]Luo, J.; Njoki, P. N.; Lin, Y.; Mott, D.; Wang, L. Y.; Zhong, C. J. Characterization of carbon-supported AuPt nanoparticles for electrocatalytic methanol oxidation reaction. Langmuir 2006,22,2892.
    [15]Hayashi, T.; Inagaki, T.; Itayama, N.; Baba, H. Selective oxidation of alcohol over supported gold catalysts:methyl glycolate formation from ethylene glycol and methanol. Catal. Today 2006,117,210.
    [16]Roithova, J.; Hrusak, J.; Schroder, D.; Schwarz, H. A gas-phase study of the gold-catalyzed coupling of alkynes and alcohols. Inorg. Chim. Acta 2005,358, 4287.
    [17]Jia, J. F.; Haraki, K.; Kondo, J. N.; Domen, K.; Tamaru, K. Selective hydrogenation of acetylene over Au/Al2O3 catalyst. J. Phys. Chem. B 2000,104, 11153.
    [18]Hayashi, T.; Tanaka, K.; Haruta, M. Selective vapor-phase epoxidation of propylene over Au/TiO2 catalysts in the presence of oxygen and hydrogen. J. Catal.1998,178,566.
    [19]Sinha, A. K.; Seelan, S.; Tsubota, S.; Haruta, M. Catalysis by gold nanoparticles: Epoxidation of propene. Top. Catal.2004,29,95.
    [20]Tibiletti, D.; Amieiro-Fonseca, A.; Burch, R.; Chen, Y.; Fisher, J. M.; Goguet, A.; Hardacre, C.; Hu, P.; Thompsett, D. DFT and In Situ EXAFS investigation of gold/ceria-zirconia low-temperature water gas shift catalysts:Identification of the nature of the active form of gold. J. Phys. Chem. B 2005,109,22553.
    [21]Ueda, A.; Haruta, M. Nitric oxide reduction with hydrogen, carbon monoxide, and hydrocarbons over gold catalysts. Gold Bull.1999,32,3.
    [22]Dietrich, G.; Lutzenkirchen, K.; Becker, St.; Hasse, H. U.; Kluge, H. J.; Lindinger, M.; Schweikhard, L.; Ziegler, J.; Kuznetsov, S. Ber. Bunsen-Ges. Phys. Chem.1994,98,1608.
    [23]Comotti, M.; Pina, C. D.; Falletta, E.; Rossi, M. Aerobic oxidation of glucose with gold catalyst:Hydrogen peroxide as intermediate and reagent. Adv. Synth. Catal.2006,348,313.
    [24]Gao, S.; Li, M.; Lv, Y.; Zhou, N.; Xi, Z. W. Epoxidation of propylene with aqueous hydrogen peroxide on a reaction-controlled phase-transfer catalyst. Org. Process Res. Dev.2004,8,131.
    [25]Dissanayake, D. P.; Lunsford, J. H. Evidence for the role of colloidal palladium in the catalytic formation of H2O2 from H2 and O2. J. Catal.2002,206,173.
    [26]Choudhary, V. R.; Samanta, C.; Jana, P. Formation from direct oxidation of H2 and destruction by decomposition/hydrogenation of H2O2 over Pd/C catalyst in aqueous medium containing different acids and halide anions. Appl. Catal. A 2007,317,234.
    [27]Zhou, B.; Lee, L. K. U.S. Patent 6,168,775,2001.
    [28]Olivera, P. P.; Patrito, E. M.; Sellers, H. Hydrogen peroxide synthesis over metallic catalysts. Surf. Sci.1994,313,25.
    [29]Landon, P.; Collier, P. J.; Papworth, A. J.; Kiely, C. J.; Hutchings, G. J. Direct formation of hydrogen peroxide from H2/O2 using a gold catalyst. Chem. Commun.2002,2058.
    [30]Nijhuis, T. A.; Makkee, M.; Moulijn, J. A.; Weckhuysen, B. M. The production of propene oxide:Catalytic processes and recent developments. Ind. Eng. Chem. Res.2006,45,3447.
    [31]Sinha, A. K.; Seelan, S.; Tsubota, S.; Haruta, M. A Three-dimensional mesopourous titanosilicate supported for gold nanoparticles:vapor-phase epoxidation of propene with high conversion. Angew. Chem., Int. Ed.2004,43, 1546.
    [32]Nijhuis, T. A.; Huizinga, B. J.; Makkee, M.; Moulijn, J. A. Direct epoxidation of propene using gold dispersed on TS-1 and other titanium-containing supports. Ind. Eng. Chem. Res.1999,38,884.
    [33]Wells, D. H.; Delgass, W. N.; Thomson, K. T. Formation of hydrogen peroxide from H2 and O2 over a neutral gold trimer:a DFT study. J. Catal.2004,225,69.
    [34]Joshi, A. M.; Delgass, W. N.; Thomson, K. T. Comparison of the catalytic activity of Au3, Au4+, Au5, and Au5- in the gas-phase reaction of H2 and O2 to form hydrogen peroxide:A density functional theory investigation. J. Phys. Chem.B2005,109,22392.
    [35]Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y. Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian03, revision D.01; Gaussian, Inc.:Wallingford, CT,2004.
    [36]Becke, A. D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 1988,38,3098.
    [37]Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.;
    Singh, D. J.; Fiolhais, C. Atoms, molecules, solids, and surfaces:Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B1992,46,6671.
    [38]Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C. Erratum:Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 1993,48,4978.
    [39]Hay, P. J.; Wadt, W. R. Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J. Chem. Phys. 1985,82,270.
    [40]Hay, P. J.; Wadt, W. R. Ab initio effective core potentials for molecularcalculations. Potentials for K to Au including the outermost core orbitals. J. Chem. Phys.1985,82,299.
    [41]Peng, C.; Schlegel, H. B. Synchronous transit and quasi-newton. methods to find transition states. Israel J. Chem.1993,33,449.
    [42]Fukui, K. Formulation of the reaction coordinate. J. Phys. Chem.1970,74,4161.
    [43]Legge, F. S.; Nyberg, G L.; Peel, J. B. DFT Calculations for Cu-, Ag-, and Au-containing molecules. J. Phys. Chem.A2001,105,7905.
    [44]Taylor, K. J.; Pettiette-Hall, C. L.; Cheshnovsky, O.; Smalley, R. E. Ultraviolet photoelectron spectra of coinage metal clusters. J. Chem. Phys.1992,96,3319.
    [45]Cheeseman, M. A.; Eyler, J. R. Ionization potentials and reactivity of coinage metal clusters. J. Phys. Chem.1992,96,1082.
    [46]Ho, J.; Ervin, K. M.; Lineberger, W. C. Photoelectron spectroscopy of metal cluster anions:Cun-, Agn-, and Aun-. J. Chem. Phys.1990,93,6987.
    [47]Rienstra-Kiracofe, J. C.; Tschumper, G. S.; Schaefer, H. F. Ⅲ.; Nandi, S.; Ellison, G. B. Atomic and molecular electron affinities:photoelectron experiments and theoretical computations. Chem. Rev.2002,102,231.
    [48]Jackslath, C.; Rabin, I.; Schulze, W. Ber. Bunsenges Phys. Chem.1992,96,1200.
    [49]Ichino, T.; Gianola, A. J.; Andrews, D. H.; Lineberger, W. C. Photoelectron
    spectroscopy of AuO- and AuS". J. Phys. Chem. A 2004,108,11307.
    [50]CRC Handbook of Chemistry and Physics,55th Ed.; CRC Press:Cleveland, OH, 1974.
    [51]Huber, K. P.; Herzberg, G. In Molecular Spectra and Molecular Structure, Van Nostrand Reinhold, New York,1979.
    [52]曹泽星,吴玮,张乾二,化学反应的价键理论研究,中国科学B 1999,1,9.
    [53]Liu, C. Y.; Yin, Y. Y. J. Beijing Inst. Petro-Chem. Tech.1998,6,22.
    [54]Sun, Q.; Jena, P.; Kim, Y. D.; Fischer, M.; Gantefor, G. Interactions of Au cluster anions with oxygen. J. Chem. Phys.2004,120,6510.
    [55]Miller, J. T.; Kropf, A. J.; Zha, Y.; Regalbuto, J. R.; Delannoy, L.; Louis, C.; Bus, E.; van Bokhoven, J. A. The effect of gold particle size on Au-Au bond length and reactivity toward oxygen in supported catalysts. J. Catal.2006,240,222.
    [56]Furche, F.; Ahlrichs, R.; Weis, P.; Jacob, C.; Gilb, S.; Bierweiler, T.; Kappes, M. M. The structures of small gold cluster anions as determined by a combination of ion mobility measurements and density functional calculations. J. Chem. Phys. 2002,117,6982.
    [57]Bauschlicher, C. W.; Langhoff, S. R.; Partridge, H. Theoretical study of the structures and electron affinities of the dimers and trimers of the group IB metals (Cu, Ag, and Au). J. Chem. Phys.1989,91,2412.
    [58]Ding, X. L.; Li, Z. Y.; Yang, J. L.; Hou, J. G.; Zhu, Q. S. Adsorption energies of molecular oxygen on Au clusters. J. Chem. Phys.2004,120,9594.
    [59]Yoon, B.; Hakkinen, H.; Landman, U. Interaction of O2 with gold clusters:Molecular and dissociative adsorption. J. Phys. Chem. A 2003,107, 4066.
    [60]Stolcic, D.; Fischer, M.; Gantefor, G.; Kim, Y.D.; Sun, Q.; Jena, P. Direct observation of key reaction intermediates on gold clusters. J. Am. Chem. Soc. 2003,125,2848.
    [61]Varganov, S. A.; Olson, R. M.; Gordon, M. S.; Metiua, H. The interaction of oxygen with small gold clusters. J. Chem. Phys.2003,119,2531.
    [62]Wells, D. H.; Delgass, W. N.; Thomson, K. T. Density functional theory investigation of gold cluster geometry and gas-phase reactivity with O2.J. Chem. Phys.2002,117,10597.
    [63]Lee, T. H.; Ervin, K. M. Reactions of copper group cluster anions with oxygen and carbon monoxide. J. Phys. Chem.1994,98,10023.
    [64]Varganov, S. A.; Olson, R. M.; Gordon, M. S.; Mills, G.; Metiu, H. A study of the reactions of molecular hydrogen with small gold clusters. J. Chem. Phys. 2004,120,5169.
    [65]Ardon, M. In Oxygen-Elementary Forms and Hydrogen Peroxide, Benjamin, W. A., Ed.; New York,1965.
    [1]Haruta, M. Size-and support-dependency in the catalysis of gold. Catal. Today 1997,36,153.
    [2]Dat, M.; Okumura, M.; Tsubota, S.; Haruta, M. Vital role of moisture in the catalytic activity of supported gold nanoparticles. Angew. Chem. Int. Ed.2004,43, 2129.
    [3]Sanchez, A.; Abbet, S.; Heiz, U.; Schneider, W. D.; Bond, G. C.; Thompson, D. T. Catalysis by gold. Catal. Rev. Sci. Eng.1999,41,319.
    [4]Sanchez, A.; Abbet, S.; Heiz, U.; Schneider, W. D.; Halkkinen, H.; Barnett, R. N.; Landman, U. When gold is not noble:Nanoscale gold catalysts. J. Phys. Chem. A 1999,103,9573.
    [5]Kimble, M. L.; Castleman, A. W., Jr.; Mitric, R.; Burgel, C.; Bonacic-Koutecky, V. Reactivity of atomic gold anions toward oxygen and the oxidation of CO: Experiment and theory. J. Am. Chem. Soc.2004,126,2526.
    [6]Haruta, M.; Tsubota, S.; Kobayashi, T.; Kageyama, H.; Genet, M. J.; Delmon, B. J. Low-temperature oxidation of carbon monoxide over gold supported on titanium dioxide, a-ferric oxide, and cobalt tetraoxide. J. Catal.1993,144,175.
    [7]Valden, M.; Lai, X.; Goodman D. W. Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties. Science,1998,281,1647.
    [8]Xu, C.; Su, J; Xu, X.; Liu, P.; Zhao, H; Tian, F.; Ding, Y. Low temperature CO oxidation over unsupported nanoporous gold. J. Am. Chem. Soc.2007,129,42.
    [9]Socaciu, L. D.; Hagen, J.; Bernhardt, T. M.; Woste, L.; Heiz, U.; Hakkinen, H.; Landman, U. Catalytic CO oxidation by free Au2-:Experiment and theory. J. Am. Chem. Soc.2003,125,10437.
    [10]Chen, M. S.; Goodman, D. W. The structure of catalytically active gold on titania. Science 2004,306,252.
    [11]Campbell, C. T. Physics:The active site in nanoparticle gold catalysis. Science 2004,306,234.
    [12]Comotti, M.; Pina, C. D.; Matarrese, R.; Rossi, M. Heterogeneous catalysis:The catalytic activity of "Naked" gold particles. Angew. Chem. Int. Ed.2004,43, 5812.
    [13]Tong, X.; Benz, L.; Kemper, P.; Metiu, H.; Bowers, M. T.; Buratto, S. K. Intact size-selected Aun clusters on a TiO2(110)-(1 x 1) surface at room temperature. J. Am. Chem. Soc.2005,127,13516.
    [14]Bongiorno, A.; Landman, U. Water-enhanced catalysis of CO oxidation on free and supported gold nanoclusters. Phys. Rev. Lett.2005,95,106102.
    [15]Chen, M. S.; Goodman, D. W. Structure-activity relationships in supported Au catalysts. Catal. Today 2006,111,22.
    [16]Hakkinen, H.; Landman, U. Gas-phase catalytic oxidation of CO by Au2-. J. Am. Chem. Soc.2001,123,9704.
    [17]Burgel, C.; Reilly, N. M.; Johnson, G. E.; Mitric, R.; Kimble, M. L.; Castleman, A. W., Jr.; Bonacic-Koutecky, V. Influence of charge state on the mechanism of CO oxidation on gold clusters. J. Am. Chem. Soc.2008,130,1694.
    [18]Wang, F.; Zhang, D. J.; Sun, H.; Ding, Y. Theoretical investigation of the formation of hydrogen peroxide from H2 and O2 over anionic gold clusters Aun-(n= 1-4). J. Phys. Chem. C 2007,111,11590.
    [19]Pyykko, P. Theoretical chemistry of gold. Angew. Chem. Int. Ed.2004,43,4412.
    [20]P. Pyykko, Theoretical chemistry of gold. Ⅱ. Inorg. Chim. Acta 2005,358,4113.
    [21]An, W.; Pei, Y.; Zeng, X. C. CO oxidation catalyzed by single-walled helical gold nanotube. Nano Lett.2008,8,195.
    [22]Liu, X.; Yang, C.; Zhang, X.; Han, K.; Tang, Z. Theoretical study on the structure and formation mechanism of [C6H5Mm]- (M=Ag,Au; m= 1-3). J. Comput. Chem.2008,29,1667.
    [23]Wallace, W. T.; Whetten, R. L. Carbon monoxide adsorption on selected gold clusters Highly size-dependent activity and saturation compositions. J. Phys. Chem. B 2000,104,10964.
    [24]Hagen, J.; Socaciu, L. D.; Elijazyfer, M.; Heiz, U. Bernhardt, T. M.; Woste, L. Coadsorption of CO and 02 on small free gold cluster anions at cryogenic temperatures:Model complexes for catalytic CO oxidation. Phys. Chem. Chem. Phys.2002,4,1707.
    [25]Guzman, J.; Gates, B. C. Catalysis by supported gold:correlation between catalytic activity for CO oxidation and oxidation states of gold. J. Am. Chem. Soc. 2004,126,2672.
    [26]Casaletto, M. P.; Longo, A.; Venezia, A. M.; Martorana, A.; Prestianni, A. Metal-support and preparation influence on the structural and electronic properties of gold catalysts. J. Appl. Catal. A 2006,302,309.
    [27]Guzman, J.; Gates, B. C. Simultaneous presence of cationic and reduced gold in functioning MgO supported CO oxidation catalysts:Evidence from X-ray absorption spectroscopy. J. Phys. Chem. B 2002,106,7659.
    [28]Grisel, R. J. H.; Nieuwenhuys, B. E. Selective oxidation of CO over supported Au catalysts. J. Appl. Catal.2001,199,48.
    [29]Cho, A. Catalysis news:Connecting the dots to custom catalysts. Science 2003, 299,1684.
    [30]Davis, R. J. All that glitters is not Au0. Science,2003,301,926.
    [31]Cox, D. M.; Brickman, R. O.; Creegan, K.; Kaldor, A. Gold clusters:reactions and deuterium uptake. Z. Phys. D:At., Mol. Clusters 1991,19,353.
    [32]Weiher, N.; Bus, E.; Delannoy, L.; Louis, C.; Ramaker, D. E.; Miller, J. T.; van Bokhoven, J. A. Structure and oxidation state of gold on different supports under various CO oxidation conditions. J. Catal.2006,240,100.
    [33]Wu, Z. L.; Zhou, S. H.; Zhu, H. G.; Dai, S.; Overbury, S. H. DRIFTS-QMS study of room temperature CO oxidation on Au/SiO2 catalyst:Nature and role of different Au species. J. Phys. Chem. C 2009,113,3726.
    [34]Visco, A. M.; Neri, F.; Neri, G.; Donato, A.; Milone, C.; Galvagno, S. X-ray photoelectron spectroscopy of Au/Fe2O3 catalysts. Phys. Chem. Chem. Phys. 1999,1,2869.
    [35]Costello, C. K.; Kung, M. C.; Oha, H.-S.; Wang, Y.; Kung, H. H. Nature of the active site for CO oxidation on highly active Au/γ-Al2O3. Appl. Catal. A 2002, 232,159.
    [36]Venkov, T.; Klimev, H.; Centeno, M. A.; Odriozola, J. A.; Hadjiivanov, K. State of gold on an Au/Al2O3 catalyst subjected to different pre-treatments:An FTIR study. Catal. Commun.2006,7,308.
    [37]Schubert, M. M.; Hackenberg, S.; van Veen, A. C.; Muhler, M.; Plzak, V.; Behm, R. J. CO oxidation over supported gold catalysts-"Inert" and "Active" support materials and their role for the oxygen supply during reaction. J. Catal.2001, 197,113.
    [38]Liu, Z. P.; Alavi, P. H. catalytic role of gold in gold-based catalysts:A density functional theory study on the CO oxidation on gold. J. Am. Soc. Chem.2002, 124,14770.
    [39]Frisch, M. J. et al. Gaussian03, revision A.1; Gaussian, Inc.:Wallingford, CT, 2004.
    [40]Walker, A. V. Structure and energetics of small gold nanoclusters and their positive ions. J. Chem. Phys.2005,122,094310.
    [41]Burke, K.; Perdew, J. P.; Wang, Y. in Electronic Density Functional Theory: Recent Progress and New Directions, edited by Dobson, J. F.; Vignale, G.; Das, M. P., Plenum, New York,1998.
    [42]Perdew, J. P. in Electronic Structure of Solids'91, edited by Ziesche, P.; Eschrig, H., Akademie Verlag, Berlin,1991, p.11.
    [43]Perdew, J. P.; Burke, K.; Wang, Y Generalized gradient approximation for the exchange-correlation hole of a many-electron system. Phys. Rev. B 1996,54, 16533.
    [44]Hay, P. J.; Wadt, W. R. Ab initio effective core potentials for molecular calculations potentials for the transition metal atoms scandium to mercury. J. Chem. Phys.1985,82,270.
    [45]Hay, P. J.; Wadt, W. R. Ab initio effective core potentials for molecular calculations. Potentials for potassium to gold including the outermost core orbitals. J. Chem. Phys.1985,82,299.
    [46]Peng, C.; Schlegel, H. B. Combining synchronous transit and quasi-Newton methods to find transition states. Israel J. Chem.1993,33,449.
    [47]Fukui, K. Formulation of the reaction coordinate. J. Phys. Chem.1970,74,4161.
    [48]Schlegel, H. B.; Millam, J. M.; Iyengar, S. S.; Voth, G. A.; Daniels, A. D.; Scuseria, G. E.; Frisch, M. J. Ab initio molecular dynamics:Propagating the density matrix with Gaussian orbitals. J. Chem. Phys.2001,114,9758.
    [49]Iyengar, S. S.; Schlegel, H. B.; Millam, J. M.; Voth, G. A.; Scuseria, G. E.; Frisch, M. J. Ab initio molecular dynamics:Propagating the density matrix with Gaussian orbitals Ⅱ. Generalizations based on mass-weighting, idempotency, energy conservation and choice of initial conditions. J. Chem. Phys.2001,115, 10291.
    [50]Schlegel, H. B.; Iyengar, S. S.; Li, X.; Millam, J. M.; Voth, G. A.; Scuseria, G. E.; Frisch, M. J. Ab initio molecular dynamics:Propagating the density matrix with Gaussian orbitals III. Comparison with Born-Oppenheimer Dynamics. J. Chem. Phys.2002,117,8694.
    [51]Nose, S. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys.1984,81,511.
    [52]Hoover, W. G. Canonical dynamics:Equilibrium phase space distributions. Phys. Rev. A:At., Mol., Opt. Phys.1985,31,1695.
    [53]Dennington, R. K. T.; Millam, J.; Eppinnett, K.; Hovell, W. L.; Gilliland, R. GaussView, ver 4.1.2; Semichem, Inc.:Shawnee Mission, KS,2007.
    [54]Miller, T.M. in:D.R. Lide (Ed.), CRC Handbook of Chemistry and Physics,83, CRC Boca Raton, FL,2002, pp.147.
    [55]Cheeseman, M. A.; Eyler, J. R. Ionization potentials and reactivity of coinage metal clusters. J. Phys. Chem.1992,96,1082.
    [56]Rienstra-Kiracofe, J. C.; Tschumper, G. S.; Schaefer, H. F. Ⅲ.; Nandi, S.; Ellison, G. B. Atomic and molecular electron affinities:Photoelectron experiments and theoretical computations. Chem. Rev.2002,102,231.
    [57]CRC Handbook of Chemistry and Physics,55th Ed.; CRC Press, Cleveland, OH, 1974.
    [58]AIP Handbook,3rd ed.; McGraw-Hill:New York,1972.
    [59]Huber, K. P.; Herzberg, G. In Molecular Spectra and Molecular Structure, Van Nostrand Reinhold, New York,1979.
    [60]Handbook of Chemistry and Physics; Lide, D. R., Ed.; CRC Press:Boca Raton, FL,1995.
    [61]Lang, S. M.; Bernhardt, T. M.; Barnett, R. N.; Yoon, B.; Landman, U. Hydrogen-promoted oxygen activation by free gold cluster cations. J. Am. Chem. Soc.2009,131,8939.
    [62]Torres, M. B.; Fernandez, E. M.; Balbas, L. C. Theoretical study of oxygen adsorption on pure Aun+1+ and doped MAun+ cationic gold clusters for M= Ti, Fe and n= 3-7. J. Phys. Chem. A 2008,112,6678.
    [63]Ding, X.; Li, Z.; Yang, J.; Hou, J. G.; Zhu Q. Adsorption energies of molecular oxygen on Au clusters. J. Chem. Phys.2004,120,9594.
    [64]Stolcic, D.; Fischer, M.; Gantefor, G.; Kim, Y. D.; Sun, Q.; Jena, P. Direct observation of key reaction intermediates on gold Clusters. J. Am. Chem. Soc. 2003,125,2848.
    [65]Wu, X.; Senapati, L.; Nayak, S. K.; Selloni, A.; Hajaligol, M. A density functional study of carbon monoxide adsorption on small cationic, neutral, and anionic gold clusters. J. Chem. Phys.2002,117,4010.
    [66]Prestianni, A.; Martorana, A.; Labat, F.; Ciofini, I.; Adamo, C. Theoretical Insights on O2 and CO Adsorption on Neutral and Positively Charged Gold Clusters. J. Phys. Chem. B 2006,110,12240.
    [67]Kimble, M. L.; Moore, N. A.; Johnson, G. E.; Castleman, A. W., Jr.; Burgel, C.; Mitric, R.; Bonacic-Koutecky, V. Joint experimental and theoretical investigations of the reactivity of Au2On- and Au2On- (n=1-5) with carbon monoxide. J. Chem. Phys.2006,125,204311.
    [68]Lopez, N.; Janssens, T. V. W.; Clausen, B. S.; Xu, Y.; Mavrikakis, M.; Bligaard, T.; N(?)rskov, J. K. On the origin of the catalytic activity of gold nanoparticles for low-temperature CO oxidation. J. Catal.2004,223,232.
    [69]Arrii, S.; Morfin, F.; Renouprez, A. J.; Rousset, J. L. Oxidation of CO on Gold Supported catalysts prepared by laser vaporization:Direct evidence of support contribution. J. Am. Chem. Soc.2004,126,1199.
    [70]Boronat, M.; Illas, F.; Corma, A. Active sites for H2 adsorption and activation in Au/TiO2 and the role of the support. J. Phys. Chem. A 2009,113,3750.
    [71]Ojifinni, R. A.; Gong, J. L.; Froemming, N. S.; Flaherty, D. W.; Pan, M.; Henkelman, G.; Mullins, C. B. Carbonate formation and decomposition on atomic oxygen precovered Au(III). J. Am. Chem. Soc.2008,130,11250.
    [1]Xu, J. B.; Zhao, T. S.; Liang, Z. X. Synthesis of active platinum-silver alloy electrocatalyst toward the formic acid oxidation reaction. J. Phys. Chem. C 2008, 112,17362.
    [2]Qi, F.; Howard, S.; Maria, F. Active nonmetallic au and pt species on ceria-based water-gas shift catalysts. Science 2003,301,935.
    [3]Marc, T. M. K.; Tatyana, E. S.; Rutger, A. S. Periodic density functional study of CO and OH adsorption on Pt-Ru alloy surfaces:Implications for CO tolerant fuel cell catalysts. J. Phys. Chem. B 2002,106,686.
    [4]Zhang, J.; Sasaki, K.; Sutter, E.; Adzic, R. R. Stabilization of platinum oxygen-reduction electrocatalysts using gold clusters. Science 2007,315,220.
    [5]Liu, H. B.; Pal, U.; Ascencio, J. A. Thermodynamic stability and melting mechanism of bimetallic Au-Pt nanoparticles.J. Phys. Chem. C 2008,112,19173.
    [6]Zhang, J. T.; Ma, H. Y.; Zhang, D. J.; Liu, P. P.; Tian, F.; Ding, Y. Electrocatalytic activity of bimetallic platinum-gold catalysts fabricated based on nanoporous gold. Phys. Chem. Chem. Phys.2008,10,3250.
    [7]Peng, Z. M.; Yang, H. PtAu bimetallic heteronanostructures made by post-synthesis modification of Pt-on-Au nanoparticles. Nano Res.2009,2,406.
    [8]Hernandez-Fernandez, P.; Rojas, S.; Ocon, P.; Gomez de la Fuente, J. L.; San Fabian, J.; Sanza, J.; Pena, M. A.; Garcia-Garcia, F. J.; Terreros, P.; Fierro, J. L. G. Influence of the preparation route of bimetallic Pt-Au nanoparticle electrocatalysts for the oxygen reduction reaction. J. Phys. Chem. C 2007,111, 2913.
    [9]Okamoto, H.; Massalski, T. B. Bull. Alloy Phase Diagr.1985,6,46.
    [10]Luo, J.; Maye, M. M.; Petkov, V; Kariuki, N. N.; Wang, L.; Njoki, P.; Mott, D.; Lin, Y.; Zhong, C. J. Phase properties of carbon-supported gold-platinum nanoparticles with different bimetallic compositions. Chem. Mater.2005,17, 3086.
    [11]Mihut, C.; Descorme, C.; Duprez, D.; Amiridis, M. D. Kinetic and
    spectroscopic characterization od cluster-derived supported Pt-Au catalysts. J. Catal.2002,212,125.
    [12]Selvarani, G.; Vinod Selvaganesh, S.; Krishnamurthy, S.; Kiruthika, G. V. M.; Sridhar, P.; Pitchumani, S.; Shukla, A. K. A methanol-tolerant carbon-supported pt-au alloy cathode catalyst for direct methanol fuel cells and its evaluation by DFT. J. Phys. Chem. C 2009,113,7461.
    [13]Abrams, B. L.; Vesborg, P. C. K.; Bonde, J. L.; Jaramillo, T. F.; Chorkendorff, I. Dynamics of surface exchange reactions between Au and Pt for HER and HOR. J. Electrochem. Soc.2009,156, B273.
    [14]Chen, F.; Johnston, R. L. Charge transfer driven surface segregation of gold atoms in 13-atom Au-Ag nanoalloys and its relevance to their structural,optical and electronic properties. Acta Mater.2008,56,2374.
    [15]Song, C.; Ge, Q.; Wang, L. DFT studies of Pt/Au bimetallic clusters and their interactions with the CO molecule. J Phys Chem B 2005,109,22341.
    [16]Tian, W.; Ge, M.; Gu, F.; Yamada, T.; Aoki, Y. Binary clusters AuPt and Au6Pt: Structure and reactivity within density functional theory. J. Phys. Chem. A 2006, 110,6285.
    [17]Mariscal, M. M.; Dassie, S. A.; Leiva, E. P. M. Collision as a way of forming bimetallic nanoclusters of various structures and chemical compositions. J. Chem. Phys.2005,123,184505.
    [18]Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian03, revision D.01; Gaussian, Inc.:Wallingford, CT,2004.
    [19]Burke, K.; Perdew, J. P.; Wang, Y. Electronic Density Functional Theory: Recent Progress and New Directions, Plenum, New York,1998.
    [20]Hay, P. J.; Wadt, W. R. Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J. Chem. Phys. 1985,82,270.
    [21]Rienstra-Kiracofe, J. C.; Tschumper, G. S.; Schaefer, H. F. Ⅲ; Nandi, S.; Ellison, G. B. Atomic and molecular electron affinities:Photoelectron experiments and theoretical computations. Chem. Rev.2002,102,231.
    [22]Jackslath, C.; Rabin, I.; Schulze, W. Ber. Bunsenges. Phys. Chem.1992,96, 1200.
    [23]Cheeseman, M. A.; Eyler, J. R. Ionization potentials and reactivity of coinage metal clusters. J. Phys. Chem.1992,96,1082.
    [24]Lee, H. M.; Ge, M.; Sahu, B. R.; Tarakeshwar, P.; Kim, K. S. Geometrical and electronic structures of gold, silver, and gold-silver binary clusters:Origins of ductility of gold and gold-silver alloy formation. J. Phys. Chem. B 2003,107, 9994.
    [1]Oh, S. H.; Sinkevitch, R. M. Carbon monoxide removal from hydrogen-rich fuel cell feedstreams by selective catalytic oxidation. J. Catal 1993,142,254.
    [2]Rosso, I.; Galetti, C.; Saracco, G.; Garrone, E.; Specchia, V. Development of A zeolites-supported noble-metal catalysts for CO preferential oxidation:H2 gas purification for fuel cell. Appl. Catal. B:Environ.2004,48,195.
    [3]Kahlich, M. J.; Gasteiger, H. A.; Behm, R. J. Kinetics of the selective CO oxidation in H2-rich gas on Pt/Al2O3. J. Catal.1997,171,93.
    [4]Marino, F.; Descorme, C.; Duprez, D. Noble metal catalysts for the preferential oxidation of carbon monoxide in the presence of hydrogen (PROX). Appl. Catal. B:Environ.2004,54,59.
    [5]Suh, D. J.; Kwak, C.; Kim, J. H.; Kwon, S. M.; Park, T. J. Removal of carbon monoxide from hydrogen-rich fuels by selective low-temperature oxidation over base metal added platinum catalysts. J. Power Sources 2005,142,70.
    [6]Samjeske, G.; Wang, H.; Loffler, T.; Baltruschat, H. CO and methanol oxidation at Pt-electrodes modified by Mo. Electrochim. Acta 2002,47,3681.
    [7]Brankovic, S. R.; Wang, J. X.; Zhu, Y.; Sabatini, R.; McBreen, J.; Adzic, R. R. Electrosorption and catalytic properties of bare and Pt modified single crystal and nanostructured Ru surfaces. J. Electroanal. Chem.2002,231,524.
    [8]Todoroki, N.; Osano, H.; Maeyama, T.; Yoshida, H.; Wadayama, T. Appl. Surf. Sci. Infrared reflection absorption spectral study for CO adsorption on Pd/Pt(111) bimetallic surfaces.2009,256,943.
    [9]Wang, Y. H.; Zhu, J. L.; Zhang, J. C.; Song, L. F.; Hu, J. Y.; Ong, S. L.; Ng, W. J. Selective oxidation of CO in hydrogen-rich mixtures and kinetics investigation on platinum-gold supported on zinc oxide catalyst. J. Power Sources 2006,155,440.
    [10]Ortiz-Soto, L. B.; Alexeev, O. S.; Amiridis, M. D. Low temperature oxidation of co over cluster-derived platinum-gold catalysts. Langmuir 2006,22,3112.
    [11]Skelton, D. C.; Tobin, R. G.; Lambert, D. K.; DiMaggio, C. L.; Fisher, G. B. Oxidation of CO on gold-covered Pt(335). J. Phys. Chem. B 1999,103,964.
    [12]Auten, B. J.; Lang, H.; Chandler, B. D. Dendrimer templates for heterogeneous catalysts:Bimetallic Pt-Au nanoparticles on oxide supports. Appl. Catal. B: Environ.2008,81,225.
    [13]Fialko, E. F.; Kikhtenko, A. V.; Goncharov, V. B.; Zamaraev, K. I. Similarities between reactions of methanol with MoxOy+ in the gas phase and over real catalysts. J. Phys. Chem. B 1997,101,5772.
    [14]Alayoglu, S.; Nilekar, A. U.; Mavrikakis, M.; Eichhorn, B. Ru-Pt core-shell nanoparticles for preferential oxidation of carbon monoxide in hydrogen. Nat. Mater.2008,7,333.
    [15]Frisch, M. J.; et al. Gaussian 03, rev D.01; Gaussian, Inc.:Wallingford, CT, 2004.
    [16]Burke, K.; Perdew, J. P.; Wang, Y. in Electronic Density Functional Theory: Recent Progress and New Directions, edited by Dobson, J. F.; Vignale, G.; Das, M. P., Plenum, New York,1998.
    [17]Perdew, J. P. in Electronic Structure of Solids'91, edited by Ziesche, P.; Eschrig, H., Akademie Verlag, Berlin,1991, p.11.
    [18]Perdew, J. P.; Burke, K.; Wang, Y. Generalized gradient approximation for the exchange-correlation hole of a many-electron system. Phys. Rev. B 1996,54, 16533.
    [19]Hay, P. J.; Wadt, W. R. Ab initio effective core potentials for molecular calculations Potentials for the transition metal atoms scandium to mercury. J. Chem. Phys.1985,82,270.
    [20]Hay, P. J.; Wadt, W. R. Ab initio effective core potentials for molecular calculations. Potentials for potassium to gold including the outermost core orbitals. J. Chem. Phys.1985,82,299.
    [21]Peng, C.; Schlegel, H. B. Combining synchronous transit and quasi-Newton methods to find transition states. Israel J. Chem.1993,33,449.
    [22]Fukui, K. Formulation of the reaction coordinate. J. Phys. Chem.1970,74,4161.
    [23]Wang, F.; Zhang, D. J.; Xu, X. H.; Ding, Y. Theoretical study of the CO oxidation mediated by Au3+, Au3 and Au3-:Mechanism and charge state effect of gold on its catalytic activity. J. Phys. Chem. C2009,113,18032.
    [24]Wang, F.; Zhang, D. J.; Ding, Y. Structures of Au/Pt bimetallic clusters: Homogeneous or segregated? J. Mol. Model., submitted.
    [25]Iwasita, T. Electrocatalysis of methanol oxidation. Electrochim. Acta 2002,47, 3663.
    [26]Godoi, D. R. M.; Perez, J.; Villullas, H. M. Effects of alloyed and oxide phases on methanol oxidation of Pt-Ru/C nanocatalysts of the same particle size. J. Phys. Chem. C2009,113,8518.
    [27]Rigsby, M. A.; Zhou, W.; Lewera, A.; Duong, H. T.; Bagus, P. S.; Jaegermann, W.; Hunger, R.; Wieckowski, A. Experiment and theory of fuel cell catalysis: Methanol and formic acid decomposition on nanoparticle Pt/Ru. J. Phys. Chem. C 2008,112,15595.
    [28]Chen, M. S.; Kumar, D.; Yi, C.; Goodman, D. W. The promotional effect of gold in catalysis by palladium-gold. Science 2005,310,291.
    [29]Tang, W.; Jayaraman, S.; Jaramillo, T. F.; Stucky, G. D.; McFarland, E. W. Electrocatalytic activity of gold-platinum clusters for low temperature fuel cell applications. J. Phys. Chem. C2009,113,5014.
    [30]Kristian, N.; Yan, Y.; Wang, X. Highly efficient submonolayer Pt-decorated Au nano-catalysts for formic acid oxidation. Chem. Commun.2008,353.
    [31]Zhang, J.; Sasaki, K.; Sutter, E.; Adzic, R. R. Stabilization of platinum oxygen-reduction electrocatalysts using gold clusters. Science 2007,315,220.
    [1]Samjeske, G.; Wang, H.; Loffler, T.; Baltruschat, H. CO and methanol oxidation at Pt-electrodes modified by Mo. Electrochim. Acta 2002,47,3681.
    [2]Brankovic, S. R.; Wang, J. X.; Zhu, Y.; Sabatini, R.; McBreen, J.; Adzic, R. R. Electrosorption and catalytic properties of bare and Pt modified single crystal and nanostructured Ru surfaces J. Electroanal. Chem.2002,524,231.
    [3]Barranco, J.; Pierna, A. R. Kinetics of methanol electro-oxidation on Pt, Pt-Sn and Pt-Ru amorphous metallic alloys. J. New Mater. Electrochem. Systems 2009,12, 69.
    [4]Zeng, J.; Yang, J.; Lee, J. Y.; Zhou, W. Preparation of carbon-supported core-shell Au-Pt nanoparticles for methanol oxidation reaction:The promotional effect of the Au core. J. Phys. Chem. B 2006,110,24606.
    [5]Zhang, J.; Ma, H.; Zhang, D.; Liu, P.; Tian, F.; Ding, Y. Electrocatalytic activity of bimetallic platinum-gold catalysts fabricated based on nanoporous gold. Phys. Chem. Chem. Phys.2008,10,3250.
    [6]Luo, J.; Njoki, P. N.; Lin, Y.; Mott, D.; Wang, L.; Zhong, C. J. Characterization of carbon-supported AuPt nanoparticles for electrocatalytic methanol oxidation reaction. Langmuir 2006,22,2892.
    [7]Kucernak, A. R.; Offer, G. J. The role of adsorbed hydroxyl species in the electrocatalytic carbon monoxide oxidation reaction on platinum. Phys. Chem. Chem. Phys.2008,10,3699.
    [8]Spendelow, J. S.; Goodpaster, J. D.; Kenis, P. J. A.; Wieckowski, A. Mechanism of CO oxidation on Pt(111) in alkaline media. J. Phys. Chem. B 2006,110,9545.
    [9]Wakisaka, M.; Suzuki, H.; Mitsui, S.; Uchida, H.; Watanabe, M. Identification and quantification of oxygen species adsorbed on Pt(111) single-crystal and polycrystalline pt electrodes by photoelectron spectroscopy. Langmuir 2009,25, 1897.
    [10]Zhu, Y.; Uchida, H.; Watanabe, M. Oxidation of carbon monoxide at a platinum film electrode studied by fourier transform infrared spectroscopy with attenuated
    total reflection technique. Langmuir 1999,15,8757.
    [11]Watanabe, M.; Zhu, Y.; Uchida, H. Oxidation of CO on a Pt-Fe alloy electrode studied by surface enhanced infrared reflection-absorption spectroscopy. J. Phys. Chem.B 2000,104,1762.
    [12]Rai, V.; Aryanpour, M.; Pitsch, H. First-principles analysis of oxygen-containing adsorbates formed from the electrochemical discharge of water on Pt(111) J. Phys. Chem. C2008,112,9760.
    [13]Markovic, N. M.; Jr, Ross, P. N. Surface science studies of model fuel cell electrocatalysts. Surf. Sci. Rep.2002,45,117.
    [14]Xu, L.; Ma, Y.; Zhang, Y.; Jiang, Z.; Huang, W. Direct evidence for the interfacial oxidation of CO with hydroxyls catalyzed by Pt/Oxide nanocatalysts. J. Am. Chem. Soc.2009,131,16366.
    [15]Arenz, M.; Mayrhofer, K. J. J.; Stamenkovic, V.; Blizanac, B. B.; Tomoyuki, T.; Ross, P. N.; Markovic, N. M. The effect of the particle size on the kinetics of CO electrooxidation on high surface area Pt catalysts. J. Am. Chem. Soc.2005,127, 6819.
    [16]Delley, B. An all-electron numerical method for solving the local density functional for polyatomic molecules. J. Chem. Phys.1990,92,508.
    [17]Delley, B. J. From molecules to solids with the DMol3 approach. Chem. Phys. 2000,113,7756.
    [18]Delley, B. Hardness conserving semilocal pseudopotentials. Phys. Rev. B 2002, 66,155125.
    [19]Perdew, J. P.; Wang, Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 1992,45,13244.
    [20]Henkelman, G.; Uberuaga, B. P.; Jonsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 2000,113,9901.
    [21]Sexton, B. A.; Hughes, A. E. Surf. Sci.1984,140,227.
    [22]Lynch, M.; Hu, P. A density functional theory study of CO and atomic oxygen
    chemisorption on Pt(111). Surf. Sci.2000,458,1.
    [23]Ranjan, C.; Hoffmann, R.; DiSalvo, F. J.; Abruna, H. D. Electronic effects in CO chemisorption on Pt-Pb intermetallic surfaces:A theoretical study. J. Phys. Chem. C 2007,111,17357.
    [24]Yeo, Y. Y.; Vattuone, L.; King, D. A. Calorimetric heats for CO and oxygen adsorption and for the catalytic CO oxidation reaction on Pt{111}. J. Chem. Phys. 1997,106,392.
    [25]Shubina, T.E.; Koper, M. T. M. Quantum-chemical calculations of CO and OH interacting with bimetallic surfaces. Electrochim. Acta 2002,47,3621.
    [26]Song, C. R.; Ge, Q. F.; Wang, L. C. DFT studies of Pt/Au bimetallic clusters and their interactions with the CO molecule. J. Phys. Chem. B 2005,109,22341.
    [27]Desai, S.; Neurock, M. A first principles analysis of CO oxidation over Pt and Pt66.7%Ru33.3%(111) surfaces. Electrochim. Acta.2003,48,3759.
    [28]Iwasita, T.; Xia, X. H.; Liess, H. D.; Vielstich, W. Electrocatalysis of Organic Oxidations:Influence of Water Adsorption on the Rate of Reaction. J. Phys. Chem. B 1997,101,7542.
    [29]Anderson, A. B.; Neshev, N. M. Mechanism for the Electro-oxidation of Carbon Monoxide on Platinum, Including Electrode Potential Dependence. J. Electrochem. Soc.2002,149, E383.
    [30]Gohda, Y.; Grop, A. Structure-reactivity relationship for bimetallic electrodes:Pt overlayers and PtAu surface alloys on Au(111). J. Electroanal. Chem.2007,607, 47.
    [26]Hammer, B.; Nskov, J. K. Theoretical surface science and catalysis-Calculations and Concepts. Adv. Catal.2000,45,71.
    [32]Hammer, B.; Nskov, J. K. Electronic factors determining the reactivity of metal surfaces. Surf. Sci.1995,343,211.
    [33]Hammer, B.; Morikawa, Y.; Norskov, J. K. CO Chemisorption at metal surfaces and overlayers. Phys. Rev. Lett.1996,76,2141.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700