先进高强度钢板汽车梁形件冲压回弹规律与控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
梁形件是汽车结构件的主要组成部分,在车身覆盖件中也占有很大比例。汽车梁形件的冲压成形在塑性成形的同时必然伴有弹性变形,外力卸载后弹性变形部分的回复即造成回弹,成形后经过修边的零件因形状改变使内应力重新分布也会引起回弹。回弹在成形过程中不可避免,回弹导致的尺寸变化会产生严重的装配问题,影响整车的结构稳定性和安全性。材料的屈服强度越大回弹量也越大,随着汽车轻量化进程的发展,由高强度钢板代替传统钢板带来的梁形件回弹缺陷增大的问题也越来越凸显。
     为实现对回弹准确预测和有效控制的目的,采用了理论分析、数值模拟和实验相结合的方法,对先进高强度钢板梁形件的回弹规律和控制方法进行研究。分析了数值模拟中单元类型和尺寸、厚向积分点数目、约束条件、计算公式、时间步长和虚拟拉延速度对回弹精度的影响。通过对U形件回弹实验和数值模拟研究得出:回弹量随压边力和拉延筋阻力增大而减小,随板料厚度增加先增大后减小,在一定范围内回弹量随摩擦系数增大而减小。通过对S梁回弹数值模拟,提出在前处理中测量截面线回弹角的方法。对斜壁U形梁采用模具型面补偿,零件回弹后的形状与标准形状吻合,使回弹缺陷消除。
     以后边梁为例,对具有复杂型面的汽车梁形件进行了数值模拟。提出了按变形区分曲面进行工具网格划分的方法,分析得出针对后边梁的具体计算时间步长和单点约束方式,提出了数值模拟回弹分析的分段法。在控制成形缺陷的基础上对后边梁的卸载回弹和修边回弹的最大位移及出现位置做出了预测,总结出将压边力和拉延筋阻力合理配比的回弹控制方案,经试模验证,采用优化后的成形工艺使后边梁的回弹得到了较好的控制。
Beam parts are the main structural components of automobile, also a large proportion of the automobile body panels. The stamping of automobile beam parts necessarily accompanies elastic deformation at the same time of plastic forming. Springback is the recovery of elastic deformation after external force unloading. The trimming parts after forming will also lead to springback, because of stress redistribution caused by shape change. It is inevitable during the forming process, can lead to size change which is a serious assembly problem, affects the stability and safety of automobile structure. The greater the yield strength of material the greater the springback, with the lightweight development process of automobile, the beam parts springback caused by high strength steel instead of traditional steel is more and more obvious.
     To accurately predict and effectively control springback, using the method of theory analysis and combination of numerical simulation with experiment, research has been done on the springback regularity and control of advanced high strength steel beam parts. Analyze the influence of unit type and size, integral point number in the direction of thickness, constraint condition, formula, time step and virtual drawing speed to springback accuracy in the numerical simulation process. Conclusion of research on the springback experiment and numerical simulation of U-shaped part is that the springback decreases with the increment of blank holder force and draw bead resistance, increases first and then decreases with the increment of sheet thickness, in a certain degree, it decreases with the increment of friction coefficient. Through numerical simulation of S-shaped beam springback, propose the method of measuring the section line angle in pretreatment. Adopt die profile compensation to inclined wall U-shaped beam, shape of the part after springback is similar to the standard shape, so the springback harm is eliminated.
     Take the behind beam for example, do some numerical simulation on these automobile beam parts which have complex profiles. Propose the method of dividing grids of tools according to the distinguish surfaces of deformation zone. Through analysis, the method of concrete calculating time step and single point constraint according to behind beam is obtained, and put forward the segmentation method of numerical simulation on springback. Predict the maximum displacement and position of unloading springback and trimming springback of the behind beam on the basis of controlling forming defects. Summarize the springback control scheme of matching blank holder force and draw bead resistance. Verified by test drawing, springback of the behind beam is decreased effectively with the optimized scheme.
引文
[1]张斌.汽车轻量化与材料[J].现代零部件, 2009, (10): 34-35.
    [2]张先鸣.汽车用材料技术动向[J].现代零部件, 2006, (10): 68-71.
    [3]田中靖,藤田荣.李军昌,译.支持车体轻化技术的汽车用高强钢板生产技术展望[J].本钢技术, 2008, (4): 38-41.
    [4]吴磊,蒋浩民,汪晨,等.高强钢材料性能对车身零件冲压回弹的影响[J].中国机械工程, 2009, 20(11): 1369-1371.
    [5]张冬娟.板料冲压成形回弹理论及有限元数值模拟研究[D].上海:上海交通大学(博士学位论文), 2006: 27-32.
    [6] NINSHU MA, YASUYOSHI UMEZU, YUKO WATANABE, etc. Springback Prediction by Yoshida- uemori Model and Compensation of Tool Surface Using Jstamp[C]. Interlaken: NUMISHEET, 2008: 473-478.
    [7]叶玉刚,薛勇,段江年.板料成形回弹模拟及补偿技术研究现状[J].锻压装备与制造技术, 2009, (3): 28-32.
    [8]武晋.汽车轻量化高强度钢板成形性能研究[D].天津:天津理工大学(硕士学位论文), 2008: 1-8.
    [9]王金学.高强钢和高性能钢在国外的应用[J].交通标准化, 2008, (9): 121-123.
    [10]唐荻,米振丽,陈雨来.国外新型汽车用钢的技术要求及研究开发现状[J].钢铁, 2005, 40(6): 1-5.
    [11]王洪俊,范海雁.轿车车身零件制造中的热成形技术[J].模具制造, 2005, (4): 32-34.
    [12]郑瑞,李飞,张谦.高强度工程机械用钢应用现状和发展前景[J].首钢科技, 2010, (2): 4-7.
    [13]石磊.宝钢600MPa高强度钢板的回弹特性研究[D].上海:上海交通大学(博士后研究工作报告), 2006: 44-61.
    [14]王利,陆匠心.宝钢高强度汽车板技术进展[J].宝钢技术, 2009, (zl): 36-40.
    [15]聂昕.汽车板件回弹相关问题的研究[D].长沙:湖南大学(博士学位论文), 2008: 24-27.
    [16]吴磊,曹昭展,杨胜利,等.高强钢胀弯成形卷曲回弹评价方法与影响规律研究[J].模具工业, 2009, 35(6): 31-34.
    [17]石磊,肖华,陈军,等.先进高强度钢板弯曲类回弹特性的试验研究[J].材料科学与工艺, 2009, 17(5): 671-674.
    [18]刘海燕,金霞.板料成形的回弹预测方法研究[J].机械制造与自动化, 2008, 37(6): 40-44.
    [19]丛莲莲,苏世忠,李明哲.双曲度覆盖件多点成形中回弹的数值模拟[J].塑性工程学报, 2007, 14(3): 12-15.
    [20]李茂君.基于数值模拟的板材渐进成形回弹研究[D].武汉:华中科技大学(硕士学位论文), 2008: 19-41.
    [21]崔煜.覆盖件冲压成形的数值模拟和回弹研究[D].成都:西华大学(硕士学位论文), 2008: 16-24.
    [22] LUC PAPERLEUX, JEAN-PHILIPPE, PONTHOT. Finite Element Simulation of Springback in Sheet Metal Forming[J]. Journal of Materials Processing Technology, 2002, 125-126: 785-791.
    [23] GHAEI A, TAHERIZADEH A, GREEN D E. The Effect of Hardening Model on Springback Prediction for a Channel Draw Process[C]. Interlaken: NUMISHEET, 2008: 485-489.
    [24] KUBLI WALDEMAR, KRASOVSKYY ANDRIY, SESTER MATTHIAS. Advanced Modeling of Reverse Loading Effects for Sheet Metal Forming Processes[C]. Interlaken: NUMISHEET, 2008: 479-484.
    [25] BARTHEL C, SVENDSEN B. Parameter Identification for the Steel lh800 and its Application to the Simulation of Draw-bending and Deep-drawing[C]. Interlaken: NUMISHEET, 2008: 545-548.
    [26] GAN WEI, WAGONER R H. Die Design Method for Sheet Springback[J]. International Journal of Mechanical Sciences, 2004, (46): 1097-1113.
    [27]朱永明.汽车覆盖件冲压成形仿真研究及工程应用[D].上海:上海大学(硕士学位论文), 2008: 18-27.
    [28]唐绍华,陈国荣.汽车覆盖件冲压回弹仿真的研究[J].制造技术与机床, 2008, (9): 25-28.
    [29] GAU J T, KINZEL G L. An Experimental Inverstigations of the Influence of the Bauschinger Effect on Springback Predictions[J]. Journal of Materials Processing Technology, 2001, 108: 369-375.
    [30] LIN ZHONGQIN, LIU GANG, XU WEILI. Study on the Effects of Numerical Parameters on the Precision of Springback Prediction[M]. Livermore:Livermore Software Technology Corporation, 2000: 25-33.
    [31] KARAFILLIS A P, BOYCE M C. Tooling and Binder Design for Sheet Metal Forming Processes Compensating Springback Error[J]. International Journal of Machine Tools&Manufacture, 1995, 36(4): 503-526.
    [32]陈炜,陈红辉,谢俊,等.基于回弹补偿的模具型面设计方法研究[J].锻压技术, 2008, 33(6): 86-90.
    [33] TANG A, LEE W, HE J. Die Face Engineering Based Springback Compensation Strategy and Implementation[C]. NewYork: NUMISHEET, 2005: 314-321.
    [34]胡爱萍,王平,李德遵.影响弯曲件回弹的因素及控制方法[J].航天制造技术, 2007, 4(2): 57-59.
    [35] CHENG H S, CAO J, XIA Z C. An Accelerated Springback Compensation Method [J]. International Journal of Mechanical Sciences, 2007, 49(3): 267-279.
    [36] ASNAFI NADER. Springback and Fracture in V-Die Air Bending of Think Stainless Steel Sheets[J]. Materials and Design, 2000, 21: 217-236.
    [37]王少辉,蔡中义,李明哲,等.多点拉形中回弹的影响因素研究[J], 2009, 16(4): 7-11.
    [38]戚鹏,辛献杰,王永智.工艺参数和材料性能对板料成形回弹的影响[J].锻压装备与制造技术, 2007, (1): 37-40.
    [39] LI DAYONG, PENG YINGHONG. Study on the Factors Affecting Springback and its Prediction with Dynaform[C]. NewYork: NUMISHEET, 2002: 70-74.
    [40]单体坤,李淑惠,陈关龙.变压边力下高强度钢板的回弹研究[J].塑性工程学报, 2005, 12(6): 52-58.
    [41]张正法,祁文军.基于CAE技术的板件回弹补偿[J].机床与液压, 2010, 38(6): 92-94.
    [42]张旭,周杰.高强度钢保险杠成形工艺及回弹控制的数值模拟优化[J].重庆大学学报, 2009, 33(9): 104-108.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700